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Abstract

Background: Research in genetics has developed rapidly recently due to the aid of next generation sequencing
(NGS). However, massively-parallel NGS produces enormous amounts of data, which leads to storage, compatibility,
scalability, and performance issues. The Cloud Computing and MapReduce framework, which utilizes hundreds or
thousands of shared computers to map sequencing reads quickly and efficiently to reference genome sequences,
appears to be a very promising solution for these issues. Consequently, it has been adopted by many organizations
recently, and the initial results are very promising. However, since these are only initial steps toward this trend, the
developed software does not provide adequate primary functions like bisulfite, pair-end mapping, etc, in on-site

to use than its counterparts.

software such as RMAP or BS Seeker. In addition, existing MapReduce-based applications were not designed to
process the long reads produced by the most recent second-generation and third-generation NGS instruments
and, therefore, are inefficient. Last, it is difficult for a majority of biologists untrained in programming skills to use
these tools because most were developed on Linux with a command line interface.

Results: To urge the trend of using Cloud technologies in genomics and prepare for advances in second- and
third-generation DNA sequencing, we have built a Hadoop MapReduce-based application, CloudAligner, which
achieves higher performance, covers most primary features, is more accurate, and has a user-friendly interface. It
was also designed to be able to deal with long sequences. The performance gain of CloudAligner over Cloud-
based counterparts (35 to 80%) mainly comes from the omission of the reduce phase. In comparison to local-
based approaches, the performance gain of CloudAligner is from the partition and parallel processing of the huge
reference genome as well as the reads. The source code of CloudAligner is available at http://cloudaligner.
sourceforge.net/ and its web version is at http://mine.cs.wayne.edu:8080/CloudAligner/.

Conclusions: Our results show that CloudAligner is faster than CloudBurst, provides more accurate results than
RMAP, and supports various input as well as output formats. In addition, with the web-based interface, it is easier

Background

The rapid development of new sequencing technologies
helps improve the accuracy as well as scope of many
biological applications such as the assembly of genomes,
transcriptomes (RNAs), or ChIP-Seq (chromatin-immu-
noprecipitation followed by next-generation DNA
sequencing). Most of these applications execute the read
alignment as their first step. Therefore, the sequence
alignment is the most important and fundamental part
to almost all applications of sequencing analysis.
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New sequencing technologies in genomics create
incredible amounts of data to process at a lower cost
per nucleotide. Manufacturers are constantly increasing
output in terms of the number of reads, increasing read
length, as well as working to improve read quality.
While it took 10 years and over $3 billion dollars to
produce a first draft of the human reference genome
(approx. 3.5 billion base pairs), the current generation of
sequencing instruments is able to generate hundreds of
billions of bases in only a few days. It is projected that
this output will continue to increase dramatically over
the next few years at a rate much faster than Moore’s
Law, a doubling every year, which is the approximate
rate of increase in the semiconductor field over the past
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40 or so years. For example, the latest sequencer from
[llumina, the HiSeq 2000, is able to generate 25 Gb
(gigabases)of sequence per day. In terms of price, in
comparison to the prior model, the GA sequencer, the
cost per base on the HiSeq is actually substantially
reduced by as much as 8 times [1]. However, this is still
the second-generation sequencing. The third-generation
single molecule sequencing instruments are beginning
to be introduced by Pacific Biosciences at a much
reduced reagent cost and longer sequences.

These extensive genetic informational datasets create
many serious problems and challenges for the popular
alignment tools such as bowtie [2], RMAP [3,4], MAQ
[5], bwa [6,7], etc. The first challenge is performance.
As the data grows it is taking an increasing amount of
time to compile, search and analyze and radical new
approaches are required that would ensure project scal-
ability. The second issue is the enormous capital
expense for equipment that typically has 6 months as its
state of the art half-life. Both computing and sequencing
technologies advance at a very fast pace. To keep up
with this pace, bio-organizations have to spend much
money on replacing or updating devices.

In computer science, Cloud Computing has recently
emerged as an evolutionary model to accommodate sto-
rage and computing service as a utility. Cloud providers
offer different computing services to users through the
Internet. Cloud users only pay for the resources (com-
puting, bandwidth, etc) they actually consume without
worrying about the maintenance expense, provisioning
resources for future needs, taking care of availability,
and reliability issues. The price is based on the time and
types of services. As a result using Cloud Computing
services is a recent and very promising solution in bioin-
formatics to deal with the issues related to storage and
computation [8]. With Cloud solution, biologists don’t
need to equip and maintain powerful and high capacity
servers for their analysis as before. They can securely
store their data in the Cloud with high availability, and
can have thousands of on-demand powerful computers
ready to run their analysis. Nevertheless, to use Cloud,
users need to be trained a little bit, and they are also
required to have a stable high-speed Internet connection
to the service providers.

The Cloud Computing solution, however, just enables
the flexible and scalable infrastructure to deal with sto-
rage and computational issues. To deal with perfor-
mance and scalability when processing a huge amount
of data, we need to have a special parallel programming
model. Recently, Google has designed a parallel comput-
ing framework called Mapreduce [9] which can scale
efficiently many thousands of commodity machines.
These commodity machines forming a cluster can be
accessed by users in an institution or can be rented over

Page 2 of 7

the Internet through utility computing services. Actually,
the idea of this framework is not new since it has
already been used in traditional functional programming
languages such as Haskell, Lisp, Erlang, etc.

The basic idea of the MapReduce framework is shown
in Figure 1. The data that need to be processed is
divided into “input splits”. Each split contains many
records in a key-value pair structure <K,V >. The map
blocks (a piece of code defined by software developers
based on the application business) map these input key-
value pairs into other intermediate key-value pairs. This
intermediate data is then sorted and grouped together
based on the keys. As a result, the input of the reduce
blocks is a key with a collection of values. The reduce
blocks (also developed by MapReduce programmers)
then produce the final results in the form of key-value
pairs as well. One very important feature enabling
MapReduce to process a huge amount of data efficiently
is that all maps and reduce blocks are executed concur-
rently. There are two main phases though: map and
reduce. As we can see from the figure, all map tasks
need to finish before running any reduce tasks.

There are many different implementations of the
MapReduce framework such as Hadoop, Phoenix, Disco,
Mars, etc. In developing our tool, CloudAligner, we
chose Hadoop http://hadoop.apache.org since it is open-
source (easy to fine tune), written in Java (high portabil-
ity) and widely used in both academy and industry.

There have been some initiatives towards this trend of
using Hadoop such as CloudBurst [10], SeqMapreduce
[11], Crossbow [12], etc. The results are very promising.
These tools can provide better performance and web-
based interface which is easier to use than the command
line interface of many existing tools.

However, in spite of these promising features, these
Cloud-based applications do not significantly improve
its functionality. Nor do they offer a variety of user-
friendly features or interfaces needed to popularize
them. For instance, the common functions that are
often implemented in well-established on-premises
alignment tools are bisulfite sequencing and pair-end
mapping. These techniques are used for detecting gen-
ome variations such as single nucleotide polymorphisms
(SNP) and large-scale structural variations, which are
very important in biological analyses. The CloudBurst,
for example, doesn’t support either of these features. It
also doesn’t support the fastq input format which is a
very common output of current sequencers. In addition,
its interface is a command line style which is not very
user-friendly. Another MapReduce-based software, Seq-
MapReduce, is a performance improvement version of
CloudBurst, but its website and code are in-accessible.
Crossbow is the read mapping and SNP calling software
that runs in the Amazon EC2 cloud. It consists of a set
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Figure 1 The MapReduce framework.

of Perl and shell scripts that allow Bowtie and SOAPsnp
to run on Cloud. Crossbow has a very nice and friendly
web interface created with the aid of JotForm, a web-
interface creation tool. However, since its biological
functionalities depend entirely on other tools (Bowtie
and SOAP-snp), it inherits their shortcomings too. For
example, Bowtie can only allow at most 3 mismatches
in its mapping and was only designed for short reads.
Therefore it can’t improve or fine tune the core func-
tional algorithms.

Consequently, we developed CloudAligner to address
such limitations of the existing tools and also to advo-
cate a Cloud and MapReduce-based solution for geno-
mic problems. Especially, CloudAligner is designed to
achieve better performance, longer reads, and extremely
high scalability. It has more common functions such as
bisulfite (BS) and pair-end mapping as well as a friendly
user interface, and it supports more input as well as
output formats.

Software Design

Figure 2 shows the overall architecture of our tool. Not
following the traditional MapReduce model like most
other tools, CloudAligner does not have the reduce
phase. The mapping algorithm (the popular seed-and-
extend alignment algorithm) is implemented entirely in
map tasks. By doing this, we don’t have to spend time
on operations such as shuffling and sorting of interme-
diated data. Also, parts of the final results can be
obtained with this method as long as at least one map
task successfully finishes since each map task aligns a
small set of read on the whole genome. It is completely
independent from other map results. This property is
very beneficial especially for time-consuming jobs and

the “pay-as-you-go” model of the Cloud because when
the job fails, we can still have part of the result and only
need to re-execute and pay for mapping the failed parts
again.

There are two main input files for CloudAligner as the
other alignment tools: the reference file and the read
file. The reference files are normally in the fasta format
while the read files can be in the fasta or fastq format.
Both are changed into the serialized files (to be easily
processed over the network) and copied to the HDFS or
Amazon S3.

When executing, CloudAligner cuts the read file into
smaller chunks called input splits (each read contains
many read sequences) and distributes them to the map-
pers. Each mapper aligns its input split onto the whole
reference genome file.

In terms of functionality, Table 1 highlights the sup-
ported features of CloudAligner in comparison to those
of RMAP and CloudBurst. As shown in the table, our
software has all fundamental features that a full-featured
sequence mapping tool should have.

Experimental Results

Evaluation criteria

We are going to evaluate CloudAligner in term of
performance and accuracy. The performance metric is
actually measured as the execution time of the tools.
The accuracy is the number of reads that are mapped
uniquely on the reference genome. To measure these
two metrics, we built a Hadoop cluster of 13 nodes as a
testbed for our experiment. The configuration of
machines in our testbed is shown in Table 2. In the fol-
lowing experiments, the time to convert data to the
Hadoop format and the time to move them into
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Figure 2 CloudAligner architecture.

Hadoop Distributed File System (HDFS) or Amazon S3
are excluded.

Mapping performance
As CloudBurst is also a Hadoop MapReduce based align-
ment tool, and the CloudBurst’s paper [10] has shown
the performance improvement (in term of speedup) over
RMAP, we would like to compare our performance with
it only. It is noteworthy that in our map task, we adopted
the seed-and-extend mapping algorithm with different
patterns in the seeds like RMAP. However, CloudAligner
was developed in Java and doesn’t have the limitation of
using 64bit machine as RMAP.

In this experiment, we ran both CloudAligner and
CloudBurst on the same system with the same data set.
The data set is obtained from the CloudBurst website.

Table 1 Compare CloudAligner features with its
counterparts

CloudAligner CloudBurst RMAP
Mismatch Mapping v v v
Bisulfite Mapping v v
Pair-end Mapping v v
Fastq input v v
SAM output v
Executable in Cloud v v

This table summarizes the features of CloudAligner and other closely related
tools.

Figure 3 shows the performance results of both types of
software with a different number of reads (the same
reference file). The x axis in the figure is the number of
reads, and the y axis is the execution time in second.
From the figure, we can see that CloudAligner is 60 to
80% faster than CloudBurst.

We also did another experiment on the real data from
the 1000 Genomes project. In particular, we mapped dif-
ferent subsets of the accession SRR035459 to the human
chromosome 22 (50 Mbp) allowing up to 3 mismatches.
The results of this mapping is shown in Figure 4. From
the figure, we can see that the execution time of both
CloudBurst and CloudAligner is proportional to the
number of reads, and CloudAligner outperforms Cloud-
Burst from 35 to 67%.

Mapping accuracy
Since CloudAligner also employed the popular seed-
and-extend algorithm like RMAP and Cloudburst, it
generally inherits the limitations of this type of algo-
rithm. Basically, this approach trades the accuracy for
the performance. Instead of comparing the whole reads
(with mismatches), the algorithms of this type only
search for the shorted sequences called seeds. The accu-
racy of the result depends heavily on the seeds. The
seed alignment can be consecutive or non-consecutive
(template, pattern) matches.

To verify our results, we ran both CloudAligner and
RMAP on the same set of data with equivalent seed
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Table 2 The detail configuration of machines of the main testbed

Type Machines # CPU Memory HDD [0
Server 1 4 cores AMD 2GHz 6GB 250GB 64 bits Ubuntu Server 9.04
Server 12 1 core Intel Xeon CPU 2.80GHz 4GB 40GB 64 bits CentOS

This table details the configuration of our main Hadoop testbed.

information. With this type of experiment, we don’t
need to choose a very large workload because we only
focus on the accuracy of the results. First, we ran Clou-
dAligner with all the appropriate test reads (single-end,
bisulfite, pair-end, fastq reads) of RMAP. Each data set
has 100 reads with 25 bases in length. Our output files
are the same as those of RMAP though with a different
order. Second, we would like to test CloudAligner with
another larger data set and longer reads to strengthen
the soundness of our results. This time, RMAP and
CloudAligner were executed (in mismatching mode) on
the data includes 100,000 of single-end reads, and the
reference genome is of the Streptococcus suis. Each
read has 36 bases. CloudAligner only identified 74,208
unique maps while RMAP produced 74,291 unique
maps. After carefully examining the extra 83 reads, we
found that RMAP doesn’t count the bad bases in the
reads as mismatches which we should. Therefore it
found more results with the same number of allowed
mismatches.

CloudAligner in Amazon EC2
To experience how our tool behaves in the real Cloud,
we uploaded it to Amazon simple storage (S3) and cre-
ated job flows in Amazon Elastic MapReduce to execute
it. The execution time of CloudAligner and CloudBurst
when processing different number of reads is expressed
in Figure 5. It’s safe to conclude that CloudAligner out-
performs CloudBurst in the real cloud environment also.
In addition to normal arguments such as read length,
reference genome, input, output locations, CloudAligner
(like other MapReduce applications) has the number
of maps and reduces as its parameters. Therefore, we
would like to study the effect of choosing different
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number of maps on the performance because, in our
approach, there’s no reduce task. Figure 6 shows the
execution time of CloudAligner in the Amazon EC2
when mapping 2 millions of reads on the human chro-
mosome 22 with different number of maps. The experi-
ment was performed on 20 small EC2 instances. Thus
we have totally 38 map slots (1 instance is used for the
master node). The information in the figure suggests
that the optimal number of input splits (maps) should
be a little bit less than the maximum number of map
slots. In this case, it should be either 34 or 36.

The performance of pair-end and bisulfite mapping
functions of CloudAligner is expressed in Figure 7 and
8 respectively. The pair-end read data is 76 bp in length
and was obtained from the results of sequencing the
African honey bee sample in our lab. Figure 7 shows the
execution time when mapping different numbers of
pair-end sequences (with quality scores) onto honey
bee’s chromosome 1 (A_mel 4.0). All of these mapping
were taking place on 20 medium EC2 instances of Ama-
zon Cloud. With the same number of instances, proces-
sing more read requires more time. For the BS mapping
demonstration, we used the 100 k synthetic reads from
BS Seeker. Figure 8 shows the execution time of this
type of mapping with different number of EC2 small
instances. Intuitively, the more instances we throw in,
the faster the program is.

Discussion

In general, in terms of performance, CloudAligner
outperforms CloudBurst and RMAP. The performance
gain over RMAP is mainly based on the scalability and
parallel processing. With CloudBurst, the limitation of
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Figure 3 The performance of CloudBurst and CloudAligner on
small data.

Figure 4 The performance of CloudBurst and CloudAligner on

larger data.
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Amazon Elastic MapReduce.

its approach is the network bandwidth. With CloudA-
ligner, its limitation is in the computation power of the
workers in Hadoop. Consequently, if we run CloudAligner
on cluster of legacy machines with high speed network, we
probably lose the performance advantage over CloudBurst.
However, as shown in Table 2 the machines in our cluster
are also not powerful at all. All of them only have a single
core. Moreover, the interconnection between them is a
brand new high-speed network (1 Gbps) since we put
them in our newly built server room. Therefore, it is safe
to conclude that in common cluster CloudAligner gener-
ally performs better.

We also developed the web-based interface for Clou-
dAligner and hosted it at http://mine.cs.wayne.edu:8080/
CloudAligner/.

From the website, users can upload the reads as well
as the reference files in text format. The upload servlet
automatically translates them into the Cloud format and
uploads them to our Hadoop cluster. After having the
files in the system, users can select them for the map-
ping together with common parameters such as the
number of mismatch, seed, output format and so on.
After finish mapping, the website creates a link to
download the results.

20
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Figure 6 The effect of the number of maps on the performance
of CloudAligner.

CloudAligner can easily run on heterogeneous clusters.
There are no restrictions on the hardware configuration
of the machines constituting the cluster as long as they
have enough memory to handle the small chunk of reads
and reference genome assigned to them. To demonstrate
this ability, we built a cluster of commodity machines as
shown in Table 3 (except the master node) and ran Clou-
dAligner on it to map 2 million reads on the human
chromosome 2 (237 Mbp). It took 27 minutes and 18
seconds to finish this job. The only minor adjustment we
need to do to handle larger data sets on outdated
machines is to periodically inform the Hadoop system
that our tasks are still alive. Otherwise, it assumes the
nodes are dead and initiates the tasks on other nodes.

CloudAligner also offers the option to produce output
files in both SAM [13] and BED6 formats to enable
easier post processing analysis. For example, biologists
can use the samtools [13] to identify SNP or INDEL in
their samples or convert to the BAM file to have a
visual view of the alignments.

Although CloudAligner theoretically has no limitations
in read length as well as in number of mismatches, to
efficiently deal with long reads, we should apply addi-
tional methods on the seeds such as the two-level tech-
niques of Homer [14].
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Figure 8 Bisulfite mapping in Amazon EC2.
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Table 3 The detail configuration of outdated machines for the heterogeneity tests

Machines # CPU Memory HDD oS
7 1 core Intel XEON CPU 1.80 GHz 512 MB 160 GB 32 bits CentOS
21 1 core Intel Pentium I 512 MB 20 GB 32 bits Ubuntu 8.04

This table details our local Hadoop testbed configuration for the heterogeneity experiment.

Conclusions

With the improvement in sequencing technology, the
data generated by the sequencers is becoming cheaper
and better. Therefore, more data is increasingly being
generated which leads to serious issues in storing and
processing. Combining Cloud infrastructure and MapRe-
duce framework together is emerging as one of the best
solutions. However, the current tools of this trend are
lacking the common features found in other popular
tools making them unattractive to the users.

In this work, we built CloudAligner with the most
common functions required for a mapping tool as well as
an easy-to-use web-based interface to endorse the ten-
dency of using Cloud and MapReduce. The summary of
these functions is described in detail in Table 1. More-
over, we also designed and implemented a new approach
to improve the performance of our tool. Our results indi-
cate that significant improvement in the performance of
alignment MapReduce-based tools can be achieved by
omitting the reduce phase.

In the future, we plan to extend our tool to efficiently
handle very long reads which will be generated by the
next generation sequencers.

Availability and Requirements
Project name: CloudAligner

Project home page and source code: http://clouda-
ligner.sourceforge.net/

The executable jar file: Additional file 1

Operating system(s): Linux

Programming language: Java 1.6.0

Other requirements: Any web browser

Licence: GNU GPL
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