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Abstract

resistance to diverse biotic stresses.

polymorphic markers ranged from 0.31 to 0.75.

Background: Banana is a nutritionally important crop across tropical and sub-tropical countries in sub-Saharan Africa,
Central and South America and Asia. Although cultivars have evolved from diploid, triploid and tetraploid wild Asian
species of Musa acuminata (A genome) and Musa balbisiana (B genome), many of today's commercial cultivars are
sterile triploids or diploids, with fruit developing via parthenocarpy. As a result of restricted genetic variation,
improvement has been limited, resulting in a crop frequently lacking resistance to pests and disease. Considering the
importance of molecular tools to facilitate development of disease resistant genotypes, the objectives of this study
were to develop polymorphic microsatellite markers from BAC clone sequences for M. acuminata subsp.
burmannicoides, var. Calcutta 4. This wild diploid species is used as a donor cultivar in breeding programs as a source of

Findings: Microsatellite sequences were identified from five Calcutta 4 BAC consensi datasets. Specific primers were
designed for 41 loci. Isolated di-nucleotide repeat motifs were the most abundant, followed by tri-nucleotides. From 33
tested loci, 20 displayed polymorphism when screened across 21 diploid M. acuminata accessions, contrasting in
resistance to Sigatoka diseases. The number of alleles per SSR locus ranged from two to four, with a total of 56. Six
repeat classes were identified, with di-nucleotides the most abundant. Expected heterozygosity values for

Conclusions: This is the first report identifying polymorphic microsatellite markers from M. acuminata subsp.
burmannicoides, var. Calcutta 4 across accessions contrasting in resistance to Sigatoka diseases. These BAC-derived
polymorphic microsatellite markers are a useful resource for banana, applicable for genetic map development,
germplasm characterization, evolutionary studies and marker assisted selection for traits.

Background

Commercial banana varieties, which are derived from
intraspecific crosses within Musa acuminata Colla,
together with interspecific hybrid development with
Musa balbisiana Colla, are cultivated mostly by small-
holder farmers, across over 120 countries in different
tropical and sub-tropical environments. As an inexpen-
sive starch source, banana is also rich in fibre, minerals
and vitamins. Although an important food commodity in
developing countries in terms of production value after
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rice, wheat and maize, genetic improvement has been
limited. In wild bananas, sexual recombination results in
viable seed. However, the majority of today's commercial
cultivars are sterile A and B genome-containing triploids,
with seedless fruit development occurring via partheno-
carpy, partly as a result of translocations [1]. Conven-
tional breeding in Musa diploids and triploids is also
hampered as a result of a low number or complete
absence of seeds, caused by either a lack of viable pollen,
or inefficient pollinating insects. As many cultivars are
evolving asexually via vegetative micropropagation or
suckers, their genetic base is narrow, resulting in crops
lacking resistance to pests and disease. Given the large
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scale global consumption of susceptible genotypes such
as the sterile triploids of the M. acuminata Cavendish
cultivar group, global Musa production faces threats by
fungal, bacterial and viral pathogens and a number of
pests, with greatest disease losses today caused by the
fungal pathogens Mycosphaerella fijiensis, causal organ-
ism of black Sigatoka disease, and Fusarium oxysporum f.
sp. cubense Tropical Race 4, which causes Fusarium wilt.
For these reasons, molecular tools for the development of
disease resistant genotypes are of paramount importance
for the Musa industry.

Highly variable microsatellites or simple sequence
repeat loci (SSRs), are abundant, randomly dispersed,
locus specific, codominant and multi-allelic markers,
which are composed of core repeat sequences of, for
example, di- to penta-nucleotides, repeated in tandem.
Their application in Musa has included genotyping [2-4],
Musa evolution and taxonomy [5], and linkage map satu-
ration [1]. Potential also exists in marker assisted selec-
tion (MAS), upon identification of SSRs for gene loci co-
localizing with quantitative trait loci (QTLs) for desirable
traits. To date, several hundred SSR markers have been
developed from M. acuminata and M. balbisiana mate-
rial [5,2,6-8]. In comparison with other crop species,
however, the total number available for genetic analyses
remains limited, given that alleles can be absent or mono-
morphic when applied across cultivars.

We report the development of novel SSR markers from
sequenced BAC clones in M. acuminata Calcutta 4. This
wild diploid species is resistant to numerous fungal and
bacterial pathogens, as well as nematodes. Given its'
potential as a source of exploitable genes, this cultivar is
widely employed as a donor species in banana breeding
programs [9]. Polymorphic loci were identified when
tested across 21 potential parental diploid M. acuminata
individuals contrasting in resistance to Sigatoka diseases
caused by the ascomycete fungi M. fijiensis and
Mycosphaerella musicola. Such BAC-derived markers are
potentially advantageous in that polymorphism can not
only be greater than that observed using EST-derived
SSRs [10], but subsequent mapping also allows anchoring
of individual BAC clones of interest to genetic maps.

Results

The sequences of five Musa BAC clones were subjected
to a computational pipeline targeting perfect SSRs with
periodicities ranging from two to ten nucleotides, and an
overall length of 12 bases. In total, 41 SSRs were identi-
fied comprising six repeat classes. Di-nucleotide repeats
are the most abundant (46.34%) class, followed by tri-
(29.26%), tetra- (12.19%), penta- (7.31%), hexa- (2.43%)
and nona-nucleotide repeats (2.43%). The most abundant
dinucleotide repeat motifs isolated were AG, AT, CT, and
TA (7.31% each). By contrast, all tri-nucleotide motifs
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were equal in abundance (7.31% each). Generally, the
shorter the nucleotide core sequence, the greater were
the number of repeats observed, with an average of 12.2
repeats for di-nucleotide motifs, 5.8 for tri, 3.6 for tetra, 3
for penta, 3 for hexa, and 3 for nona-nucleotide motifs. A
summary of all designed primer sequences, SSR motifs,
theoretical annealing temperature, and expected product
size is provided for the 41 loci identified where primers
could be designed [Additional file 1]. Twenty out of 33
tested primer pairs reproducibly amplified polymorphic
PCR products across the Musa accessions, with allelic
patterns under optimized primer conditions given in
Table 1. Di-nucleotide repeats were the most abundant
polymorphic group, followed by tri, penta and tetra-
nucleotides. From a total of 56 scored alleles, the number
of polymorphic alleles ranged from two to four, with an
average of 2.8 alleles per locus. Heterozygosity values
were calculated using GDA [11] and FSTAT [12], with
expected values ranging from 0.31 to 0.75. Thirteen loci
(MABN 09, MABN 12, MABN 14, MABN 16, MABN 18,
MABN 21, MABN 24, MABN 31, MABN 33, MABN 37,
MABN 38, MABN 39, and MABN 40) were monomor-
phic in M. acuminata accessions. Twelve loci showed
departure from Hardy-Weinberg expectations (P < 0.05
using Fisher's exact test probability [P < 0.05] based on
2000 shufflings), possibly as a result of sampling, chromo-
somal inversions or null alleles. Phenomena potentially
responsible for null alleles include point mutations and
sequence divergence in primer annealing sites, or prefer-
ential allele amplification during PCR. In testing for link-
age disequilibrium (LD) (FSTAT P < 0.01 with Bonferroni
correction), no disequilibrium was detected among the
loci pairwise combinations. PIC values for allelic diversity
ranged from 0.258 to 0.681.

Discussion

This is the first report identifying polymorphic microsat-
ellite markers from M. acuminata Calcutta 4 across
accessions contrasting in resistance to Sigatoka diseases.
The availability of these molecular tools will contribute
towards development of genetic maps with high marker
density, derived from segregant populations for agro-
nomically important traits, and offering potential for
downstream application in MAS. Concerted efforts are
currently underway by a number of Musa breeding
groups for development of segregant mapping popula-
tions [13,14].

Also, given difficulties in development of populations
in Musa with sufficient numbers of individuals for high
resolution mapping, LD mapping has been proposed as
an alternative route for identifying genes for traits of
interest in Musa [15]. As such an approach requires both
hundreds of plant accessions and thousands of markers,
the new microsatellite markers characterized in this study
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Table 1: Characteristics of microsatellite loci isolated from M. acuminata Calcutta 4 and polymorphic across 21 M. acuminata accessions.

Locus name BAC consensus GenBank Repeat Primer Sequence (5'- 3") Obtained allele T, (°Cjused N, He Ho HWE P value PIC
sequence ID Accession no. Array size range (bp)

MABNO1 MA4_008L021 AC186748 (AG)12 F: CCACTGAAGCTGAAAGGAGG 500-540 56 3 0.667828 0.875000 0.021000* 0.577
R: GGATTGTAGGTGACGGGAGA 56

MABNO3 MA4_008L021 AC186748 (TG)10 F: TGGTTGTATGTTTGCTGGGA 500-545 60 3 0.593590 0.850000 0.013500* 0.504
R: CAAAGTGCTGGCATGAGAAA 60

MABNO06 MA4_008L021 AC186748 (ATAC)3  F: GCAACCATCAACCAAAAACC 344-360 58 3 0.444872 0.200000 0.013500* 0.365
R: TTTGCAAGAAAATCGTGCTG 58

MABNO7 MA4_008L021 AC186748 (ATA)6 F: TTTTGATCATCATATGGGTCG 500-540 60 2 0344948 0.428571 0.512000 0.258
R: AGAGGGAGAGCCAAAGTGGT 60

MABNO8 MA4_008L021 AC186748 (GA)13  F: TTACCGTAAACGGAGCCAAC 260-290 58 3 0.637631 1.000000 0.000000* 0.544
R: GAAATCGAGGAAAACCGACA 58

MABN13 MA4_111B014 AC186954 (CA)6 F: CCTCAACGAAGCATACAGCA 210-240 58 2 0450980 0.647059 0.106500 0.351
R: CAGTCTGGGCTGACACAGAA 58

MABN15 MA4_111B014 AC186954 (ATTTT)3  F: CCAACTTCCATTTGGCTTTT 490-520 58 2 0315912 0.380952 1.000000 0.258
R: CGCAGGCGACTTCTTACAGT 58

MABN17 MA4_111B014 AC186954 (TCM14  F: CCCATGCAACTACAACAACG 200-245 60 4 0.732804 1.000000 0.125000 0.659
R: GGAACCACGTGTCCTGATCT 60

MABN19 MA4_1060017 AC186747 (TTTAT)3  F: CTCCACCGCTGCAAATTAT 330-380 60 4 0750794 0.944444 0.003000* 0.681
R: TTCATTTGATTGGAAAGTGGAA 60

MABN20 MA4_1060017 AC186747 (AQ)7 F: AAGAAGTGCAACAGATGGGC 344-380 56 3 0537179 0.550000 0.727500 0.454
R: GCCAAAGGAATCATGCTGTT 56

MABN22 MA4_1060017 AC186747 (AG)6 F: GTCGCAGAGATCAAGGAACC 490-510 58 2 0507549 0.619048 0.392000 0.373
R: GGACCTCCTATGTTTGCTGC 58

MABN23 MA4_1060017 AC186747 (TTA)4 F: TCGATCATTTGGCATCACAT 350-500 60 4 0.723577 0.952381 0.015500* 0.641
R: CCAGGTAGCGAAGACGAGAC 60

MABN25 MA4_1060017 AC186747 (TAT)9 F: TTTCATGATTTGAGGAGCCC 380-410 58 2 0462304 0.684211 0.049500* 0.348
R: CCCCACAAGTATGTTCCCAC 58

MABN26 MA4_1060017 AC186747 (CT)24 F: GTGGGAACATACTTGTGGGG 375-395 58 2 0493612 0.047619 0.000000* 0.359
R: ACGGAAAACCACAAGCAATC 58

MABN27 MA4_1060017 AC186747 (GAA)4 F: GGATGCAAAGACGGACAAAT 470-520 58 3  0.667828 0.714286 0.000000* 0.575
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Table 1: Characteristics of microsatellite loci isolated from M. acuminata Calcutta 4 and polymorphic across 21 M. acuminata accessions. (Continued)

MABN28

MABN29

MABN30

MABN34

MABN35

MA4_1060017

MA4_1060017

MA4_1060017

MA4_1060017

MA4_1060017

AC186747

AC186747

AC186747

AC186747

AC186747

(GA)23

(GAT)5

(ATTTT)3

(cms

(CMN4

R: TAATGGCTTTGCAACTGCTG
F: TGGAGGTCTCAACCAAAACC
R: AGATTGGCTACTGTGGGTGG
F: ACCAGCCACTGGAATCAAAC
R: GTCTGCTGAAGAGCCAAACC
F: CAGCCGTTGATGTTCAAATG
R: CGTTACGGTGGATCGTCTTT
F: TAGGTGAGAATGGGACGGAG
R: CAGTAGCAGCAACCTGGTGA
F: CTGTCACCAGGTTGCTGCTA
R: CTTCCTTGGACCTTTCATCG

390-410

350-385

360-380

330-355

270-320

58
60
60
60
60
60
60
58
58
56
56

4

0.480769

0.600000

0.387097

0.661451

0.664103

0.550000

0.866667

1.000000

0.368421

0.450000

0.639500

0.069000

0.000500*

0.000000*

0.005500*

0.367

0.506

0.321

0.571

0.569

Tm, annealing temperature used; Na, number of alleles per locus observed; Hg, expected heterozygosity under Hardy-Weinberg expectations; H,, observed heterozygosity; H-W, P value for
deviation from Hardy-Weinberg equilibrium, with *significant departure (P < 0.05) from HW equilibrium; PIC, Polymorphism Information Content
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can serve as candidates for such work. Our markers are
also a resource for characterizing diversity in wild spe-
cies, cultivars and landraces deposited in genebanks, and
for inferring phylogenetic relationships in Musa.

Finally, considering the increasing availability of
genomic resources for M. acuminata Calcutta 4, such as
BAC libraries [16], EST data sets [17] and candidate dis-
ease resistance gene sequences [18], in the context of
available next generation sequencing technologies, iden-
tification of genes and markers for desirable traits such as
resistance to biotic stress will no doubt accelerate consid-
erably in the near future.

Conclusion

In this study 41 new microsatellite markers were devel-
oped for M. acuminata, of which 20 displayed reasonable
polymorphism when screened across 21 diploid individu-
als contrasting in resistance to Sigatoka diseases. Poly-
morphic markers detected an average of 2.8 alleles per
locus, with PIC values ranging from 0.258 to 0.681. The
results also provided some information on repeat class
nature and abundance.

Methods
Data for SSR identification was derived from genomic
data (shotgun-sequenced BAC clones from a M. acumi-
nata Calcutta 4 BAC library) [16,19]. A computational
search over five BAC consensi datasets [Gen-
Bank:AC186748, AC186749, AC186954, AC186747 and
AC186750] was performed to locate SSRs with at least
two repeating units spanning more than 10 bases, using
the program Mreps [20]. Primers flanking microsatellite
loci were designed using the program PRIMER3 [21].
From 41 loci identified where primers could be
designed, 33 primer pairs were tested for polymorphism.
Twenty one diploid (AA) M. acuminata accessions, con-
trasting in resistance to Sigatoka diseases, and potential
parentals for genetic map construction, were used to
characterize microsatellite loci. Genomic DNA was
extracted from the Black Sigatoka-resistant M. acumi-
nata accessions Calcutta 4, Lidi, 0323-03, SH32-63, 1304-
06 and 0116-01; Black Sigatoka-susceptible accessions
Pisang Berlin and Niyarma Yik; Yellow Sigatoka-resistant
accessions Calcutta 4, Burmanica, Microcarpa, Lidi,
0323-03, 1304-06, 1741-01, 9179-03, 0116-01, 1318-01
and 4279-06; and Yellow Sigatoka-susceptible accessions
Raja Uter, Tjau Lagada, F2P2, Khai Nai On, Pisang Berlin,
Niyarma Yik, Sowmulk, Jaribuaya and SH32-63. Each PCR
reaction was carried out in a 13 pl volume, containing 3
ng of template genomic DNA, 2.5 mM MgCl2, 0.2 mM
dNTPs, 0.5 pM of each primer, 1.25 U of Taq polymerase,
and 1 x PCR buffer (Invitrogen). Amplifications were
conducted on a PTC-100 thermocycler (M] Research),
with temperature cycling conducted as follows: initial
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denaturation at 94°C for 5 min; 29 cycles of 94°C for 1
min, specific primer annealing temperature for 1 min,
and extension at 72°C for 1 min; plus an extra elongation
period of 7 min at 72°C. Following amplification, PCR
products were initially electrophoresed in 3.5% agarose
gels run in 1 x TBE buffer, in order to check amplicon size
and PCR specificity. Allele sizes were estimated against
10-bp ladder molecular size standards (Invitrogen) on
denaturing 6% polyacrylamide gels using 7 m urea, with
PCR products visualized by silver staining according to
standard protocols. The degree of polymorphism per
locus was calculated using GDA software, version 1.2
[11].

Additional material

Additional file 1 Summary of all designed primer sequences, SSR
repeat motif, theoretical annealing temperature (Tm), and expected
product size. A Microsoft Excel table containing a summary of all the
designed primer sequences, together with SSR repeat motif, theoretical
annealing temperature (Tm), and expected product size
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