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Abstract

Background: Adenoviruses force quiescent cells to re-enter the cell cycle to replicate their DNA, and for the most
part, this is accomplished after they express the E1A protein immediately after infection. In this context, E1A is
believed to inactivate cellular proteins (e.g., p130) that are known to be involved in the silencing of E2F-dependent
genes that are required for cell cycle entry. However, the potential perturbation of these types of genes by E1A
relative to their functions in regulatory networks and canonical pathways remains poorly understood.

Findings: We have used DNA microarrays analyzed with Bayesian ANOVA for microarray (BAM) to assess changes
in gene expression after E1A alone was introduced into quiescent cells from a regulated promoter. Approximately
2,401 genes were significantly modulated by E1A, and of these, 385 and 1033 met the criteria for generating
networks and functional and canonical pathway analysis respectively, as determined by using Ingenuity Pathway
Analysis software. After focusing on the highest-ranking cellular processes and regulatory networks that were
responsive to E1A in quiescent cells, we observed that many of the up-regulated genes were associated with DNA
replication, the cell cycle and cellular compromise. We also identified a cadre of up regulated genes with no
previous connection to E1A; including genes that encode components of global DNA repair systems and DNA
damage checkpoints. Among the down-regulated genes, we found that many were involved in cell signalling, cell
movement, and cellular proliferation. Remarkably, a subset of these was also associated with p53-independent
apoptosis, and the putative suppression of this pathway may be necessary in the viral life cycle until sufficient
progeny have been produced.

Conclusions: These studies have identified for the first time a large number of genes that are relevant to E1A’s
activities in promoting quiescent cells to re-enter the cell cycle in order to create an optimum environment for
adenoviral replication.

Background
Most somatic cells, including adult stem cells, are in a
non-dividing or quiescent state (G0), and except for
those that have become terminally differentiated or
senescent, they can still re-enter the cell cycle when
necessary. The molecular pathways that are responsible
for maintaining cellular quiescence are largely unknown.
However, it is known that these pathways can be influ-
enced by external stimuli such as nutrients or growth fac-
tors, and that this in turn allows quiescent cells to grow,
progress through G1, and ultimately proliferate.

Human adenoviruses are another factor that can affect
the pathways that control cellular quiescence [1]. These
DNA viruses, which are a causative agent for various
types of human diseases, typically infect non-dividing
cells and force them into S phase for replicating DNA.
Ultimately, the viruses then use the cellular DNA precur-
sors and the host enzymes to replicate their own DNA
[2]. The first viral gene to be transcribed following ade-
novirus infection is E1A, and it encodes two major pro-
teins of 289 (289R) and 243 amino acids (243R) [2]. The
smaller size E1A is principally responsible for transition-
ing either human or rodent cells out of quiescence, and it
can perform this function either alone or in the context
of the virus [2-5]. This effect correlates with its ability to
target key cellular proteins involved in regulating the cell
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cycle and chromatin function. Included in this group of
proteins are the retinoblastoma family (pRb, p107, and
p130), inhibitors of cyclin-dependent kinases, histone
acetyltransferases, and other chromatin factors [2,6,7].
The proteins pRb and p130 are especially important

since they are both highly involved in regulating the E2F
family of transcription factors (E2F1-E2F5). The E2F1-3a
factors are activators of transcription and bind exclusively
to pRb, whereas p130 interacts specifically with E2F
repressors such as E2F4 [8]. Studies have shown that the
repressor complex p130-E2F4 associates with a substan-
tial number of E2F-dependent genes in quiescent cells
and that it serves to silence these genes by recruiting his-
tone-modifying enzymes such as deacetylases (HDACs)
and methyltransferases [9-11] to their respective promo-
ters. The genes that are regulated by this complex
include many that are involved in DNA replication, cell
cycle control, and metabolism [11]. We have recently
found that when expressed in quiescent cells, E1A can
reverse the repression of at least two of these genes (e.g.,
CDC6 and CCNA) by eliminating p130-E2F4 and HDAC
complexes from their promoters, and then by recruiting
a histone acetyltransferase to acetylate the surrounding
nucleosomal histones [4,5].
There are numerous E2F-dependent genes that are

involved in a variety of biological processes [12], and
when considering our previous work [4,5], many of these
have the potential to be targeted by E1A, leading to de-
repression of their expression in quiescent cells. E1A
thus gives us an opportunity to identify, on a global scale,
the gene regulatory networks that are required by the
virus for its propagation in these cells. We have therefore
used DNA microarray analyses with well-established sta-
tistical approaches on hybridized data from quiescent
cells with or without the expression of E1A in order to
address this important issue.

Results and Discussion
General Strategy
Our previous studies have described a “Tet-on” inducible
mouse cell line (Balb/c 3T3) that expresses the adeno-
virus E1A-243R protein in a regulated manner [4,5] An
important feature of this cell line is that it can be brought
to a state of quiescence by either contact inhibition or
mitogen deprivation. Published data show that in this
state, at least 95% of the cells are no longer in S phase, as
measured by the absence of BrdU incorporation [4,5].
Once in this state, however, these cells can be made to
transition into S phase by the induction of E1A following
the addition of doxycycline (Dox), a tetracycline analog.
In such an experiment, we typically find that 35-40% of
the cells are incorporating BrdU after being treated with
Dox for 12 hr, and > 98% of them express E1A [4]. More-
over, a microinjected E1A when compared to serum

stimulation shortens the transition from G0 to S phase in
quiescent cells with DNA synthesis beginning as early as
7 hr after its expression [13]. Because our E1A-inducible
cell line gives us the opportunity to identify E1A target
genes in an unbiased and exclusive manner, we decided
to use it in combination with DNA microarray analysis in
order to identify, on a global scale E1A-mediated differ-
entially expressed genes in quiescent cells.

Statistical Approach
Six independent cultures (n = 6) were used for cRNA
labelling for the transcriptional profiling. The categorical
factor under study consisted of a single 2-level Group
Factor (GF): the control group, denoted ‘Q’ (quiescent
cells without Dox, and therefore no E1A expression), ver-
sus the stimulated group, denoted ‘S’ (stimulated cells
with Dox, and therefore with E1A expression). In this
design, cell cultures were randomly assigned to treat-
ments with three independent biological replicates per
group. Therefore, this is an arrangement of treatments
laid out on a balanced Complete Randomized Design
(CRD) with no repeated measurements. In addition, no
technical replicates were performed, no pooling was
done, and there was no common reference sample.
One of the goals in high dimensional data mining is to

identify which of the variables (such as mRNA and EST
probes - sometimes abbreviated as genes) show evidence
of differential expression between experimental conditions,
while dealing with high dimensional contextual problems.
To detect differential expression between experimental
conditions when the number of variables greatly exceeds
the number of observations or samples (p >>n paradigm),
conventional regression techniques literally fall apart or
are inappropriate at best. A standard approach in model-
ling high dimensional data is to fit the same statistical
model individually to each outcome variable and test for
the contrast or effect of interest using the hypothesis test-
ing framework. Among the drawbacks of this univariate
approach are the correlation structure (i.e. dependency)
between the variables, which is totally ignored, while the
risk of excessive conservativeness and of over fitting can
be severely inflated [14].
In this study, we took advantage of the fact that the

problem of differential expression can be cast into a vari-
able selection problem in a regression setting. Recently,
Bayesian model selection methods were proven the most
reasonable approach to detect differentially expressed
genes in high dimensional settings [15-17]. We employed
one of these methods called Bayesian ANOVA (BAM). In
effect, BAM is a model selection technique that relies on
the so-called ‘spike and slab’ Bayesian hierarchical model
used in parameter estimation. It is a special type of infer-
ential regularization (i.e. borrowing information across
genes), which builds a parsimonious model by selectively
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shrinking to zero only those (model) coefficients of genes
that truly do not enter in the model [15]. This is an ideal
property guaranteeing which genes will enter into the
model and which will not, and allowing for optimal bal-
ancing of the number of false detections against false
non-detections (i.e. false positive and false negative rates,
or total gene misclassification errors), thereby leading to
a more accurate and parsimonious model of truly differ-
entially expressed genes [16,17].
Moreover, this technique is far superior to conven-

tional one-at-a-time (univariate) hypothesis testing pro-
cedures, followed by multiple testing corrections that
attempt to control only False Detection Rates (FDR)
[16,17]. This is because controlling FDR tends to iden-
tify obviously varying genes but misses more subtle
changes. This method also eliminates the problem of
specifying arbitrarily False Discovery Rate (FDR) cutoff
values, and the drawback of excessive conservativeness
[14]. In addition, BAM does not ignore the problem of
dependency between the variables, which is frequently
present within large datasets, and in biological data.
Therefore, by using the BAM model, we were able to
define a subset of differentially expressed genes of high
statistical significance in response to E1A’s expression in
quiescent cells (see below).

Microarray Analysis Identifies Genes that are modulated
by E1A in Quiescent Cells
To reveal differentially regulated genes in quiescent cells
after E1A expression, we hybridized cRNA prepared
from quiescent cells treated with or without Dox for 8
hr onto Agilent Whole Mouse Genome arrays, which
allows for the interrogation of ~25,000 genes. This time
point is approximately 1 hr after the start of E1A-
mediated DNA synthesis in these cells, and therefore
considers only genes that changed significantly in
expression after cells transitioned from G0 into S phase.
To reduce the dimensionality of the problem (i.e., the

number of potential probes at play on the microarray),
we initially applied a pre-filtering step as described in
Materials and Methods section, thereby reducing the
number of probes to 10,632. After carrying out our
Bayesian ANOVA on those ‘Present’ genes, we were
able to select 2,401 genes on the arrays whose expres-
sion showed a significant change after quiescent cells
had been treated with Dox [Figure 1 and Additional file
1: Supplemental Table S1]. Eight of these genes were
unnamed, and 1,174 of the genes were up regulated,
while 1,227 of them were down regulated. The total
number of E1A-regulated genes is displayed in a Vol-
cano and MA plot [Figure 2] as well as in a normalized
quantile-quantile plot [Additional file 2: Supplemental
Figure S1]. These plots importantly show (i) that only a
few of these genes would have been discovered if only a

conventional fold change analysis had been used [Figure
2 and Additional file 2: Supplemental Figure S1], and
(ii) that conventional statistical approaches such as
ANOVA or t-test would be inappropriate because of the
violation of the normality assumption [Additional file 2:
Supplemental Figure S1]. The top 50 genes that were up
regulated or down regulated by this analysis are listed in
Table 1. This analysis of E1A’s activity in promoting
quiescent cells into S phase has therefore allowed us to
uncover, for the first time, significant factors to induce
this event.
We next employed independent qRT-PCR assays to vali-
date the array results for genes that displayed high or
low fold change values, and which are known to have a
direct or indirect role in DNA replication or cell cycle
progression [Additional file 3: Supplemental Figure S2].
In the genes that were studied, and in the statistical
methods that were employed, both of these technologi-
cal platforms yielded changes that were proportionally
conserved in their expression, indicating the reproduci-
bility of change and the reliability of detection by micro-
array analysis.
These findings, along with our previous results [4,5],

confirm that E1A alone has the capacity to affect ~2,400
genes in quiescent cells. As shown below, some of these
genes are strictly related to maintaining cellular quies-
cence, while others are more important for helping cells
to transition out of quiescence. It is worth noting that
the number of genes (~6,400) whose promoters were
reported to be bound by E1A in quiescent human cells,
as determined by ChIP-on-chip analysis [18] is consider-
ably larger than the number of genes found to be
affected by E1A in our study. The basis for this differ-
ence is unknown, although the ChIP-on-chip analysis
was performed on cells that had been infected with ade-
novirus for a period of 6 hr. In addition, the binding of
E1A to promoters does not directly and immediately
have to affect the expression of the respective genes.
Another gene expression-profiling experiment using
adenovirus infected quiescent human cells identified
~2,100 differentially expressed genes [1]. Interestingly,
the earliest change in the concentrations of cellular
RNA found in these cells was at 18 hr post-infection, at
least 6 hr beyond the time when E1A was expressed [1].
Although E1A is likely involved in deregulating many of
the cellular genes reported in the aforementioned stu-
dies, there is still the possibility of other viral proteins
being contributors to this deregulation as well

E1A Regulates a Variety of Biological Processes to Induce
Cells out of Quiescence
In order to identify the biological processes, canonical
pathways and molecular networks that are potentially
regulated by E1A for transitioning cells out of quiescence,
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Figure 1 Data plots for assessing differentially expressed genes in quiescent Balb/c 3T3 cells after E1A induction. The left panel
represents a Shrinkage Plot where every point represents a gene. Red dots and green dots indicate genes that were up regulated and down
regulated, respectively, while the blue dots represent those genes that were non-regulated. The horizontal axis shows BAM Zcut values of
expression changes while the vertical axis shows the corresponding Posterior Variances. The right panel is a diagnostic volcano plot of the
comparison between quiescent Balb/c 3T3 cells with or without the expression of E1A. In this plot, each individual gene is arranged by statistical
significance, and the most significant of these are those that have the largest estimated magnitude of change (i.e. Group Mean Difference) and
the largest absolute value t-test (distributed in the top right or left of the plots). The genes that were significantly up regulated are highlighted
in red, and those that were significantly down regulated are highlighted in green.

Figure 2 Mapping of differentially expressed genes onto Volcano and MA plots. Genes significantly regulated by E1A and found to be up-
regulated or down-regulated by BAM analysis are highlighted in red or green, respectively, while the non-regulated genes are shown in grey. The top
50 regulated genes (up or down) from Table 1 are named along with a few un-annotated genes called Rik identifiers. Left panel: volcano plot of
absolute BAM Zcut values plotted versus log-fold-change-ratios on a log-equivalent transformed scale, denoted M = glog(S/Q), where (S) denotes cells
with E1A and (Q) without E1A. Right panel: MA plot. Vertical and horizontal axis are the log-fold-change-ratios on a log-equivalent transformed scale,
denoted M = glog(S/Q), and the log-geometric-means on a log-equivalent transformed scale, denoted A = ½*glog(S*Q) respectively. Solid lines in the
MA plot represent the LOESS smoothing curves of the differentially expressed genes (red and green) and non-regulated genes (blue).
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Table 1 List of top twenty up- and down-regulated genes found differentially expressed by BAM analysis in quiescent
cells after E1A expression (Dox-treatment).

Accession Symbol Definition Zcut glog(FC)

Down-Regulated Genes

NM_007778.1 Csf1 Mus musculus colony stimulating factor 1 (macrophage) -66.5094 -1.348

NM_026784.1 Pmvk Mus musculus phosphomevalonate kinase -27.5436 -0.562

NM_178879.2 C76566 Mus musculus expressed sequence C76566 -23.5382 -0.482

NM_145529.1 Cstf3 Mus musculus cleavage stimulation factor, 3 pre-RNA, subunit 3 -20.1076 -0.413

NM_023813.2 Camk2d Mus musculus calcium/calmodulin-dependent protein kinase II, delta -19.1488 -0.242

NM_018865.1 Wisp1 Mus musculus WNT1 inducible signaling pathway protein 1 -18.7272 -1.396

NM_026772.1 Cdc42ep2 Mus musculus CDC42 effector protein (Rho GTPase binding) 2 -17.9546 -1.340

NM_001033476.1 AI450948 Mus musculus expressed sequence AI450948 -16.851 -1.261

NM_198612.1 BC049816 Mus musculus cDNA sequence BC049816 -16.7728 -1.255

NM_010212 Fhl2 Mus musculus four and a half LIM domains 2 -16.7683 -1.254

NM_007670.2 Cdkn2b Mus musculus cyclin-dependent kinase inhibitor 2B (p15) -16.7461 -1.253

NM_013470.1 Anxa3 Mus musculus annexin A3 -16.6472 -1.246

NM_009372.2 Tgif Mus musculus TG interacting factor -16.4772 -1.234

NM_010700.1 Ldlr Mus musculus low density lipoprotein receptor -15.9324 -0.203

NM_008453.2 Klf3 Mus musculus Kruppel-like factor 3 (basic) -15.7751 -1.183

NM_016769 Smad3 Mus musculus SMAD family member 3 -15.0449 -1.130

NM_206856.1 Tacc2 Mus musculus transforming, acidic coiled-coil containing protein 2 -14.9903 -1.126

NM_010688.2 Lasp1 Mus musculus LIM and SH3 protein 1 -14.8866 -1.119

NM_007918.2 Eif4ebp1 Mus musculus eukaryotic translation initiation factor 4E binding protein 1 -14.7742 -1.111

NM_147105.1 Olfr978 Mus musculus olfactory receptor 978 -14.6434 -0.304

XM_196166 3300005D01Rik Mus musculus RIKEN cDNA 3300005D01 gene -14.4319 -1.086

NM_023118.1 Dab2 Mus musculus disabled homolog 2 (Drosophila) -14.2169 -1.071

Up-Regulated Genes

NM_175554.3 Clspn Mus musculus claspin homolog 33.3736 1.378

NM_010931.2 Uhrf1 Mus musculus ubiquitin-like, containing PHD and RING finger domains, 1 31.1992 1.382

NM_011241 Rangap1 Mus musculus RAN GTPase activating protein 1 30.7663 1.384

NM_026410.1 Cdca5 Mus musculus cell division cycle associated 5 27.1852 1.387

NM_007633.1 Ccne1 Mus musculus cyclin E1 26.512 1.390

NM_011799.1 Cdc6 Mus musculus cell division cycle 6 homolog (S. cerevisiae) 26.3215 0.239

NM_025674.1 Tcf19 Mus musculus transcription factor 19 25.7018 1.449

NM_175554.3 Clspn Mus musculus claspin homolog 24.2127 0.400

NM_009387 Tk1 Mus musculus thymidine kinase 1 23.9996 1.468

NM_031405.1 Ars2 Mus musculus arsenate resistance protein 2 22.9415 1.477

NM_008566.1 Mcm5 Mus musculus minichromosome maintenance deficient 5, cell division cycle 46 22.6281 1.502

NM_133851.1 Nusap1 Mus musculus nucleolar and spindle associated protein 1 21.4676 1.529

NM_001039556.1 E130016E03Rik Mus musculus RIKEN cDNA E130016E03 gene 21.3155 1.552

NM_145150.1 Prc1 Mus musculus protein regulator of cytokinesis 1 20.9803 1.553

NM_008568.1 Mcm7 Mus musculus minichromosome maintenance deficient 7 (S. cerevisiae) 20.8883 1.560

NM_026282.2 2410030K01Rik Mus musculus RIKEN cDNA 2410030K01 gene 20.879 1.584

NM_007550 Blm Mus musculus Bloom syndrome homolog (human) 20.5591 1.594

NM_008446.1 Kif4 Mus musculus kinesin family member 4 20.1831 1.679

NM_026640.1 4632417K18Rik 19.8413 0.470

NM_017407.1 Spag5 Mus musculus sperm associated antigen 5 19.7147 1.779

NM_021713.1 Myg1 Mus musculus melanocyte prolifeating gene 1 19.4864 1.794

NM_021891.2 Fignl1 Mus musculus fidgetin-like 1 19.4541 1.903

XM_130428.2 2310043D08Rik 18.9002 1.948

XM_149213.1 2610318C08Rik Mus musculus RIKEN cDNA 2610318C08 gene 18.6426 1.961

NM_021288.2 Tyms Mus musculus thymidylate synthase 18.5966 2.010

NM_177733.2 E2f2 Mus musculus E2F transcription factor 2 18.5614 0.627
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we up-loaded the BAM Zcut values of the E1A-modulated
genes into the Ingenuity Pathway (IPA) software. We
applied specific filters (see Materials and Methods) for
limiting our experimental observations to information that
would be most relevant to the reversibility of quiescent
cells, and which left 385 up/down-regulated molecules/
genes that were eligible for generating networks, and 1033
molecules/genes, which were eligible for functional and
canonical pathway analysis. Of interest is that regardless of
whether the IPA filter for mouse or human was used, the
results from the respective analyses were strikingly similar.
After performing an IPA core analysis, we found that

the E1A-243R was able to modulate sets of genes that
are known to function in several key cellular processes,
and which were either upregulated or downregulated in
their expression (Figure 3). In particular, genes involved
in transitioning cells out of quiescence (e.g., CDK2,

E2F1, E2F2, RBL1, RB1, ID2, SKP2, BRAC2, TP53,
CCNE1, CDC25C, and ATM) and for making chromatin
competent for DNA replication (e.g., CDC6, CDT1, the
MCM replicative helicase complex (Mcm2-Mcm7,
ORC1L, and ORC6L) were significantly up-regulated
after E1A was expressed in quiescent cells [Additional
file 1: Supplemental Table S1]. We also identified several
other genes which were significantly up regulated and
are known to be required for the metabolism and synth-
esis of DNA [19]. These included POLD1, POLA2,
FEN1, KIN, PRIM1, PRIM2, HELB, NASP, and LIG1.
Notably, the promoter regions of most of these genes
are known to be occupied by the E2F4 repressor com-
plex in quiescent cells [20]. Given that, E1A alone can
dissociate this transcriptional repressor from an inactive
endogenous CDC6 promoter in quiescent cells [4,5],
this new data suggests that E1A may also have the

Table 1 List of top twenty up- and down-regulated genes found differentially expressed by BAM analysis in quiescent
cells after E1A expression (Dox-treatment). (Continued)

NM_007891.1 E2f1 Mus musculus E2F transcription factor 1 18.5401 2.303

NM_011284.2 Rpa2 Mus musculus replication protein A2 18.4827 2.461

Transcripts are ranked by statistical significance (Zcut values) from top to bottom. Direction of change is indicated by the Zcut sign. Generalized-log-fold change
values (glog(FC)) represent the corresponding magnitude of regulation of the selected genes.

Figure 3 Molecular and cellular functions most significantly regulated by E1A expression in quiescent cells. The Benjamini-Hochberg
(BH) method was used to adjust the right-tailed Fisher’s Exact t-test p-values, which measure how significant each pathway is. Functions having
the highest p-values are shown. For a complete listing of the genes used in this analysis, see Supplemental Table S1 [Additional file 1:
Supplemental Table S1].
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ability to directly affect the promoters of other genes
that are subject to E2F4 repression in these cells. In
effect, this may be one way in which E1A contributes to
the growth of viruses in the infected cells.
Although there is evidence to suggest that quiescent

mouse cells lack global genomic DNA repair, they do
exhibit proficient transcription-coupled DNA repair
[21,22]. Interestingly, the IPA analysis identified clusters
of up regulated genes that are involved in different
DNA repair pathways, as well as in checkpoint controls,
and the DNA damage response (DDR) (Table 2). As
noted in the Table, a majority of the genes can bind
E2F4 [12], and at least one-third of them have been
found to be associated with this factor in quiescent cells
[20], and therefore have the potential of being up regu-
lated by E1A.
It is interesting to note that all of the DNA repair genes

that are up regulated in response to E1A expression in
quiescent cells fall into three categories, mismatch and
excision repair (e.g., MSH2, MSH6, MLH1, CDC7, and
PMS2), and DNA double-strand break repair by homolo-
gous recombination (e.g., ATM, BRCA1, BRCA2, MRE11,
and LIG1) or non-homologous end-joining (e.g., ATM,
NBS1, MRE11, and XRCC1and 6). This is underscored
and graphically illustrated by additional IPA analyses
(Figure 4A and Figure 4B), which identified each of these
DNA repair systems (p values 7.76E-07, 1.14E-04, and
1.83-02, respectively) as significant categories within
Canonical Pathways. The necessity of these DNA repair
systems during E1A-mediated transition out of quies-
cence and into S phase, either alone or in the context of
virus is unclear. However, it is conceivable that the rapid
and abnormal progression into S phase induced by E1A
could lead to DNA damage (single-stranded or double-
stranded), possibly generated by an instability in the
replication forks (e.g., stopping or pausing because of the
depletion of the nucleotide pool) as they move away from
their respective origins [19]. Alternatively, the restoration
of global DNA repair systems following the E1A-
mediated re-entry of quiescent cells into the cell cycle
could be a natural phenomenon so that the proliferating
cells can cope with various kinds of DNA damage, if
need be.
Finally, additional analysis by the IPA software

revealed a set of genes that were significantly down
regulated in the E1A expressing cells [Additional file 1:
Supplemental Table S1]. Genes of interest that were
affected in the functional category of Cellular Growth
and Proliferation included the cyclin dependent kinases
inhibitors CDKN2A (p16) and CDKN2B (p15) as well as
PTK2, SOCS, TOB1, and CAV1, which has been sug-
gested to play an important role in maintaining cells in
a quiescent state [23].

E1A Regulates Specific Cellular Networks and Canonical
Pathways in Quiescent Cells
To determine whether any of the differentially expressed
genes in the E1A expressing cells are interacting with
one another, we used the IPA software to generate a list-
ing of gene regulatory networks. Our first analysis was
done on the up-regulated genes, and this computation
produced one top network that was essentially associated
with DNA replication, DNA repair, and the re-entry of
cells into the cell cycle. As illustrated in Figure 5, many
of the up-regulated genes in this system are involved in
DNA replication (p-value 9.36E-15). For example, genes
encoding the activating E2F transcriptional factors (E2F1
and E2F2), as well as some of the more important com-
ponents of DNA replication (e.g., CDC6, MCMs, CCNE1,
PCNA, and CDK2) were found to have positions in this
network. Genes included in the categories of DNA repair
and the response to DNA damage were MCM7, MEN1,
MSH2, TP53, ATM, PCNA TYMS, RRM2, and MCPH1.
It should be noted that MCM7, in addition to its role in
the replication of DNA, might also be involved in the
transmission of DNA damage signals [24]. Clearly, this
regulatory network not only highlights the interactions
between genes that are active in DNA replication but
also those that function in DNA repair and DDR. This is
consistent with the canonical pathway displayed in Figure
4B. Finally, this network includes HDAC1, EED, and
EZH2, which are E2F-dependent genes that participate in
the methylation of lysine 27 on histone H3 (H3K27), a
marking that is largely associated with the repression of
genes [25]. Indeed, a gain in the di- or tri-methylation of
H3K27 at specific sites on chromatin might account for
at least some of the genes that were down regulated in
quiescent cells after E1A expression (Table 1).
Coordinated interactions between the down-regulated

genes in the E1A-modulated dataset were also revealed
by using the IPA software. Two of the regulatory net-
works that were identified by this analysis are presented
in Figure 6. Not surprisingly, the genes comprising the
first network were linked to biological processes such as
cell-to-cell signalling (p-value of 6.34E-13), cellular
development (p-value of 2.57E-12), and cellular growth
and proliferation (p-value of 6.43E-10). The transcrip-
tional and translational co-repressors SAP30 and
EIF4EBP1 play an important role in this network as
does the SOCS2, SOCS3 and EGFR, which are known to
increase the differentiation of cells. Of particular interest
is that this network also contained the Toll-like receptor
proteins TLR4 and TLR6, which were interconnected
with the two signalling pathways (Figure 6). Both of
these proteins play a fundamental role in pathogen
recognition and the activation of innate immunity [26].
Therefore, their E1A-mediated repression in quiescent
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Table 2 Identification of up regulated genes identified in E1A expressing quiescent cells and required for DNA repair,
checkpoint controls, and the DNA damage response.

Accession Gene
Symbol

Description E2F4
binding1,2

Zcut glog
(FC)

DNA repair processes: homologous recombination, mismatch/excision repair,
and non-homologous end-joining

NM_007499.1 ATM Ataxia telangiectasia mutated + 7.498 0.585

NM_007550 BLM Bloom syndrome, RecQ helicase-like + 20.559 1.529

NM_009764.2 BRCA1 Breast cancer 1, early onset - 4.757 0.381

NM_009765.1 BRCA2 Breast cancer 2, early onset - 12.234 0.927

NM_007691.2
NM_009863.1

CHEK1
CDC7

CHK1 checkpoint homolog (S. Pombe) Cell division cycle 7 homolog (S.
cerevisiae)

+ + 3.202
17.694

0.261
1.321

NM_028119.2 DDB2 Damage-specific DNA binding protein 2, 48 kDa + 9.204 0.709

NM_177752.2 EME1 Essential meiotic endonuclease 1 homolog 1 (S. pombe) - 2.820 0.232

NM_001033244.1 FANCD2 Fanconi anemia, complementation group D2 + 9.508 0.730

NM_007999.2 FEN1 Flap structure-specific endonucleae 1 + 8.577 1.957

NM_010436.2 H2AFX H2A histone family, member X + 4.634 1.095

NM_010715.1 LIG1 Ligase 1, DNA, ATP-dependent + 18.060 1.348

NM_026810.1 MLH1 MutL homolog 1, colon cancer, nonpolyposis type 2 (E. coli) + 2.794 0.230

NM_018736.2 MRE11A MRE11 meiotic recombination 11 homolog A (S. cerevisiae) - 5.432 0.432

NM_008628.1 MSH2 MutS homolog 2, colon cancer, nonpolyposis type 1 (E. coli) + 3.107 0.254

NM_010830.1 MSH6 MutS homolog 6 (E.coli) - 13.241 1.000

NM_013752 NBN Nibrin - 8.326 0.645

NM_009632.2 PARP2 Poly (ADP-ribose) polymerase 2 + 7.656 0.596

NM_011045.1 PCNA Proliferating cell nuclear antigen + 10.999 0.838

NM_008886.1 PMS2 PMS2 postmeiotic segregation increased 2 (S. cerevisiae) - 8.409 0.651

NM_011131.2 POLD1 Polymerase (DNA directed) delta 1, catalytic subunit 125 kDa + 7.744 0.603

NM_030715.2
NM_008949.2

POLH
PSMC3IP

Polymerase (DNA directed), eta PSMC3 interacting protein - + 3.448
17.496

0.825
1.307

NM_013917.1
NM_021385.1

PTTG1
RAD18

Pituitary tumor-transforming 1 RAD18 homolog (S. cerevisiae) + + 7.190
7.629

0.562
0.594

NM_009012.1 RAD50 RAD50 homolog (S. cerevisiae) + 4.064 0.328

NM_011234.2 RAD51 RAD51 homolog (RecA homolog, E. coli) (S. cerevisiae) + 12.514 0.947

NM_009013.1 RAD51AP1 RAD51 associated protein 1 + 9.638 0.740

NM_009015.2 RAD54L RAD54-like (S. cerevisiae) + 9.320 2.115

NM_026653.1 RPA1 Replication protein A1, 70 kDa - 9.177 0.707

NM_011237.1 RAD9A RAD9A homolog A - 4.501 0.361

NM_023042.1 RECQL RecQ protein-like (DNA helicase Q1-like) + 5.724 0.125

NM_021419.1 RNF8 Ringfinger protein 8 + 2.663 0.222

NM_011677.1 UNG Uracil-DNA glycosylase + 4.901 0.475

NM_133786.3
NM_153808.1

SMC4L1
SMC5L1

Structural maintenance of chromosomes four-like 1 Structural maintenance of
chromosomes five-like 1

- - 4.290
10.047

0.345
0.769

XM_127444.3
NM_010247.1

TRIP13
XRCC6

Thyroid hormone receptor interactor 13 X-ray repair complementing defective
repair in Chinese hamster

+ - 3.630
3.039

0.294
0.732

Accession Gene
Symbol

Description E2F4
binding1,2

Zcut glog
(FC)

DNA damage response

NM_007499.1 ATM Ataxia telangiectasia mutated + 7.498 0.585

NM_009764.2 BRCA1 Breast cancer 1, early onset - 4.757 0.381

NM_009765.1 BRCA2 Breast cancer 2, early onset - 12.234 0.927

NM_007691.2 CHEK1 CHK1 checkpoint homolog (S. Pombe) + 3.202 0.261

NM_001033244.1 FANCD2 Fanconi anemia, complementation group D2 + 9.508 0.730

NM_008316.2 HUS1 HUS1 checkpoint homolog (S. pombe) - 4.438 0.357

NM_010774.1 MBD4 Methyl-CpG binding domain protein 4 - 8.816 0.681
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cells is provocative since this may represent an addi-
tional way of neutralizing the host’s antiviral defence.
Indeed, it is well established that adenoviruses encode
other proteins that function to inhibit host immune
responses, for example, killing by CD8+ cytotoxic T lym-
phocytes [27].
The second network displayed in Figure 7A contains

down-regulated genes that are primarily involved in
apoptosis (p-value of 1.02E-17) and developmental pro-
cesses (p-value of 5.46E-16). This network includes a
number of pro-apoptotic genes (e.g., BAX and BID)
whose mRNAs decreased in response to E1A expres-
sion. The change in expression of these genes and their
interactions in apoptotic pathways were also made clear
after the down-regulated genes in the database were
subjected to canonical pathway analysis. Among the
pathways that were revealed in this study, apoptotic sig-
nalling (p-value of 9.81E-9), was one of the most signifi-
cant to be perturbed by E1A expression. This suggests
that E1A may be blocking p53-independent apoptosis
when it is expressed in quiescent cells (Figure 7B). In
effect, E1A may be temporarily suppressing the p53-
independent apoptosis that has been shown to be a
consequence of adenovirus infection, and which is
apparently mediated by the larger size E1A protein

(289R) and the adenovirus product E4orf4 [28]. Notably,
it has been suggested that apoptosis may be promoted
by adenovirus to kill cells at the very end of its replica-
tive cycle [28]. This may explain why the virus has
developed additional mechanisms, for example the
encoding of the E1B-55K and -19K proteins, for con-
trolling apoptosis during the infection.

Conclusions
One of the most important conclusions to be drawn
from the study is the ability of the small size E1A pro-
tein of 243R to perturb a rather large number of cellular
processes in quiescent cells. This is most likely due to
its ability to re-organize chromatin structure [4,5], an
effect which in turn leads to the reprogramming of ~
2400 cellular genes. According to IPA analysis, 271 of
these differentially expressed genes are significantly
associated with DNA replication, DNA repair, the cell
cycle and cell death, all of which are necessary for effi-
cient viral replication. This analysis also revealed pertur-
bation in other cellular processes, including cell-to-cell
signalling, cellular development and cellular growth,
which may be required to provide an optimal environ-
ment for the replication of the virus. Finally, our studies
suggest a role for E1A in altering metabolic homeostasis

Table 2 Identification of up regulated genes identified in E1A expressing quiescent cells and required for DNA repair,
checkpoint controls, and the DNA damage response. (Continued)

NM_008583.1 MEN1 Multiple endocrine neoplasia 1 ? 4.995 0.399

NM_026810.1 MLH1 MutL homolog 1, colon cancer, nonpolyposis type 2 (E. coli) + 2.794 0.230

NM_008628.1 MSH2 MutS homolog 2, colon cancer, nonpolyposis type 1 (E. coli) + 3.107 0.254

NM_010830.1 MSH6 Muts homolog 6 (E. coli) - 13.241 1.000

NM_008884.2 PML Promyelocytic leukemia - 3.155 0.257

NM_011237.1 RAD9A RAD9 homolog A (S. pombe) - 4.501 0.361

NM_011234.2 RAD51 RAD51 homolog (RecA homolog, E. coli) (S. cerevisiae) + 12.514 0.947

NM_009015.2 RAD54L RAD54-like (S. cerevisiae) + 9.320 2.115

NM_026653.1 RPA1 Replicaton protein A1, 70 kDa + 9.177 0.707

NM_011623.1 TOP2A Topoisomerase (DNA) 11 alpha 170 kDa + 8.224 1.880

NM_011640.1 TP53 Tumor protein p53 - 6.333 0.499

NM_010247.1 XRCC6 X-ray repair complementing defective repair in Chinese hamster - 3.039 0.732

Accession Gene
Symbol

Description E2F4
binding1,2

Zcut glog
(FC)

DNA replication checkpoints and checkpoint control

NM_007499.1 ATM Ataxia telangiectasia mutated + 7.498 0.585

NM_026014.3 CDT1 Chromatin licensing and DNA replication factor 1 - 4.137 0.983

NM_007691.2
NM_008316.2

CHEK1
HUS1

CHK1 checkpoint homolog (S. Pombe) HUS1, checkpoint homolog (S. pombe) + + 3.202
4.438

0.261
0.357

NM_008583.1 MEN1 Multiple endocrine neoplasia 1 - 4.995 0.399

NM_008628.1 MSH2 MutS homolog 2, colon cancer, nonpolyposis type 1 (E. coli) + 3.107 0.254

NM_134092.2 MTBP Mdm2, transformed 3T3 cell double minute 2 + 9.084 0.700

NM_011237.1 RAD9A RAD9 homolog A (S. pombe) + 4.501 0.361

NM_011640.1 TP53 Tumor protein p53 - 6.333 0.499
1,2 Data for the binding of E2F4 was obtained from Ren et al. 2002 (superscript 1) and Xu et al. 2007 (superscript 2). Generalized-log-fold change values (glog(FC))
represent the corresponding magnitude of regulation of the selected genes.
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in quiescent cells [Additional file 4: Supplemental Figure
S3]. Therefore, a more complete understanding of
whether these metabolic differences are necessary for
viral growth will be an important goal for future studies.

Methods
Cell Culture
The Tet-on inducible Balb/c 3T3 cell line expressing a
wild-type 243 amino-acid E1A protein has been pre-
viously described [5,29]. This particular clone, which is
maintained in DMEM supplemented with antibiotics, L-
glutamine, blasticidin/zeocin, and 10% fetal bovine
serum (Tet system approved; Clontech), expresses a
modest amount of E1A after the addition of 100 ng/ml
of doxycycline (Dox), and this expression was sustained
[Additional file 5: Supplemental Figure S4] after the
cells had been subcultured three different times in pre-
paration for the extraction of RNA and subsequent
DNA microarray analysis (see below). After reaching a
confluency of 40-60%, the cells in the absence of Dox
were rendered quiescent by shifting them to medium

containing 0.05% serum for a period of 60 hr, as pre-
viously described [4,5]. For DNA microarray analysis,
quiescent cells in 0.05% medium for a period of 60 hr
were treated with a 100 ng/ml of Dox for 8 hr and then
harvested for the extraction of RNA.

Isolation of RNA and Microarray Analysis
Total RNA was isolated by adding Trizol reagent (Invi-
trogen) directly to the monolayer of cells, and according
to the manufacturer’s instructions. The isolated RNA was
then subjected to the RNeasy MinElute Cleanup Kit to
ensure high-quality RNA, and afterwards, the RNA sam-
ple was subjected to a DNAse I treatment (DNAfree,
Ambion) to remove all traces of contaminating DNA.
The quantity and the quality of the RNA was assessed by
NanoDrop 1000 (Thermo Scientific, Waltham, MA) and
by the 18S/28S ribosomal peak intensity on an Agilent
Bioanalyzer.
The microarray analysis was performed at the Cleve-

land Clinic Genomics core facility by using Agilent
Mouse Whole Genome Arrays (Agilent, Santa Clara,

Figure 4 Canonical pathways most significantly regulated by E1A expression in quiescent cells. A: The stacked bar chart displays for each
canonical pathway the number of genes that were found significantly up-regulated (red), and down-regulated (green) by Bayesian model
selection. The molecules/genes in a given pathway that were not found in our list of significantly regulated genes are termed unchanged (grey)
or not overlapping with our dataset (white). The numerical value at the top of each bar represents the total number of genes/molecules in the
canonical pathway. The Benjamini-Hochberg (BH) method was used to adjust the right-tailed Fisher’s Exact t-test p-values, which measure how
significant each pathway is. B: The intensity of the node color (red) indicates the expression level or degree of up regulation, and those genes
either in grey or without color were not found in our list of significantly regulated genes.
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CA) in a balanced block design. Total RNA (250 ng)
was reverse transcribed into cRNA and biotin-UTP
labeled using the Illumina Total Prep RNA Amplifica-
tion kit (Ambion). cRNA was quantified using the
NanoDrop 1000 spectrophotometer and its quality (size
distribution) was further analyzed on a 1% agarose gel.
Afterwards, the cRNA was hybridized to high-density
oligonucleotide density arrays (an Illumina MouseRef8-
v1.1 Expression BeadChip) containing 24, 613 probes or
Target IDs, as well as ESTs sequences. The arrays were
then washed, accordingly, and afterwards scanned using
an Illumina BeadArray Reader.

qRT-PCR Analysis
The genes showing p-values less than 0.05, and a change
in gene expression of more than 2-fold when compared to
control (determined by BeadStudio software) were selected
for qRT-PCR analysis in order to validate the microarrays.

The RNA used for qRT-PCR was isolated as described
above for the microarray studies. cDNA was synthesized
by using Invitrogen’s SuperScript III First-Strand Synthesis
kit with random hexamer primers. The resultant samples
were then mixed with iQ™ SYBR® Green Supermix
(BioRad) and with specific primer sets purchased from
Invitrogen and designed by programs, which included
NCBI-BLAST, USCS Genome Browser, and Primer3. Pri-
mer pairs for the respective mRNAs under study were:
Mcm3 (forward), 5’-TGACCTGCTCTTCATCATGC-3’;
Mcm3 (reverse), 5’-CTGTG GCCCAGGATATC CACT-
3’; Cdc6 (forward), 5’-AGGAGCCAGACAGTC CTCAA-
3’, Cdc6 (reverse), 5’-GGGTCAAAAGCAGCAAAGAG;
Cyclin E (forward), 5’-CACAACATCCGACC CACAC-3’,
Cyclin E (reverse) 5’-GGCAG GTTGGTCATTCTGT-3’;
Csf1 (forward), 5’-ACAACACCCCCAATGCTAAC-3’,
Csf1(reverse), 5’-ATGGAAAGTTCGGACAC AGG-3’;
E2F1 (forward), 5’-GATCGAAGCTTTAATGGAGCG-3’,

Figure 5 A network of up-regulated genes in quiescent cells after E1A expression. The intensity of the node color (red) indicates the
expression level or degree of up-regulation. The gene represented in grey (CREB) and the ones without color were not found in our list of
significantly regulated genes. Both direct (solid line) and indirect (broken line) relationships between the genes are indicated. Cellular functions
most significant to the genes in this network included cell cycle re-entry and DNA replication or repair.
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E2F1 (reverse), 5’-CCCTTGCTTCAG AGAACAGG-3’;
MCM7 (forward), 5’-CGGAGATCTA TGGACATGAA-
3’, MCM7(reverse),5’-CATAAGCAGATGTGGATGT-3’;
GAPDH (forward), 5’-AAGGCCGAGAATGGGAAG-3’,
GAPDH (reverse), 5’-CTAAGCAGTT GGTGGTGCAG-
3’; UNG (forward), 5’-TAATCAAGCTCACGGGCTCT-3’,
UNG (reverse), 5’-GCCAGGATGAACAAAACCAT-3’;
PLK1 (forward), 5’-AATAGGG GATTTTGGCTTGG-3’,
PLK1(reverse), 5’-AATGGACCACACATCCACCT-3’;
Skp2 (forward), 5’-GAAACGAGTCAAGGGCAAAG-3’,
Skp2 (reverse) 5’-AAGGAGCA GCTCATCTGGAA-3’.
QRT-PCR analysis was performed by using an iCycler
iQ™ machine (Bio-Rad), and relative changes were calcu-
lated by the ΔΔCt method using GAPDH or the 18S ribo-
somal RNA as a reference control gene.

Statistical Analysis
Microarray Chips Pre-processing
Output files generated by the Illumina’s BeadStudio
application containing raw intensities were initially cor-
rected for global normalization, variance-stabilization,
and normality in order to identify and remove sources
of systematic variation due to experimental artefacts
(non-random or technical) and to subsequently perform
proper statistical inferences. For this purpose, we used a
Variance-Stabilizing Transformation (VST) which is a

generalized-log(.) transformation (also known as arcsinh
(.)) [30], ensuring that the variance is approximately
independent of the mean intensity, followed by a Robust
Spline Normalization (RSN) algorithm to the previously
variance-stabilized data. The latter procedure is designed
to combine the features of quantile and loess normaliza-
tion. Details of the algorithm are published elsewhere
[30]. The raw and preprocessed microarray datasets
have been made MIAME-compliant and deposited in
the Gene Expression Omnibus (GEO) under accession
number GSE28420. These datasets can be accessed and
downloaded at: http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE28420. To address the usual pre-proces-
sing issues upstream of the statistical analysis per se, we
employed numerous implementations and algorithms
available from the R project, which is a programming
language and platform for statistical computing and
visualization (http://www.r-project.org/), and from the
Bioconductor project [31] (http://www.bioconductor.
org/), which is a bioinformatics platform (also in the R
language). Both platforms, which offer powerful statis-
tics, bioinformatics, and visualization tools are freely
available to academic users from the Comprehensive R
Archive Network (CRAN) consortium (http://cran.r-pro-
ject.org/). Specifically, for exploratory data analysis, pre-
processing and quality control, we used the R package

Figure 6 A network of down-regulated genes in quiescent cells after E1A expression. The intensity of the node color (green) indicates the
expression level or degree of down-regulation. The genes displayed either in grey or without color were not found in our list of significantly
regulated genes. TLR4, NFkB (complex) and ERBB2 are important to the formation of this network.
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“Lumi” [32], which is especially designed to process the
Illumina microarray data.
Pre-filtering and Bayesian Model Selection
The initial dataset contained 24,613 probes and ESTs
uniquely identified by TargetIDs, and from which lists of
pre-filtered probes satisfying certain (or a combination of)
criterion were drawn: Before the Bayesian model selection
analysis was used, a ‘Present’ or ‘Absent’ detection call was
computed for each probe, similarly to the one described in
[33]. The threshold for the ‘Present’ call p-value was set to
p = 0.01. We selected those probes that have a ‘Present’
detection call (p = 0.01) in at least two out of 3 replicates
and in at least one experimental group, leaving 10,632
probes. These probes were then used in a Bayesian model
selection algorithm [15-17] to determine which of those
were differentially expressed. The algorithm is currently
implemented as stand-alone Java-based software freely
available to academic users: Bayesian Analysis of Microar-
ray (BAM) (http://www.bamarray.com). We report and
use the Group Mean Difference and Zcut values in plots
and tables. The Group Mean Difference value is simply

calculated as the difference between the group means on
the transformed scale (i.e. variance stabilization step as
described in pre-processing section above). The Zcut value
can be seen as Bayesian test statistic equal to the regular
Z-test statistic from an ANOVA model for comparing two
group means, and modulated by a real-valued coefficient
bounded by 0 and 1, called a shrinkage factor. The closer
the shrinkage factor is to 0, the more shrinkage there is,
while the closer it is to 1, the closer Zcut is to the frequen-
tist value [15-17].
Gene Annotations and Gene Ontologies (GO)
The Illumina microarray uses by default the TargetID
identifiers for each 50mer sequence probe, which are not
necessarily consistent among different versions of arrays.
Therefore, we used the Nucleotide Universal Identifier
(NuID) [34], which uniquely matches a 50mer oligonu-
cleotide sequence and contains an error checking and self-
identification code. By using the NuID, designers were
able to build one annotation database for different versions
of the human (or other species) chips [34]. Moreover, the
NuID can be directly converted to the probe sequence,

Figure 7 A network and a canonical pathway of genes affected by E1A in quiescent cells. A: A network of down-regulated genes
identified by BAM. The intensity of the node color (green) indicates the expression level or the degree of down regulation. The genes displayed
either in grey (e.g. TP53) or without color were not found in our list of significantly regulated genes. The biological function that was most
significant to the genes in this network was cell death. B: Canonical pathway of apoptosis using both up- and down-regulated genes identified
by BAM.
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and used to get the most updated RefSeq matches and
annotations. For functional annotations and functional
analyses, we used the BIOCONDUCTOR platform (http://
www.bioconductor.org/), which is a bioinformatics project
(also in the R language). For the functional annotations
and Gene Ontologies, we used the bioinformatics packages
“annotate” and “GOstats”. To perform enrichment ana-
lyses of GO categories among the specified gene symbol
sets, we computed hypergeometric p-values for over or
under-representation of each GO term in the specified
category. The category enrichment was computed using a
hypergeometric test statistic, based on the observed num-
ber of gene symbols representing that category and the
expected number one would get by chance alone (i.e.
under the null hypothesis of a random phenomenon).

Pathways and Network Analysis
Canonical Pathways
Probe identifiers and Zcut values outputted from the Baye-
sian model of differentially regulated genes were up-loaded
onto the Ingenuity Pathway Analysis (IPA version 8.5)
website (http://www.ingenuity.com/ - Ingenuity Systems,
Inc., Mountain View, CA) for canonical pathways and net-
work analyses. Under the “General Settings” of the analy-
sis, we first defined the “Reference Set” for our statistical
tests (see details below). We used the set of 10,632 pre-fil-
tered probes (see filtering section above) as a “User Data-
set” since only those probes (genes) that were pre-selected
had a chance of being monitored for enrichment and/or
selected as differentially regulated (i.e. included in the test
for differential expression). Therefore, this restricted set of
genes only should be considered as “Reference Set”
[35,36], which is to be distinguished from the total set of
24,613 uniquely identified probes and ESTs present in the
MouseRef-8 v1.1, or from the Ingenuity Knowledge Data-
base. For “Network Analysis”, we included Direct and
Indirect relationships as well as endogenous chemicals.
The IPA “Data Source” was setup to “All knowledge data-
bases”, and to avoid analyzing noise in the dataset, we con-
sidered only those molecules/genes and/or relationships
consistent with our experimental design, that is, “Species”
was limited to “Mouse” and “Tissues/Cell Lines” to
“Organ Systems” and “Uncategorized Cell Lines”. The
pathway analysis was performed on each individual set of
induced and repressed molecules/genes separately to facil-
itate interpretations, as well as on the combined set of up/
down-regulated molecules/genes to identify pathways in
which a significant number of molecules/genes could be
up- or down-regulated altogether. This left 385 up/down-
regulated molecules/genes that were eligible for generating
networks, and 1033 for functional and canonical pathways
analysis. Moreover, of the down-regulated molecules/
genes, 139 and 441 were eligible for generating networks
and functional and canonical pathways, respectively, while

246 and 591 of the up-regulated molecules/genes were
respectfully eligible for generating these categories as well.
Significance of each individual pathway intrinsic to our list
of differentially expressed genes was measured in IPA in
two ways: (i) by a ratio (percentage) of those genes found
in a given pathway of our list to all those constitutive of
the corresponding canonical pathway; (ii) and by Fisher
exact test ‘right-tailed’ p-value for the probability under
the null hypothesis that there is no association between
those set of genes found in a given pathway of our list
with all those constitutive of the corresponding canonical
pathway. The smaller the p-value, the less likely it is that
the association is random and the more significant the
association. The difference between the reported ratio and
the p-values is a matter of percentage vs. probability. The
ratio gives the amount of association; while the p-value
gives a significance or confidence of association. Whenever
a multiple-testing correction was required to assess signifi-
cance of pathway enrichment (e.g. in a hypothesis generat-
ing query), we reported adjusted p-values using the
Benjamini-Hochberg (BH) method [37].
Network Analysis
Differentially expressed genes were mapped in IPA to the
global molecular network that was developed from infor-
mation in the Ingenuity Knowledge Base. Networks for
these genes were algorithmically generated based on their
connectivity. A score equal to the negative log of the p-
value of the right-tailed Fisher’s exact test was assigned for
each network. This score takes into account the number
of eligible genes in our dataset and the size of the network
to calculate the fit between each network and the genes in
the dataset.

Additional material

Additional file 1: Supplemental Table S1. Entire list of significant
genes differentially expressed in quiescent cells after E1A expression.
Listing was generated by using the Bayesian ANOVA for microarrays
(BAM). Transcripts are ranked by statistical significance (Zcut values) from
top to bottom. Direction of change is indicated by the Zcut sign.
Generalized-log-fold change values (glog(FC)) represent the
corresponding magnitude of regulation of the selected genes.

Additional file 2: Supplemental Figure S1. Departure from normality
of the distribution of differentially expressed genes. This figure maps
differentially expressed genes in quiescent cells after E1A induction onto
a normal quantile-quantile plot. Genes found significantly up- and down-
regulated by BAM analysis (2401 total, i.e. 1174 up-regulated and
1,227down-regulated) are highlighted in red or green, respectively, and
the non-regulated genes are shown in grey. The top 50 regulated genes
(up or down) from Table 1 in the text are named along with a few un-
annotated genes (Rik identifiers). The solid blue line is the identity
quantile line that passes through the first and third quartiles, showing
departure from normality.

Additional file 3: Supplemental Figure S2. Validation of E1A-
modulated genes identified by microarray analysis. for validation, a
set of nine genes (CDC6, CCNE1, MCM3, E2F1, MCM7, SKP2, UNG, PLK1, and
CSF1) that were significantly regulated by E1A, as determined by BAM
analysis, were tested by qRT-PCR. Left panel: volcano plot of absolute BAM
Zcut values plotted versus log-fold-change-ratios on a log-equivalent
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transformed scale, denoted M = glog(S/Q), calculated either from
microarray normalized-intensities (red) or qRT-PCR intensities (blue). Note
that M values are on identical scale for each assay. Right panel: correlation
plot of qRT-PCR fold-change versus microarray normalized-intensities fold-
change. Dotted black lines represent the regression and identity lines.

Additional file 4: Supplemental Figure S3. The top metabolic
functions affected by E1A in quiescent cells. The stacked bar chart
displays for each canonical pathway the number of genes that were
found significantly up-regulated (red), and down-regulated (green) by
Bayesian model selection. The molecules/genes in a given pathway that
were not found in our list of significantly regulated genes are termed
unchanged (grey) or not overlapping with our dataset (white). The
numerical value at the top of each bar represents the total number of
genes/molecules in the canonical pathway. The Benjamini-Hochberg (BH)
method was used to adjust the right-tailed Fisher’s exact t-test p-values,
which measure how significant each pathway is.

Additional file 5: Supplemental Figure S4. Expression of E1A in E1A-
inducible BALB/c 3T3 cells after treatment with Dox. Nuclear extracts
were prepared from E1A-inducible cells (Clone 13, passages 12, 18 and
31) after treatment with Dox (100 ng/ml) for 6 h. Extracts were then
subjected to western blot analysis using M73, an antibody specific for
E1A (4,5). The membrane was also probed with anti-GAPDH to monitor
for equal loading of the extracts.
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