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Abstract

Background: The data produced by an lllumina flow cell with all eight lanes occupied, produces well over a terabyte
worth of images with gigabytes of reads following sequence alignment. The ability to translate such reads into
meaningful annotation is therefore of great concern and importance. Very easily, one can get flooded with such a great
volume of textual, unannotated data irrespective of read quality or size. CASAVA, a optional analysis tool for lllumina
sequencing experiments, enables the ability to understand INDEL detection, SNP information, and allele calling. To not
only extract from such analysis, a measure of gene expression in the form of tag-counts, but furthermore to annotate
such reads is therefore of significant value.

Findings: We developed TASE (Tag counting and Analysis of Solexa Experiments), a rapid tag-counting and annotation
software tool specifically designed for lllumina CASAVA sequencing datasets. Developed in Java and deployed using
jTDS JDBC driver and a SQL Server backend, TASE provides an extremely fast means of calculating gene expression
through tag-counts while annotating sequenced reads with the gene's presumed function, from any given CASAVA-
build. Such a build is generated for both DNA and RNA sequencing. Analysis is broken into two distinct components:
DNA sequence or read concatenation, followed by tag-counting and annotation. The end result produces output
containing the homology-based functional annotation and respective gene expression measure signifying how many
times sequenced reads were found within the genomic ranges of functional annotations.

Conclusions: TASE is a powerful tool to facilitate the process of annotating a given lllumina Solexa sequencing dataset.
Our results indicate that both homology-based annotation and tag-count analysis are achieved in very efficient times,
providing researchers to delve deep in a given CASAVA-build and maximize information extraction from a sequencing
dataset. TASE is specially designed to translate sequence data in a CASAVA-build into functional annotations while
producing corresponding gene expression measurements. Achieving such analysis is executed in an ultrafast and
highly efficient manner, whether the analysis be a single-read or paired-end sequencing experiment. TASE is a user-
friendly and freely available application, allowing rapid analysis and annotation of any given lllumina Solexa
sequencing dataset with ease.

J

Background

In one run, the Illumina Solexa Genome Analyzer II
sequencer produces over 50 billion nucleotides of DNA
sequence data [1]. The Illumina Solexa sequencer can be
used to sequence genomes as well as sequence DNA
reverse transcribed from RNA to provide gene expression
information. As the read length of Illumina Solexa
sequencing increases, mainly due to advancements in its
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chemistry, so too does the volume of data generated from
sequencing experiments. What may have taken months
to sequence many years ago now takes days, with the
additional bonus of unprecedented genome depth. How-
ever with such rapid turnaround-time comes its own set
of challenges. First, terabytes of storage space is required
for the resultant data, and in order to analyze such data-
sets, high powered computing infrastructure is required
to extract and make sense of the data [2,3]. Furthermore,
analysis of lesser popular sequenced organisms such as
plants, including fruits, and vegetables, is not supported
by Illumina's GenomeStudio [4], proving to make post-
sequencing analysis even more challenging.
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With Solexa sequencing, the output from the sequencer
is initially in the form of .tiff (Tagged Image File Format)
images [2]. These images go through a pipeline known as
the GenomeAnalyzer (Illumina, Inc), developed specifi-
cally for performing three major functions: image analy-
sis, base-calling and genome alignment. Alternatives to
the GenomeAnalyzer however do exist, such as Swift [5].
By the end of the GenomeAnalyzer pipeline, the Genom-
eAnalyzer would have performed alignments with the
sequenced reads and a reference genome with accompa-
nying DNA sequence quality scores [2]. Furthermore,
third-party tools exist which map sequenced reads onto a
reference genome [6,7]. An optional fourth component,
CASAVA, takes the newly generated GenomeAnalyzer
alignments and performs SNP detection, allele calling
and INDEL detection, amongst many other features [2].
From this analysis, a CASAVA-build is produced, con-
taining the sequenced DNA reads which are separated
into folders representing the specific chromosome they
are located in. The CASAVA-build is compatible with
[llumina's GenomeStudio software package were the
CASAVA-build can be visualized with greater depth
while gaining deeper insight into features such as under-
standing INDELs, SNP information, exon splice variants
and junctions. However the genomes of many organisms
do not have the necessary prerequisite files to be in a for-
mat compatible with GenomeStudio. Such compatibly is
determined by whether necessary organism-specific pre-
requisite files are available on the USCS Genome Browser
[8].

The CASAVA-build organizes and stores reads in
directories which represent the chromosomes of the
sequenced organism [1]. The directories are further
divided into 10 mega base increments such that the reads
found within that 10 mega base genomic range are placed
in that particular sub-folder [2]. Manually organizing
DNA reads within the build is error prone since every
chromosome is represented with a directory, and within
that are additional sub-folders to represent DNA reads
broken-up into 10 mega base windows. Human error can
be eliminated by developing an automated method to
store all the reads into a given file of which represents all
the reads in the chromosome. Therefore, knowing that
each chromosome is represented by a directory, a viable
approach to eliminating user-error is by traversing the
sub-folders of the chromosome's directory and concate-
nating all the sequenced DNA reads into a single file. This
file contains all the reads found in the chromosomes
directory, except it eliminates the need for having numer-
ous sub-folders and additional files. Using publicly avail-
able genome and functional annotations, sequenced
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reads are iteratively annotated. Following suit, a measure
of gene expression known as tag-counting is employed
which calculates the number of synthesized DNA
sequenced being found between functionally annotated
regions. Herein, we propose TASE, or Tag counting and
Analysis of Solexa Experiments, a database-driven Java
GUI, which accomplishes this by performing read concat-
enation, tag-counting and the analysis of Illumina data-
sets in an ultrafast and highly efficient manner, especially
useful for organisms with genomes not supported by Illu-
mina GenomeStudio.

Methods

Implementation

TASE is written in Java and the Java Swing user-interface
library. We chose Java and Swing due to its ease and
robust nature for developing user-interface applications.
TASE uses Microsoft SQL Server database management
system [9], serving as a data-store for both the chromo-
somes in the given lane and the annotation files for the
given sequenced organism. TASE interfaces with SQL
Server using the jTDS JDBC driver [10]; a fast Java data-
base driver utilized to enable the calculation of tag-count
and derivation of functional annotations. TASE also
graphically represents chromosomal reads per lane using
the JFreeChart graphing library [11].

Concatenation of reads

TASE analysis is divided into two distinct but yet highly
related phases: DNA read concatenation for each given
chromosome per selected lane of interest, followed by
gene expression calculations using tag count measure-
ments and homology-based annotation. To initiate analy-
sis, a successfully generated CASAVA-build must first be
present. Within this build, the 'export’ directory contains
folders for all the chromosomes pertaining to the
sequenced organism, and its contents are what drive the
analysis [2]. Upon defining a CASAVA-build, the con-
tents of the 'export’ folder are recursively traversed, iter-
ating through all the sub-folders which represent
chromosomes. In doing so, all the DNA reads for the
given chromosome are appended to its own respective
file. Therefore the number of reads for all the sub-folder
will equal that in the respective chromosome file. The
index of the read of which signifies its locations within a
given chromosome is also appended alongside the DNA
sequence; proving crucial in the eventual stage of deriv-
ing functional annotations and calculating tag-counts.
Other properties such as the Illumina Solexa hardware
ID, direction of the sequence (forward or reverse), and
flow cell lane number, are also saved to the file. Bar
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Figure 1 Reads per chromosome. The number of sequenced reads
per CASAVA folder is concatenated, calculated and visually presented
before annotation is performed. Dataset from Tremblay, A. (2010).

graphs are produced for all lanes selected for analysis
which illustrate the number of DNA reads per chromo-
somes (Figure 1).

Measuring gene expression using tag-counts, and
functional annotation
A set of two tab-delimited text files are required to initi-
ate tag-count analysis and functional annotations, respec-
tively:
1) Genomic start and end sites: Must contain
genomic start and end sites for genes pertaining to
the sequenced organism. The base-pair ranges will be
used to perform tag-count analysis.
2) Homology-based annotations: There must also be
annotations corresponding to the genomic start and
end sites. The annotations are used in assigning gene
functional annotations based on homology.

Both files serve a critical role in analysis: Gene expres-
sion relies on counting the number of DNA sequences
that fall within the range of the start and end sites of a
gene, i.e. tag-counting. TASE takes the two user-defined
files and performs table-querying between them, produc-
ing a joined-table containing the start and the end of the
translated portion of the gene (ORF), as well as the
respective functional annotation pertaining to that given
genomic range. Therefore there must be attributes com-
mon between the two files to enable successful table-join-
ing to occur (Figure 2), or else both tag-count analysis
and gene annotations will produce inaccurate output.
Such annotation files are readily available for many
organisms in public repositories such as organism-spe-
cific databases pertaining to the sequenced organism. For
example, both files representing the functional annota-
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tions and defined gene-encoding regions for Glycine max
(Soybean) were found on the DOE JGI Glycine max ftp
[12]. An experimental dataset for use in TASE was
obtained by Tremblay et. al [13].

Distinct column names must be present in the first line
of both files, due to the fact that they are important
aspects of both tag-counting and annotation derivation.
Upon selection of the two files, a dialog is presented in
which it is divided in two halves: each for the two
required files. A total of six selections are to be made
which conclude which columns from the first line in the
two files are to represent the start site and end site index,
the keys (to be used between the two files), the chromo-
some and finally, the column containing functional anno-
tations (Figure 2).

After the necessary columns are selected, a dialog is
presented to enable a connection to an SQL Server
instance, prompting for the server username and pass-
word. The dialog prompts also for the server instance as
well as the class-driver for the SQL Server JDBC driver.
By default, the class-driver for jTDS is automatically
inserted. After successful login, a database is created
using Java and jTDS, named after the TASE project name
entered upon first starting TASE. Following suit and uti-
lizing the jTDS JDBC driver, both the gene-encoding
ranges and functional annotations files are bulk-imported
to the newly created database. All the files representing
the chromosomes, concatenated earlier, are also bulk-
imported into the same database. Each file, whether it
represents a chromosome or one of the user-defined files,
have their contents stored in their own physical table.
Depending on the processor speed and system specifica-
tions, database bulk-upload time will vary.

Once upload to the database is complete, a dialog
appears which contains all the chromosome files which
were uploaded. Clicking any chromosome name within
this list will initialize both tag-count calculation and
functional annotation derivation. Upon such a click, SQL
code is automatically generated which interacts with the
jTDS driver and SQL Server to ultimately execute the
analysis for a given chromosome. The following algo-
rithm serves as the basis behind both tag-count analysis
and functional-annotation derivation:

for each chromosome selected for analysis:

extract and store its DNA read indices.

tag count = number of times RNA-Seq reads are found
in-between all annotations start and end site.

retrieve the homology-based annotation for the corre-
sponding tag-count, based on the columns specified as
shared between the two files.

continue

write output to file
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|| Setup the annotation-related files @Eﬁ
Genomic regions file: nome files\SoybeanGenomicRegions. it Browse
Functional annotations file:  an Genome files\SoybeanKOGresults.txt Browse
Genomic regions Functional Annotations
Column for the startindex: | Startindex
Column for the end index: Endindex Column for the key: Accession -
Column for the key: AccessionNumber Column for funct. desc: KOG_Description b d

Column for the chromosome: (Chromosome

Progress

a column is 'Accession' and 'AccessionNumber'.

Figure 2 Defining the necessary columns for tag-counting and analysis. There must be a column in both files which have like values. Above, such

For any selected chromosome, the resultant output is
saved as a tab-delimited text file with the following nota-
tion: {chromosome}_{lane #}.txt. The files are saved in the
'output’ folder of the TASE project directory created
while running TASE. Generated output is also displayed
in tabs, enabling an opportunity to view the top 50 anno-
tations sorted by tag-count (Figure 3). Furthermore, the
output file contains all the columns in both the functional
annotations and gene-encoding region files, with the
addition of tag-count measurements to signify gene-
expression values per annotation.

Findings

TASE has high computational efficiency, both in-terms of
analysis time and tag-counting. To measure performance,
we utilized soybean (Glycine max) data in which all eight
lanes of the Illumina flow cell were utilized [13] (Table 1).

TASE was executed using the soybean genome build 1.0
[14]. A Python script was developed to extract the DNA
sequence out of files representing individual chromo-
somes. Functional annotations and gene locations were
retrieved from the DOE JGI Glycine max website [12].
The Soybean genome is approximately 1115 mega bases
[15,16] and 7 of the 8 flow cell lanes had well over one
million reads [13]. Lane 5 is an Illumina control [13]. For
the other lanes, all reads contained Asian Soybean Rust
(ASR); skewing the actual number of Soybean-only DNA
reads [13]. Regardless, TASE was more than capable of
analyzing all eight lanes with ease; handling the analysis
of a single lane in no more than 7 minutes (Table 2). All
tests were run on a dual-core 2 gigabyte CPU personal
notebook with 4 gigabytes RAM, Windows 7 OS and SQL
Server 2008 Developer Edition.

" Tag counting | Gm02_Lane2 | Gm07_Lane2 [ GmO06_Lane2 | Gm11_Lane2 | Gm12_La.. »
[]ﬁgi_t_lggx_ _Endindex |AccessionN..; Accession| KOG_ID | Tag count KOG_Description | I
=]48341045 48342982 |Glyma02g4...|Glyma02... KOG0143 [1577 |lronfascorbate family oxido...|~
150244344 50247076 |Glyma02g4...|Glyma02... [KOG2720 1230 |Predicted hydrolase (HITI..,
|12688364 12691342 |Glyma02g1...|Glyma02... [KOG0788 |844 [S-adenosylmethionine dec...
3494334 (3501793 _|Glyma020..[Glyma02.. KOG0256_[737 ___|Alanine aminotransferase
141825978 41830312 |Glyma02g3...|Glyma02... KOG2450 |735 |Aldehyde dehydrogenase
148341271 48341552 |Glyma02g4...|Glyma02... [KOG0143 732 \Ironfascorbate family oxido...
1112688575 |12689642 GIymaOZgLEI)'maDZ,., KOG0788 685 |S-aden line dec..
19737811 (9739875 |Glyma02g1..|Glyma02.. [KOG1663 [672 [O0-methyltransferase ~
1150244344 50244758 |Glyma02g4...|Glyma02... KOG2720 452 Predicted hydrolase (HIT ..
1150244759 |50245100 |Glyma02g4... Glyma02... KOG2720 [443 |Predicted hydrolase (HIT f...
146788382 (46792343 |Glyma02g4...|Glyma02... KOG0651 |395 |268 proteasome regulator..
16687953 6693543  |Glyma02g0...|Glyma02... [ KOG2686 341 |Choline kKinase
19739347  |9739640 |Glyma02g1...|Glyma02... KOG1663 [327 |O-methyltransferase
3043354 3945779  |Glyma02g0...|Gl! . |[KOG4742 319 [Predicted chitinase |
|48341733 |48342066 |Glyma02g4... . [KOG0143 |304 lIronfascorbate family oxido...
1143058260 43061192 |Glyma02g3...| . |[KOG1578 |274 |Predicted cartonic anhydr...
19792544  |9794471  |Glyma02g1...|Glyma02... KOG1192 |269 |UDP-glucuronosyl and UD...
15100047 _[15102426_|Glyma02g1..[Glyma02.. [KOG3033 261 |Predicted PhaC/iPhaF-type ..
1148342772 48342876 |Glyma02g4...|Glyma02... [KOG0143 249 Iron/ascorbate family oxido...
141980934 41986119 |Glyma02g3..[Glyma02.. KOG3271 247 |Translation initiation factor
113653942 [13655334 |Glyma02g1...|Glyma02... KOG1515 238 |Arylacetamide deacetylase
1150111841 [50114562 |Glyma02g4...[Gly .. |KOG1635 [237 Peplide methionine sulfoxi...
41829015 |41829393 |Glyma02g3..|Glyma02... KOG2450 |235 |Aldehyde dehydrogenase
113654135 |13655316 |Glyma02g1...|Glyma02... [KOG1515 (231 |Arylacetamide deacetylase
1148939882 48941978 |Glyma02g4....Glyma02... KOG0027 |231 [Calmodulin and related pr...
42460325 |42462765 |Glyma0293...|Glyma02.. KOG0841 |[222 [Multifunctional chaperona (...| = |
K | I [»]
Figure 3 Generated output. Resultant output is displayed visually and saved locally.
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Table 1: Number of reads per lane
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Chromosome Chrom size (bp) Lane1l Lane2 Lane3 Lane4 Lane5 Lane6 Lane?7 Lane8

1 55,915,595 44087 56460 144310 125574 CONTROL 73721 77785 90255

2 51,656,713 58000 74229 190042 165634 CONTROL 96910 102557 117524

3 47,781,076 50677 64715 164496 142812 CONTROL 84010 88910 101738

4 49,243,852 50726 64908 165724 144360 CONTROL 84645 89600 102509

5 41,936,504 44080 56686 144930 125480 CONTROL 73587 78373 89551

6 50,722,821 61200 77619 199609 173280 CONTROL 100638 106572 122915

7 44,683,157 50451 64728 165386 144206 CONTROL 84790 89232 102316

8 46,995,532 75392 95643 245844 214476 CONTROL 125271 133156 152202

9 46,843,750 48079 61227 157808 138132 CONTROL 80633 84986 97566

10 50,969,635 61068 77456 198859 172297 CONTROL 101868 107309 122479

1 39,172,790 60306 77010 195521 170430 CONTROL 100450 105876 120835

12 40,113,140 43131 55977 141515 123466 CONTROL 72493 76784 88282

13 44,408,971 72442 92603 235446 204937 CONTROL 119710 126250 146480

14 49,711,204 49088 63027 161172 140375 CONTROL 82670 86971 99934

15 50,939,160 57040 73027 186523 162741 CONTROL 95461 100196 114936

16 37,397,385 41074 52851 134554 117510 CONTROL 68635 72143 82947

17 41,906,774 56466 72499 186013 161964 CONTROL 94513 99838 113529

18 62,308,140 59460 76866 195838 170495 CONTROL 100206 105912 121360

19 50,589,441 45240 57579 146309 127167 CONTROL 74770 79226 90339

20 46,773,167 46146 58890 150392 131338 CONTROL 76533 80716 92677

Reads aligned to genome 1,074,153 1,374,000 3,510,291 3,056,674 - 1,791,514 1,892,392 2,170,374
Reads with annotations 640,467 851,595 2,297,371 1,970,284 - 1,101,214 1,150,125 1,363,662
Reads without annotation 433,686 522,405 1,212,920 1,086,390 - 690,300 742,267 806,712

Lanes 1 and 2 had one pM of cDNA, lanes 3 and 4 had 4 pM of cDNA while lanes 6, 7 and 8 had 2 pM of cDNA. The number of reads is roughly
proportional to the cDNA concentration. The number of reads per lane which aligned to the Soybean genome is provided. The number of reads
which had functional annotation is also provided. Figure 1 ratifies the textual data pertaining to lane 2 in this table.
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Table 2: Performance testing TASE
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#/lanes Specific #/chromosomes Total #/reads Read concatenation Tag counting,
analyzed lane(s) w/reads (min:sec) annotation (min:sec)
1 2 20 1,374,000 0:59 3:17

1 4 20 3,056,674 2:02 4:56

4 13,78 80 8,647,210 8:04 11:52

8 Entire flow cell 160 14,869,398 12:13 15:55

Numerous tests were performed to measure the efficiency of TASE using datasets of varying sizes.

Performance was tested using data from 4 of the 8 lanes
of the flow cell. All lanes had well over 1 million reads,
with a read length of 39 base-pairs (Table 2). However,
regardless of the sheer number of reads, TASE performed
read concatenation, annotation and tag-counting results
in less than 20 minutes (Table 2). However analysis time
is proportional to genome size. Therefore, analysis times
will vary for organisms with larger or smaller genomes.

The analysis time for one lane was no more than 7 min-
utes (Table 2). As additional lanes are added to the work-
load, time necessary to not only concatenate but also
perform tag-counting and annotation increases in a lin-
ear fashion.

In a traditional Illumina sequencing experiment, there
is usually one lane dedicated as a control [2]. Due to there
being minimal DNA reads, TASE analyzes this lane in a
matter of seconds, cutting the tag-counting and annota-
tion time possibly by several minutes or even more.

Conclusions

We developed TASE (Tag counting and Analysis of Sol-
exa Experiments), a rapid tag-counting and annotation
GUI-based software tool specifically designed for Illu-
mina sequencing datasets. Developed in Java and
deployed using jTDS JDBC driver and a SQL Server back-
end, TASE provides an extremely fast means of calculat-
ing gene expression through tag-counts while annotating
sequenced reads with the gene's presumed function, from
any given CASAVA-build. Though TASE is developed for
Windows operating systems with SQL Server, however its
packaged jTDS JDBC driver provides compatibility with
Sybase database management systems in non-Windows
operating systems. Such a build is generated for both
DNA and RNA sequencing. Analysis is broken into two
distinct components: DNA sequence or read concatena-
tion, followed by tag-counting and annotation. The end
result produces output containing the functional annota-
tion and respective gene expression measure signifying
how many times sequenced reads were found within the
genomic ranges of functional annotations. TASE is a

powerful GUI tool, free of a command-line prompt, with
the intent to facilitate the process of annotating a given
Illumina Solexa sequencing dataset. Our results indicate
that both functional annotation and tag-count analysis
are achieved in very efficient times, providing researchers
to delve deep in a given CASAVA-build and maximize
information extraction from a sequencing dataset.
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