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Abstract

to mediate cellular responses to mechanical strain.

Background: Mechanical strain plays a significant role in the regulation of bone matrix turnover, which is
mediated in part by matrix metalloproteinase (MMP)-13 and tissue inhibitors of matrix metalloproteinase (TIMP)-1.
However, little is known about the correlation between mechanical strain and osteoblastic cell activities, including
extracellular matrix (ECM) metabolism. Herein, we determined the effect of different magnitudes of cyclic tensile
strain (0%, 6%, 12%, and 18%) on MMP-13 and TIMP-T mRNA and protein expression in MC3T3-E1 osteoblasts.
Furthermore, we employed specific inhibitors to examine the role of distinct signal transduction pathways known

Results: We identified a magnitude-dependent increase in MMP-13 and TIMP-1 mRNA and protein levels in
response to mechanical strains corresponding to 6%, 12%, and 18% elongation. The strain-induced increases in
MMP-13 and TIMP-1 mRNA expression were inhibited by PD098059 and cycloheximide, respectively.

Conclusions: Our results suggest a mechanism for the regulation of bone matrix metabolism mediated by the
differential expression of MMP-13 and TIMP-1 in response to increasing magnitudes of mechanical strain.

Background

Bone is continuously remodeled throughout life in order
to meet the functional demands of its physiological and
mechanical environment [1-3]. Furthermore, active
remodeling of alveolar bone must occur in order to
cope with orthodontic force and mechanical loading
generated during orthodontic tooth movement. This
remodeling process requires a complex turnover of the
bone extracellular matrix, which is mediated in part by
matrix metalloproteinases (MMPs) and tissue inhibitors
of matrix metalloproteinases (TIMPs) [4-7]. MMP-13, a
member of the collagenase subgroup of MMP proteins,
plays a key role in bone matrix degradation and is
expressed highly in osteoblasts [3,8-12]. MMP-13 is
likely to contribute to bone healing [13,14], bone devel-
opment [15,16], and bone loss [17]. Previous studies
also indicated that mRNA and protein levels of MMP-
13 increase significantly following the application of
orthodontic forces [18,19]. In contrast, TIMP-1 is an
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endogenous inhibitor of bone matrix degradation that
binds tightly to active MMP-13, thereby downregulating
MMP-13 activity [20-22].

The cellular response to mechanical strain is regulated
by the type, frequency, magnitude, and duration of the
mechanical strain imposed. In response to mechanical
loading of bone tissue, osteoblasts exhibit changes in
enzymatic activity and in protein production. The effect
of mechanical force on the expression of MMPs has
been demonstrated using various cell types [23-26].
However, few reports have examined the correlation
between varying magnitudes of mechanical strain and
osteoblastic cell activities, including extracellular matrix
(ECM) metabolism. The relationship between mechani-
cal strain and the expression of MMP-13 and TIMP-1
in osteoblasts is not known, particularly with respect to
increasing magnitudes of mechanical strain.

In this study, we investigated the effect of different
magnitudes of mechanical strain on MMP-13 and TIMP-
1 expression in osteoblasts. MC3T3-E1 osteoblastic cells
were subjected to 0%, 6%, 12%, or 18% elongation using
the Flexercell Strain Unit, followed semi-quantitative
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reverse transcriptase-PCR (RT-PCR) and immunoblot
analysis to determine MMP-13 and TIMP-1 mRNA and
protein expression levels, respectively. Finally, we used
specific inhibitors to determine the signal transduction
pathways that regulate MMP-13 and TIPM-1 upregula-
tion in response to mechanical strain.

Methods

MC3T3-E1 cell culture

Mouse osteoblastic MC3T3-E1 cells were obtained from
the Center Laboratory for Tissue Engineering, College
of Stomatology, Fourth Military Medical University,
Xi’an, China. MC3T3-E1 cells were maintained at 37°C
in a humidified atmosphere of 5% CO, in a-modified
Eagle’s minimum essential medium (a-MEM: Sigma,
St. Louis, MO, USA) containing 10% fetal bovine serum
(FBS; JRH Biosciences, Lenexa, KS, USA), 32 U/ml peni-
cillin G (Meiji Seika, Tokyo, Japan), 250 pg/ml ampho-
tericin B (Nacalai Tesque, Kyoto, Japan), and 60 pg/ml
kanamycin (Meiji Seika, Tokyo, Japan). After reaching
90% confluency, the cells were detached by treatment
with 10% trypsin-EDTA (Sigma) and cultured for 24 h
on six-well, flexible-bottomed plates (type I collagen-
coated, Flex I; Flexcell International, McKeesport, PA,
USA) at a density of 2 x 10° cells/well; the 10% FBS-
containing medium was replaced with 1% FBS-contain-
ing medium prior to the application of mechanical
strain.

Application of strain force

Cells were plated onto six-well, flexible-bottomed plates
at a density of 2 x 10° cells/well. After overnight
incubation, the cells were nearly confluent and were
subjected to mechanical strains of 6%, 12%, or 18% elon-
gation at 6 cycles/min for 24 h using a Flexercell Strain
Unit (FX 3000, Flexcell International), as described pre-
viously [27]. Control cells (0% elongation) were cultured
on similar plates and were maintained in the same incu-
bator without mechanical strain.

RT-PCR

Semi-quantitative RT-PCR was used to determine the
effect of mechanical strain on MMP-13 and TIMP-1
mRNA expression levels. Total RNA was isolated using
an RNeasy mini kit (Qiagen, Chatsworth, CA, USA), fol-
lowed by reverse transcription using random hexamers
to generate cDNA. The ¢cDNA was amplified using
PCR primer pairs for MMP-13, TIMP-1, or the house-
keeping gene glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) as a control. The following primer sets were
used [3,4]: MMP-13 (445 bp RT-PCR product) sense 5'-
GGTCCCAAACGAACTTAACTTACA-3, and MMP-13
antisense 5-CCTTGAACGTCATCATCAGGAAGC- 3’;
TIMP-1 (346 bp RT-PCR product) sense 5-CCTTAT
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ACCAGCCGTTATAAGATCAAGAT-3, and TIMP-1
antisense 5-GTCCACAAACAGTGAGTGTCACTC -3’
and GAPDH (983 bp RT-PCR product) sense 5’-
GGTCGGTGTGAACGGATTTGG-3’, and GAPDH
antisense 5-ATGTAGGCCATGAGGTCCACC-3". PCR
reactions for cDNA amplification included 2.5 mM
dNTPs, 20 pmol/pl primers, and 5 U/ul Taq DNA poly-
merase. PCR amplification consisted of an initial
denaturation step (94°C for 3 min), followed by thirty
three-step cycles consisting of denaturation at 94°C for
30 s, annealing at a temperature optimized for each pri-
mer pair (MMP-13: 62°C, TIMP-1: 60°C, and GAPDH:
58°C) for 30 s, and extension at 72°C for 1 min; a final
extension was carried out at 72°C for 10 min. The
resulting PCR products were subjected to 2% agarose
gel electrophoresis and were visualized by ethidium bro-
mide staining. The relative intensities of the PCR pro-
ducts were measured using NIH Image software, and
the results were normalized to the corresponding
GAPDH mRNA levels.

Immunoblot Analysis

Immunoblot analysis was performed using monoclonal
antibodies against MMP-13 or TIMP-1 (Santa Cruz Bio-
technology, Santa Cruz, CA, USA). Total protein lysates
were collected from cells, and the protein concentration
was determined using the Bradford assay (Bio-Rad); BSA
was used to generate the standard curve. Approximately
50 pg of total protein was loaded in each well of a 10%
SDS PAGE gel; GAPDH served as the control for pro-
tein loading. Proteins were transferred electrophoreti-
cally onto nitrocellulose membranes (Hybond C,
Amersham), followed by incubation in PBS-T buffer
[PBS (pH 7.5) buffer containing 5% (w/v) blocking
reagent (Amersham) and 1.0% (w/v) Tween 20 (Sigma,
St. Louis, MO, USA)]. Individual membranes were incu-
bated overnight in PBS-T buffer containing antibodies
against MMP-13 or TIMP-1, followed by a 1 h incuba-
tion with goat anti-rabbit IgG conjugated to horseradish
peroxidase (ECL Western blotting analysis system,
Amersham). Protein bands corresponding to MMP-13,
TIMP-1, and GAPDH were visualized, and the density
of the protein bands was analyzed.

Enzyme-linked immunosorbent assay for the quantitative
determination of active-MMP-13 and TIMP-1
concentrations

Conditioned media harvested from the cultured cells
were used as samples. The concentrations of active form
of MMP-13 and TIMP-1 in these supernatants were
assayed using a comercially available enzyme-linked
immunosorbent assay (ELISA) kits (R&D Systems, Min-
neapolis, MN). Each sample was assayed in triplicate.
For active-MMP-13 quantification, the samples and
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standards were quantified fluorometrically with a fluor-
escence plate reader (MFX Microtiter]l Plate Fluorom-
eter, Dynex technologies, Chantilly, VA, USA) with
excitation wavelength set to 320 nm and emission wave-
length set to 405 nm. For TIMP-1 quantification, the
samples and standards were quantified with a microplate
reader (MRX Microplate reader, Dynex Technologies,
Chantilly, VA, USA) capable of measuring absorbance at
450 nm, with the correction wavelength set at 540 nm.
The concentrations of active form of MMP-13 and
TIMP-1 were determined using a standard curve and
normalized to the total cell number in each sample.

Inhibitors

We used specific inhibitors to identify signal transduc-
tion pathways that mediate the cellular response to ten-
sile stress. We employed cycloheximide (10 pM) to
inhibit de novo protein synthesis, indomethacin (10 pM)
to inhibit cyclooxygenase (COX), genistein (20 pM) to
inhibit tyrosine kinase activity, and PD098059 (10 pM)
to specifically inhibit extracellular signal-related kinase
(ERK). All inhibitors were purchased from Sigma (St.
Louis, MO, USA), and the concentrations used corre-
spond to effective doses reported previously [5,28].
MC3T3-E1 cells were pre-incubated in the presence of
each inhibitor for 30 min, followed by the application of
cyclic tensile strain at 18% elongation and 6 cycles/min
in culture for 24 h. Total RNA was extracted from the
cells, and MMP-13, TIMP-1, and GAPDH mRNA levels
were determined by RT-PCR.
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Statistical analysis

We performed these experiments using samples from at
least five different cell preparations, and reproducibility
was confirmed by using the same cell sample in tripli-
cate. Values were calculated as means + standard devia-
tion (SD). Some data were subjected to multiple
measurement analyses of variance (ANOVA), and a Stu-
dent’s t test was used to determine differences between
the groups tested. P values of less than 0.05 were con-
sidered significant.

Results

Figure 1 shows how different magnitudes of strain affect
MMP-13 mRNA and protein expression levels in the
MC3T3-E1 cells. The expression of MMP-13 mRNA
and protein were increased significantly and in a magni-
tude-dependent manner by mechanical strain with 6%,
12% or 18% elongation in comparison with the control
(0% elongation) cultures.

Figure 2 shows how different magnitudes of strain
affect the TIMP-1 mRNA and protein expression levels
in the MC3T3-E1 cells. Mechanical strain at 6%, 12%
or 18% elongation caused a significant magnitude-
dependent increase in TIMP-1 mRNA and protein expres-
sion compared to that in control (0% elongation) cultures.

The elevated expressions of MMP-13 and TIMP-1 in
the stretched cells were further confirmed by ELISA for
quantifying active-MMP-13 and TIMP-1 concentrations
in conditioned medium from these cells. Active-
MMP-13 and TIMP-1 concentrations in conditioned
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Figure 1 Effect of increasing tensile strain on MMP-13 mRNA and protein levels in mouse osteoblastic MC3T3-E1 cells. Cells were
seeded at a density of 2 x 10° cells/well on Flex | culture plates and cultured in a-MEM medium supplemented with 10% FBS for 24 h. The
cells were then loaded with (6%, 12%, 18%) or without (0%) cyclic tensile strain at the indicated percent elongation at 6 cycles/min using a
Flexercell strain unit for 24 h. The levels of MMP-13 mRNA and protein were determined by RT-PCR and immunoblot analysis, respectively, as
described in the Materials and methods. (A) Agarose gel electrophoresis of the RT-PCR products using specific primers for MMP-13 or GAPDH. (B)
MMP-13 mRNA expression levels normalized to GAPDH. (C) Immunoblot analysis of MMP-13 and GAPDH. (D) MMP-13 protein expression levels
normalized to GAPDH. The results shown are means + SD of five independent experiments. Significant differences from the 0% culture are

shown by ANOVA and Student’s t test (*P < 0.05, ** P < 0.01).
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Figure 2 Effect of increasing tensile strain on TIMP-1 mRNA and protein levels in mouse osteoblastic MC3T3-E1 cells. Cells were seeded
at a density of 2 x 10° cells/well, cultured for 24 h, and were then loaded with (6%, 12%, 18%) or without (0%) tensile strain at the indicated
percent elongation at 6 cycles/min using a Flexercell strain unit for 24 h. TIMP-1 mRNA and protein levels were determined by RT-PCR and
Western blot analysis, respectively, as described in the Materials and methods. (A) Agarose gel electrophoresis of the RT-PCR products using
primers specific for TIMP-1 or GAPDH. (B) TIMP-1 mRNA expression levels normalized to GAPDH mRNA levels. (C) Immunoblot analysis of TIMP-1
and GAPDH. (D) TIMP-1 protein expression levels normalized to GAPDH. The results shown are means + SD of five independent experiments.
Significant differences from the 0% culture are shown by ANOVA and Student’s t test (*P < 0.05, ** P < 0.01).
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medium induced by mechanical strain in MC3T3-E1
cells also increased significantly in a magnitude-depen-
dent manner compared to that in the control (See figure
3).

To determine whether the stretch-induced increases in
MMP-13 and TIMP-1 mRNA expression were depen-
dent on de novo protein synthesis, cyclooxygenase activ-
ity, tyrosine kinase activity, or extracellular signal-related
kinase activity, MC3T3-E1 cells were treated with speci-
fic inhibitors, including cycloheximide, indomethacin,
genistein, or PD098059, respectively. We found that
only the MEK inhibitor PD098059 was capable of block-
ing the strain-induced upregulation of MMP-13 mRNA
(See figure 4). In contrast, the signaling pathway linked
to the induction of TIMP-1 mRNA expression was
blocked only by cycloheximide (See figure 5).

Discussion

It has been demonstrated that matrix metalloproteinases
(MMPs) and tissue inhibitors of metalloproteinases
(TIMPs) regulate matrix degradation. The balance
between the activities of MMPs and TIMPs is believed
to determine the rate of this process. Previous studies
indicate that MMP-13 plays a key role in bone remodel-
ing and mechanical strain can affect the expression of
MMP-13 mRNA in osteoblasts [3]. As we know the
effects of mechanical strain on cells are dependent on
the magnitude, duration, and frequency of mechanical
strain, however, to date, very few reports have shown
the effects of different magnitudes of mechanical strain
on the mRNA and protein expression levels of MMP-13

and TIMP-1 in osteoblasts. The molecular biology
mechanism of the regulation of extracellular matrix
metabolism of osteoblasts under mechanical strain is
not clear that progressive study should be carried out to
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Figure 3 Active-MMP-13 and TIMP-1 concentrations in
conditioned medium induced by mechanical strain in MC3T3-
E1 cells. Conditioned media harvested from the cultured cells were
used as samples. The concentrations of active form of MMP-13 and
TIMP-1 in these supernatants were assayed using a comercially
available enzyme-linked immunosorbent assay (ELISA) kits, as
described in the Materials and methods. (A) The concentrations of
active form of MMP-13. (B) The concentrations of TIMP-1. The results
shown are means + SD of five independent experiments. Significant
differences from the 0% culture are shown by ANOVA and Student’s
t test (*P < 0.05, ** P < 0.01).
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Figure 4 Effects of inhibitors on tensile strain-induced
expression of MMP-13 mRNA in MC3T3-E1 cells. Cells were
seeded at a density of 2 x 10° cells/well on Flex | culture plates and
grown in a-MEM medium supplemented with 10% FBS for 24 h.
Cells were then cultured in medium containing cycloheximide (10
pM), indomethacin (10 puM), genistein (20 uM), PD098059 (10 uM),
or vehicle (control) for 30 min. The cells were cultured with (+) or
without (-) loading with tensile strain at 18% elongation at 6 cycles/
min for 24 h. Total RNA was extracted from the cells, and
expression levels of MMP-13 mRNA were determined by RT-PCR as
described in the Materials and methods. (A) Agarose gel
electrophoresis of MMP-13 and GAPDH RT-PCR products. (B) MMP-
13 mRNA expression levels normalized to GAPDH. The results
shown are means + SD of five independent experiments.
**Indicates a significant difference from the strain (+) culture

(P < 0.01)as determined by Student’s t test.

clarify how different magnitudes of mechanical strain
affect the expression of MMP-13 and TIMP-1 in osteo-
blasts. Yang et al. [3] reported previously that MMP-13
mRNA levels exhibited a time-dependent increase in
MC3T3-E1 cells following the application of mechanical
strain corresponding to 8% elongation. But, the correla-
tion between varying magnitudes of mechanical strain
and the expression of MMP-13 in osteoblasts is not
known. The present study demonstrates that MC3T3-E1
cells subjected to 6%, 12%, or 18% elongation exhibit a
magnitude-dependent increase in MMP-13 mRNA
and protein levels (See figure 1). Active-MMP-13 con-
centration in conditioned medium induced by mechani-
cal strain in MC3T3-E1 cells also increased significantly
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Figure 5 The effects of inhibitors on tensile strain-induced
expression of TIMP-1 mRNA in MC3T3-E1 cells. Cells were
seeded at a density of 2 x 10° cells/well on Flex | culture plates and
were cultured in a-MEM medium supplemented with 10% FBS for
24 h. They were then cultured in medium containing cycloheximide
(10 uM), indomethacin (10 pM), genistein (20 uM), PD098059 (10
uM), or vehicle (control) for 30 min. The cells were cultured with (+)
or without (-) loading with tensile strain at 18% elongation at 6
cycles/min for 24 h. Total RNA was isolated, and TIMP-1 and GAPDH
MRNA levels were determined by RT-PCR. (A) Agarose gel
electrophoresis of the TIMP-1 and GAPDH RT-PCR products.

(B) TIMP-1 mRNA levels normalized to GAPDH. The results shown
are means + SD of five independent experiments. **Indicates a
significant difference from stress (+) culture as determined by
Student’s t test (P < 0.01).

in a magnitude-dependent manner compared to that in
the control (See figure 3). Several lines of evidence sug-
gest that low levels of mechanical strain (1.8% - 6%
elongation) generate potent anti-inflammatory signals,
whereas high levels of mechanical strain (12% - 18%
elongation) generate an inflammatory signal and induce
PGE, and IL-1B, both implicated in matrix degradation
[29-32]. In the present study, we found that the increase
in MMP-13 expression was magnitude-dependent.
Furthermore, mechanical strain corresponding to 6%,
12%, or 18% elongation led to a magnitude-dependent
increase in TIMP-1 mRNA and protein expression (See
figure 2). TIMP-1 concentration in conditioned medium
induced by 12%, or 18% elongation mechanical strain
increased significantly compared to that in the control
(See figure 3). Collectively, these results suggest that the
increase in MMP-13 levels observed in osteoblastic cells
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under mechanical strain levels higher than those found
under normal physiological conditions is accompanied
by a corresponding increase in TIMP-1. TIMP-1 may in
turn bind to activated MMP-13, thereby inhibiting
MMP-13 activity and suppressing the degradation of
bone matrix as part of the body’s defense system. Our
present findings may help to explain the lack of patholo-
gical inflammatory changes during orthodontic tooth
movement when mechanical strain loads the alveolar
bone. It appears that the essential functions of osteo-
blasts in bone remodeling are affected by the magnitude
of mechanical strain and that cellular responses to
mechanical strain are crucial to maintaining homeostasis
and adapting to the bone environment.

The molecular mechanisms translating mechanical
strain into a signal that activates increased gene expres-
sion are complicated. Mechanotransduction pathways
may initiate signal transduction through many possible
mechanisms including integrins, receptor tyrosine
kinases, ion channel, gap junction, membrane fluidity,
etc. To determine whether the stretch-induced increases
in MMP-13 and TIMP-1 mRNA expression were depen-
dent on de novo protein synthesis, cyclooxygenase activ-
ity, tyrosine kinase activity, or extracellular signal-related
kinase activity, MC3T3-E1 cells were treated with speci-
fic inhibitors, including cycloheximide, indomethacin,
genistein, or PD098059, respectively. We found that
only the MEK inhibitor PD098059 was capable of block-
ing the strain-induced upregulation of MMP-13 mRNA
(See figure 4). This result indicates that MMP-13 induc-
tion is mediated by signaling molecules related to
extracellular signal-regulated kinase (ERK), which is sup-
ported by a previous study [3]. Therefore, the ERK-
MAPK pathway is likely to contribute to the strain-
induced increase in MMP-13 mRNA expression. In con-
trast, the signaling pathway linked to the induction of
TIMP-1 mRNA expression was blocked by cyclohexi-
mide (See figure 5), indicating that strain-induced up-
regulation of TIMP-1 mRNA required de novo protein
synthesis, and suggesting that the strain-induced upre-
gulation of TIMP-1 mRNA is not the primary response;
rather, TIMP-1 upregulation required the synthesis of
an as yet unidentified protein(s).

Conclusions

In conclusion, the application of different magnitudes of
cyclic tensile strain (0%, 6%, 12%, or 18%) induced a
magnitude-dependent increase in MMP-13 and TIMP-1
expression in cultured osteoblasts. Furthermore, we pro-
vide evidence that PD098059 and cyclohexamide treat-
ment suppressed the strain-induced upregulation of
MMP-13 and TIMP-1 expression, respectively. These
results indicate that MMP-13 and TIMP-1 expression
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are differentially regulated in response to increasing
magnitudes of mechanical strain in osteoblasts. This
effect may regulate bone matrix metabolism, and sug-
gests novel mechanisms through which osteoblasts may
respond and adapt to mechanical strain, including
occlusal and orthodontic forces, in order to maintain
homeostasis and adapt to the bone environment.
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