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The power to detect artificial selection acting on
single loci in recently domesticated species
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Abstract

Background: An increasing number of aquaculture species are subjected to artificial selection in systematic
breeding programs. Rapid improvements of important commercial traits are reported, but little is known about the
effects of the strong directional selection applied, on gene level variation. Large numbers of genetic markers are
becoming available, making it feasible to detect and estimate these effects. Here a simulation tool was developed
in order to explore the power by which single genetic loci subjected to uni-directional selection in parallel
breeding populations may be detected.

Findings: Two simulation models were pursued: 1) screening for loci displaying higher genetic differentiation than
expected (high-FST outliers), from neutral evolution between a pool of domesticated populations and a pool of
wild populations; 2) screening for loci displaying lower genetic differentiation (low-FST outliers) between
domesticated strains than expected from neutral evolution. The premise for both approaches was that the isolated
domesticated strains are subjected to the same breeding goals. The power to detect outlier loci was calculated
under the following parameter values: number of populations, effective population size per population, number of
generations since onset of selection, initial FST, and the selection coefficient acting on the locus. Among the
parameters investigated, selection coefficient, the number of generation since onset of selection, and number of
populations, had the largest impact on power. The power to detect loci subjected to directional in breeding
programmes was high when applying the between farmed and wild population approach, and low for the
between farmed populations approach.

Conclusions: A simulation tool was developed for estimating the power to detect artificial selection acting directly
on single loci. The simulation tool should be applicable to most species subject to domestication, as long as a
reasonable high accuracy in input parameters such as effective population size, number of generations since the
initiation of selection, and initial differentiation (FST) can be obtained. Identification of genetic loci under artificial
selection would be highly valuable, since such loci could be used to monitor maintenance of genetic variation in
the breeding populations and monitoring possible genetic changes in wild populations from genetic interaction
between escapees and their wild counterpart.

Findings
Context
Massive parallel sequencing/re-sequencing technologies
have already provided thousands or even tens of thou-
sands of DNA markers for a number of species, while
the genotyping of such numbers of markers is becoming
routine due to microarray-based genotyping technolo-
gies. The possibilities offered by these developments

have already been exploited in order to identify loci
under natural selection through genome-wide scans [1].
Some studies have focused on selection due to domesti-
cation selection of livestock- (e.g. [2]) and plant species
(reviewed in [3]). Only a very limited number of studies
have targeted signatures of selection in the context of
modern breeding programmes [4]. Such studies could,
however, be useful in order to increase our understand-
ing of the locus-level consequences of modern artificial
selection. To what extent does, for example, artificial
selection lead to significant changes in allele frequency
at individual loci, and (implicitly) how likely is it that
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functional genetic variation may be lost due to artificial
selection? The existence of several nearly isolated breed-
ing populations, sharing the same breeding goals, pro-
vides opportunities for identifying parallel changes
between populations. For aquaculture species only a few
generations have passed since selective breeding began,
possibly limiting the statistical power to detect selection
at single loci. In this study, we wanted to estimate the
power to detect selection at single loci as a function of
effective population sizes, number of parallel popula-
tions, number of generations since onset of selection,
selection intensity, and the initial genetic distance
between populations.

Computational methods
Two different methods for detecting selection were con-
sidered: 1) detection of loci with lower-than-expected
values of FST between selectively bred aquaculture popu-
lations (hereafter referred to as farmed populations), and
2) detection of loci with higher-than-expected values of
FST between a pool of farmed populations and a pool of
wild populations. For both methods, the power to detect
selection was estimated by simulating a single, bi-allelic
locus both in the absence and presence of selection. The
simulation program was written in Python (v2.6), utilis-
ing simuPop, a library for general-purpose, individual-
based, forward-time population genetics simulation [5].
The code may be found in Additional files: low_fst.txt
and high_fst.txt. The parameter values were chosen to
be relevant for populations of Atlantic salmon in Nor-
way, the focus of our own research, but should match a
wide range of aquaculture species. With some excep-
tions, the Atlantic salmon breeding programmes share
the following features: 1) they have been running for 10
or fewer generations, 2) each breeding programme has
four parallel year classes, 3) the populations are more or
less isolated with little or no gene flow between year
classes, and 4) effective population sizes typically lie in
the range of 30-50 ([6], Karlsson et al, unpublished
data). The breeding programmes were once established
from different sets of Norwegian rivers, with some over-
lap between the different sets [7]. FST values between
wild Norwegian populations have been found to lie
around 0.05 (allozymes [8,9], microsatellites [10-12]).
(These results were backed up by our own data on four
wild populations genotyped for 12 microsatellite loci
and 13 wild populations genotyped for 4514 SNP loci
(unpublished)). On this background, our default simu-
lated data set consisted of 10 closed farm populations
(low-FST outlier approach) or 10 closed farm popula-
tions and 10 wild populations (high-FST outlier
approach), each population having an effective popula-
tion size of 50. Specifically, we assumed that (direc-
tional) selection is only occurring in the breeding

programmes and that this selection is leading to conver-
gent evolution among different breeding strains. In an
evolutionary context we are thus interested in detecting
low-FST outlier loci, that will appear as low-FST outliers
when only different breeding strains are being studied,
but as high-FST outlier loci when a pool of breeding
strains are compared with a pool of wild populations
(where no selection is occurring). From now on these
different approaches will be referred to as Low- and
High-FST outlier approaches, respectively. The base
populations of farmed populations were assumed to be
drawn from different rivers, so that FST between farmed
population at generation 0 (base population) would be
similar to FST between wild populations (default = 0.05).
Parameter values (Ne, number of populations, and start
FST) were altered one at a time in order to assess the
impact of the parameter on experimental power.

Algorithm
Two different approaches for the detection of outlier
loci were investigated. The first approach was based on
the detection of loci displaying lower-than-expected
(under a null hypothesis of no selection) FST values
between farmed strains. The second approach was based
on the detection of loci displaying higher-than-expected
values of FST between a pool of farmed populations and
a pool of wild populations. For both approaches, a single
bi-allelic locus was simulated with and without selection.
Low-FST outlier approach
In each of 1000 iterations, a single overall allele fre-
quency was first drawn randomly from a uniform distri-
bution between 0 and 1. Npop populations, each
consisting of Ne animals with a single diploid locus,
were then formed. Half of the individuals were desig-
nated as males, the other half as females. Genotypes
were assigned randomly to individual animals, given the
overall allele frequency. Next, random mating was simu-
lated in each population for a number of generations,
until the FST value between populations reached the
wanted level for initial FST (FST(0)). Following this initial
phase, random mating with (alternative hypothesis) or
without (null hypothesis) selection was applied for Ngen

generations; selection was applied by defining different
fitness values for the different genotypes (assuming no
dominance). At the end of each iteration, FST between
populations [13] was calculated. This process was iter-
ated 1000 times without selection in order to generate a
distribution of FST under the null hypothesis, and 1000
times with selection in order to generate a distribution
of FST under the alternative hypothesis. Finally, the
power to detect outlier loci was calculated. The power
was defined as the fraction of the FST -distribution
generated under the alternative hypothesis (i.e. under
selection) that was lower than the 5% percentile of the
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FST -distribution generated under the null hypothesis
(i.e. without selection). The Python code can be found
in Additional file 1.
High-FST outlier approach
In each of 1000 iterations, a single overall allele fre-
quency was first drawn randomly from a uniform dis-
tribution between 0 and 1. Npop * 2 populations, each
consisting of Ne animals with a single diploid locus,
were then formed. Half of the individuals were desig-
nated as males, the other half as females. Genotypes
were assigned randomly to individual animals, given
the overall allele frequency. Random mating was simu-
lated in each population for a number of generations,
until the FST value between populations reached the
wanted level for initial FST (FST(0)). The populations
were then split into two sets of equal size, representing
farmed and wild populations. For the farmed popula-
tions, random mating with (alternative hypothesis) or
without (null hypothesis) selection was simulated for
Ngen generations. For the wild populations, random
mating without selection was simulated for Ngen gen-
erations, but the size of each population was first
increased to 500 in order to minimise the effect of
drift in wild populations. At the end of each iteration,
the populations were merged into one farmed and one
wild ‘metapopulation’ and FST between these metapo-
pulations was calculated. This process was iterated
1000 times without selection in order to generate a
distribution of FST under the null hypothesis, and 1000
times with selection in order to generate a distribution
of FST under the alternative hypothesis. Finally, the
power to detect outlier loci was calculated. The power
was defined as the fraction of the FST-distribution gen-
erated under the alternative hypothesis (i.e. under
selection) that was higher than the 95% percentile of
the FST-distribution generated under the null hypoth-
esis (i.e. without selection). The Python code can be
found in Additional file 2.

Testing
With default parameter values, the power to detect
non-neutral loci among breeding populations (low-FST
outliers) was found to be very low, except for extre-
mely large selection coefficients, while relatively small
or moderate selection coefficients were found to be
sufficient for detecting non-neutral loci, when compar-
ing farmed and wild population (high-FST outliers)
(Figure 1).
The power to detect high-FST outliers rapidly

increased, and was large for moderate and large selec-
tion coefficients, when the effective population size,
number of populations and number of generation
passed reached 40, 5, and 10, respectively. Power and
initial FST was negatively correlated, with a rapid decline

in power with an increasing initial FST. The power to
detect weak selection (s = 0.05) was close to zero
regardless of effective population size, number of popu-
lations, and initial FST, but increased with an increasing
number of generations since the establishment of the
breeding populations (Figure 2).
The power to detect low-FST outliers was not affected

by increasing effective population size, or by the initial
FST. The largest effect on the power was observed from
increasing the number of populations and number of
generations (Figure 3).

Discussion and future development
This study was undertaken as a preparatory step preced-
ing an empirical study seeking to identify (markers for)
loci under artificial selection in Norwegian Atlantic sal-
mon breeding programmes. Our motivation for identify-
ing such loci was fourfold: 1) they could potentially
serve as universal markers of farmed versus wild Atlan-
tic salmon, 2) they could also be used to elucidate any
phenotypic changes occurring in wild salmon as a result
of wild-to-farm gene flow, 3) the results could be used
to predict to which extent functional loci are likely to
be lost due to ongoing artificial selection, and 4) the
results could contribute to the identification of loci con-
trolling phenotypic traits in Atlantic salmon. The moti-
vations and the approaches to identify non-neutral loci
presented here may also apply to other aquaculture spe-
cies [14], many of which might escape and interact with
their wild counterparts (e.g. common carp [15], tench
[16], Atlantic cod [17], Chinook salmon [18], clam [19],
Chinese fresh water pearl [20]).
While the infinitesimal model of quantitative genetics

assume than complex traits are controlled by many

Figure 1 Comparison between low-FST and high-FST outliers
approaches for detecting non-neural loci in domesticated
populations. Power to detect low-FST outliers and high-FST outliers
as a function of selection coefficient. Effective population size is 50.
Number of populations is 10. Number of generations is 10. Initial FST
is 0.05. Number of iterations is 1000.
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genes with small individual effects, indicating that a
study such as this one is futile, experimental results
show that some (assumed to be complex) traits are con-
trolled by only a small number of genes. As a notable
example, in two independent experiments, both with
considerable statistical power, Houston et al. [21] and
Moen et al. [22] identified one and the same QTL con-
trolling the bulk of genetic variation in resistance to the
viral disease infectious pancreatic necrosis (IPN) in
Atlantic salmon. Many different tests for detecting selec-
tion at individual loci have been proposed in the

literature (reviewed in [23]). Some of these test for
deviation from the neutral expectation of balance
between mutation and genetic drift (e.g. Ewens-Watter-
son homozygosity test [24,25], Tajima’s D-test [26], Fu’s
Fs test [27]), while others test for regions containing
long haplotypes of high frequency, indicative of selective
sweeps [28,29]. We believe that these two groups of
methods to be of little relevance for the current study,
since i) the mutation-drift balance is not relevant on the
time scale we are addressing (< 10 generations), and
since ii) the selection is most likely to have been acting

Figure 2 Power to detect high-FST outliers. Power to detect high-FST outliers as a function of effective population size (Ne per Population),
Number of Farmed populations, Number of Generations, and initial FST. Default parameter values are: Ne = 50, Number of populations is 10,
number of generations is 10, and initial FST is 0.05. Number of iterations is 1000.
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on standing variation, so that long-range extended hap-
lotypes are not likely to be observed ([1] and references
therein). While previously developed methods for testing
outlier levels of FST between populations or within the
same population sampled at different times [30-32] rely
solely on observed genetic data for creating an expected
FST distribution to which the observed data may be
compared, the method presented in this study take
advantage of important prior knowledge to strengthen
the power for detecting outlier loci in a selective breed-
ing context. By utilizing knowledge of known effective

population size, number of populations and time since
the onset of directional selection, we believe a more
accurate (and higher power) expected neutral distribu-
tion is obtained. We have therefore taken a more sim-
plistic approach, assuming that selection will be
detected through the comparison of differences in FST
between populations under (uni-) directional selection
or between a selected and an unselected ‘metapopula-
tion’. We have further assumed that selection is acting
directly upon the locus that is observed, whereas in
practice one would more likely be observing a loci

Figure 3 Power to detect low-FST outliers. Power to detect low-FST outliers as a function of effective population size (Ne per Population),
Number of Farmed populations, Number of Generations, and initial FST. Default parameter values are: Ne = 50, Number of populations is 10,
number of generations is 10, and initial FST is 0.05. Number of iterations is 1000.
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closely linked to (and in linkage disequilibrium (LD)
with) that locus. As such, we describe best-case scenar-
ios with regard to identifying loci under selection.
Power will be lost due to incomplete LD between the
observed marker and the locus under selection, but the
amount of power lost will vary dependent on species
and the marker density used in any given experiment.
The relevance of the power estimates presented here

to a real experiment will depend upon how realistic
the parameter values are. In addition to the selection
coefficient, the number of populations and the number
of generations since onset of selection were found to
have the largest effect on power. These parameters are
usually known for most breeding programs. An accu-
rate estimate of the effective population size may be
difficult to obtain unless a full pedigree is available.
However, our simulations were robust against varying
effective population sizes for Ne larger than 40. The
results show that the approaches presented here are
not suitable for detecting loci subjected to weak selec-
tion, unless many generations (> 75) have passed since
the onset of artificial selection. Quantitative Trait Loci
(QTL) mapping is used for finding markers linked to
commercially important traits; although QTL studies
are powerful in linking non-neutral markers to pheno-
typic trait, the studies are restricted to the study of
predefined traits, and are therefore not suitable for
screening the whole genome for non-neutral loci influ-
encing any trait under artificial selection. The
approaches presented in the present study enable
future screening of whole genomes for signatures of
artificial selection.

Additional material

Additional file 1: High-Fst. Python code for simulation of power for
high-fst outlier approach

Additional file 2: Low-Fst. Python code for simulation of power for
low-Fst outlier approach
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