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Abstract

Background: The genomics era has produced an arsenal of resources from sequenced organisms allowing
researchers to target species that do not have comparable mapping and sequence information. These new “non-
model” organisms offer unique opportunities to examine environmental effects on genomic patterns and
processes. Here we use comparative mapping as a first step in characterizing the genome organization of a novel
animal model, the white-throated sparrow (Zonotrichia albicollis), which occurs as white or tan morphs that exhibit
alternative behaviors and physiology. Morph is determined by the presence or absence of a complex chromosomal
rearrangement. This species is an ideal model for behavioral genomics because the association between genotype
and phenotype is absolute, making it possible to identify the genomic bases of phenotypic variation.

Findings: We initiated a genomic study in this species by characterizing the white-throated sparrow BAC library via
filter hybridization with overgo probes designed for the chicken, turkey, and zebra finch. Cross-species hybridization
resulted in 640 positive sparrow BACs assigned to 77 chicken loci across almost all macro-and microchromosomes,
with a focus on the chromosomes associated with morph. Out of 216 overgos, 36% of the probes hybridized
successfully, with an average number of 3.0 positive sparrow BACs per overgo.

Conclusions: These data will be utilized for determining chromosomal architecture and for fine-scale mapping of
candidate genes associated with phenotypic differences. Our research confirms the utility of interspecies
hybridization for developing comparative maps in other non-model organisms.

Background
Much of our current knowledge of genetics and geno-
mics comes from traditional model organisms that are
often raised for many generations in the laboratory.
Although model organisms offer several advantages, as
with inbred strains where it is often easier to isolate the
factors associated with particular traits (e.g. [1]), they
can also show altered behaviors, physiologies, and
genetic responses due to extended exposures to labora-
tory environments (e.g. [2-5]). Traits of interest may not
be expressed or might be entirely absent from the phe-
notypic repertoire of a model organism [6]. Finally, in
laboratory systems it is difficult to determine the relative
influence of genes and environments, which can be
absolutely essential considering that many complex

traits have low heritabilities, exhibit strong gene-by-
environment effects, or are influenced by epigenetics.
Studies of “non-model” organisms can therefore advance
our understanding of genetic and genomic patterns and
processes as these species are still subject to evolution-
ary forces such as selection, gene flow, and drift [6,7].
For non-model organisms to be useful for genomic

inquiry, their genomes need to be structurally and func-
tionally characterized. Genomic tools and resources,
initially developed from species determined to be either
medically or economically significant, have paved the
way for comparative studies of the genomes of non-
model organisms. For example, the first avian genome
to be sequenced was the chicken (Gallus gallus) [8,9].
Since then, several other avian genomes have been
sequenced and/or characterized to some extent, includ-
ing other economically important species such as the
turkey (Meleagris gallopavo) [10], main neurobiological
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models such as the zebra finch (Taeniopygia guttata)
[11], ecologically essential species such as flycatchers
(Ficedula spp.) [12-15], and species critical to conserva-
tion such as the California condor (Gymnogyps califor-
nianus) [16-18]. Comparative genomics methodologies
have illuminated many similarities [14,15,19-21] and dif-
ferences [11,12,22-24] across these taxonomic groups.
Birds occupy a unique evolutionary position and many
have been so well studied that continued comparative
work within this group promises to remain fruitful and
open new avenues for fundamental and applied biologi-
cal research.
The white-throated sparrow (Zonotrichia albicollis),

with its morphological, behavioral and chromosomal
polymorphisms, represents a new system to study geno-
mic mechanisms underlying variation [17]. Males and
females in this species occur as either white or tan
morphs [25] (Figure 1) that exhibit alternate behaviors.
White morphs are promiscuous and show lower paren-
tal effort, whereas tan morphs are monogamous and
exhibit higher levels of parental care [26]. Behavioral
and morphological differences in the two morphs appear
to have a genetic basis [27,28]: white birds are heterozy-
gous for a complex rearrangement on chromosome 2 (i.
e. ZAL2m/ZAL2), whereas tan birds do not carry the
rearrangement (i.e. ZAL2/ZAL2) [17,29,30]. Homozy-
gous white birds (ZAL2m/ZAL2m) are rarely found (<
0.06%; Tuttle, unpublished data). Karyotypic evidence
also suggests inter-chromosomal linkage with chromo-
some 3 [17]. White and tan morphs mate disassorta-
tively [25,27,28], maintaining polymorphism in this
species and resulting in pair types that differ in the
amount of biparental care they provide [31]. The disas-
sortative pair types also differ in other key behavioral
and ecological attributes [26,32-34]. Together, these
traits make the species not only an ideal model in which
to study the genomics of social behavior, but study of
the genomics in this species will also advance our
understanding of chromosome structure, immunity and
disease, language and learning, as well as fertility and
reproduction.
The availability of a genomic BAC library for the

white-throated sparrow [30] allows physical mapping,
followed by refined cytogenetic and linkage mapping.
The integration of these maps, coupled with in-depth
sequencing of the targeted regions on white-throated
sparrow chromosomes, ZAL2, ZAL2m and other areas
(e.g. ZAL3 and ZAL3a; see [17]) that might be involved
in the observed karyotypic variation, could reveal the
nature of morph-specific reproductive strategies. As a
first step towards dense physical mapping of white-
throated sparrow chromosomes, we undertook screening
the sparrow BAC library using a cross-species overgo
hybridization approach [35]. The chicken [8] and the

zebra finch [11] were used as reference genomes. In
these two species, chromosome 3 (GGA3 and TGU3) is
known to correspond to ZAL2 [29], and ZAL3 might be
orthologous to GGA4 and TGU4. Therefore, we derived
numerous white-throated sparrow BAC clones specific
for almost all chromosomes, with a focus on GGA3 and
GGA4 loci, and developed a first-generation BAC-based
comparative physical map.

Materials and methods
BAC library
The white-throated sparrow is a North American song-
bird in the order Passeriformes, family Emberizidae. This
species has a total diploid chromosome number of 82,
including the sex chromosomes [17]. The BAC library
for the white-throated sparrow (CHORI-264; http://bac-
pac.chori.org/library.php?id=469) was generated at BAC-
PAC Resources, CHORI, Oakland, CA, using DNA from
frozen kidney tissue of a single white female [30]. It
consists of 196,354 BAC clones spotted onto 11 nylon
filters. The average clone insert size is 144 Kb. For the
current study, we screened a representative fraction of
the library (4/11) using hybridization of the first four
filters.

Overgo hybridization
Cross-species hybridization followed the published pro-
cedure [16,17,35,36]. Briefly, library screening involved
four-dimensional filter hybridization based on arranging
216 overgos (~40-bp unique probes for a gene or mar-
ker) in six virtual plates, each with 6 rows and 6 col-
umns (i.e. 36 probes per plate). The filter hybridizations
for the first three dimensions of plates, rows and col-
umns were conducted using the appropriate plate, row
and column pools of 36 overgos, so that one probe was
added once per dimension of hybridization. Positive
BAC clones for a certain overgo probe were those
detected at a specific intersection of plate, row and col-
umn pools. An additional fourth dimension composed
of 6 virtual diagonal pools was employed to ensure the
accuracy of the whole hybridization round that included
24 single hybridizations. For each hybridization, a pool
of 36 overgos was labeled with 32P nucleotides and
hybridized to a BAC filter set as previously described. In
the present study, all 216 overgos were radiolabeled at
once and used in a series of two consecutive hybridiza-
tions by plates and rows (6 pools of 36 overgos for
each) and, then, by columns and diagonals, thereby
reducing the cost and time of overgo labeling, hybridiza-
tion, and post-hybridization steps.
The probes were a set of 216 pre-existing overgos

mainly derived from the chicken sequence (see addi-
tional file 1: Overgo Probes for the list of probes and
their description). Numbers of overgos that
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corresponded to chicken chromosome sequences are
shown in Table 1. In some cases, we did not have a suf-
ficient number of the available chicken overgos to
evenly cover specific chromosomes. To address this
issue, we added 19 turkey EST-derived probes, mostly
for GGA3, that were available from the turkey genome
project (Dodgson, unpublished data), as well as three
GGAZ overgos previously designed using zebra finch
ESTs [35].

Filter image analysis
Filters images were obtained with storage phosphor
screen scanning using a Typhoon imager (GE Health-
care) (Figure 2). Images were analyzed using Image-
Quant (GE Healthcare) and HDFR (Incogen) software
packages. Clones positive for at least three of four hybri-
dizations were identified using an in house Microsoft
Access program and were examined manually to elimi-
nate spurious identifications.

22m 2 2

Figure 1 Various views of the plumage morphs of the white-throated sparrow. Two morphs are shown: A, the white morph, and B, the
tan morph. Morph is absolutely associated with the presence (i.e. ZAL2m/ZAL2 = white) or absence (i.e. ZAL2/ZAL2 = tan) of a chromosomal
rearrangement.
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Comparative map design
The obtained BAC-gene (BAC-marker) assignments
were entered in the final spreadsheet (see additional file
1: Overgo Probes for genes/markers with positive BAC
clone information) and served as data points for con-
structing a BAC-based chicken-sparrow comparative
map using the MapChart version 2.2 software [37]. Posi-
tions of BAC-gene assignments on the chicken genome
sequence (Build 2.1) were retrieved by BLAT/BLAST
search using overgo sequences and two genome brow-
sers, Ensembl http://uswest.ensembl.org/Gallus_gallus/

Info/Index and NCBI http://www.ncbi.nlm.nih.gov/gen-
ome/seq/BlastGen/BlastGen.cgi?taxid = 9031. We also
identified the same loci on the zebra finch sequence
(Build 1.0; Warren et al., 2010).

Results
Overgo-based BAC library screen
The estimated length of the CHORI-264 BAC library is
28,274,976 Kb. Since the genome size (C-value) of the
white-throated sparrow is approximately 1.37 pg [38], or
1,339,860 Kb, our estimate for the library coverage of

Table 1 Coverage of the chicken genome with 216 overgos selected for the sparrow BAC library screen

Chromosome or linkage group Chromosome length, Mb No. of overgos Average overgo interval, Mb

Macrochromosomes

GGA1 200.99 21 9.14

GGA2 154.87 12 11.91

GGA3 113.66 98 1.15

GGA4 94.23 12 7.25

GGA5 62.24 4 12.45

Intermediate chromosomes

GGA6 37.40 4 7.48

GGA7 38.38 4 7.68

GGA8 30.67 4 6.13

GGA9 25.55 3 6.39

GGA10 22.56 3 5.64

Microchromosomes

GGA11 21.93 3 5.48

GGA12 20.54 3 5.14

GGA13 18.91 3 4.74

GGA14 15.82 2 5.27

GGA15 12.97 2 4.32

GGA16 0.43 4a 0.09

GGA17 11.18 2 3.73

GGA18 10.93 2 3.64

GGA19 9.94 2 3.31

GGA20 13.99 2 4.66

GGA21 6.96 2 2.32

GGA22 3.94 2 1.31

GGA23 6.04 2 2.01

GGA24 6.40 2 2.13

GGA25 2.03 2 0.68

GGA26 5.10 2 1.70

GGA27 4.84 2 1.61

GGA28 4.51 2 1.50

LGE22C19W28_E50C23 0.90 2 0.30

Sex chromosomes

GGAW 0.26 1 0.13

GGAW_randomb 0.73 1 0.37

GGAZ 74.60 6 10.66

GGAUn_random 63.87 1a 31.94
aOne of the probes selected for GGA16 matches a sequence that has not been assigned yet to a particular chromosome and is designated as ‘GGAUn_random’
in the chicken genome sequence (Build 2.1).
bGGAW_random is a random sequence known to be located on the W chromosome but is yet to be assembled with the rest of the W chromosome sequence.
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the sparrow genome was 21.1X. The four filter subset
chosen for the library screening therefore represented a
7.7-fold coverage of the sparrow genome, sufficient to
ensure a high success rate of positive BAC clone identi-
fication via overgo hybridization.
Almost half of the selected probes (N = 98; Table 1)

matched loci (genes and markers) on chicken chromo-
some 3 (GGA3) that was suggested to be orthologous to
ZAL2 and ZAL2m, for which we sought a much denser
coverage. These probes were evenly spread over the
entire GGA3, with an average spacing of 1.15 Mb.
Overgo distribution on other chromosomes was less
dense, with a mean overgo span for macrochromosomes
GGA1 through GGA5 being 7.3 to 12.5 Mb per overgo.
For intermediate chromosomes GGA6 through GGA10,
it was 5.6 to 7.5 Mb, for michrochromosomes GGA11
through GGA28 it was 0.09 to 5.5 Mb, and for the Z
sex chromosome it was 10.7 Mb. Overall chromosome
coverage with the 216 chosen overgos was 1033.5 Mb of
the total length of 33 chicken autosomes and sex chro-
mosomes, with an average interval of 4.2 Mb.
In the course of the first screen based on 216 probes,

we identified 640 positive white-throated sparrow BACs
that were assigned to 77 chicken loci, indicating that
35.6% overgos resulted in successful hybridization. The
number of detected positive sparrow BACs varied from
0 to 30, with an average being 3.0 clones per overgo.

For the 77 successful probes, 8.3 clones per overgo were
positive, close to the expected redundancy of the chosen
BAC library fraction used for the screening (7.7X). The
success rate of overgo hybridization ranged across
almost all chromosomes screened between 23.5 and
100% (Table 2).

Cross-species hybridization
To evaluate efficiency of interspecies hybridization, we
examined overgo positions relative to coding/non-cod-
ing regions of a gene/marker. Those include exons (cod-
ing sequence), 5’ and 3’ UTRs, and non-coding
sequence (introns, intergenic regions) (data shown in
additional file 1: Overgo Probes). We calculated the suc-
cess rate of probes derived from the different types of
sequence, i.e., coding and non-coding regions, and
probe efficacy estimated as percentage of successful
overgos is shown in Table 3. As expected, overgos
derived from coding sequence demonstrated the greatest
efficiency (~64%) in cross-species hybridization. Probes
specific to 5’ and 3’ UTRs and those designed from
introns and other non-coding sequence were consider-
ably less effective (~14-16%). Several overgos matched
exon-intron boundary regions, and their success rate
was around 17%. If we take into account a total of 77
successful probes, their efficiency relative to overgo
sequence type would follow a similar pattern (Table 3).
The overgos we used in the white-throated sparrow

library screen came mostly from chicken sequences (N
= 194). In addition, we used 19 turkey EST-based
probes and only 3 zebra finch EST-based overgos. We
estimated the success rate of cross-species hybridization
according to the probe origin (Table 4). Additionally, we
examined the distribution of successful probes by spe-
cies and by sequence type (Table 4). Among a total of
65 successfully-hybridized chicken overgos, approxi-
mately 72% of probes were derived from coding
sequence, while all turkey and zebra finch successful
probes matched coding regions.

Chicken-passerine comparative map
Based on the white-throated sparrow BAC library screen
using the interspecies hybridization technique, we
designed the first-generation chicken-sparrow compara-
tive map (Figures 3, 4 and 5). The map embraced a total
of 77 genes and markers on 26 chicken chromosomes
including 24 autosomes and the two sex chromosomes,
Z and W. The map for two chromosomes of particular
interest, GGA3 and GGA4, contained respectively 23
and 6 genes/markers along their entire lengths. On
three other macrochromosomes and the large Z chro-
mosome, there are 4 to 8 genes/markers assigned per
chromosome. We also mapped 1 to 3 BAC-gene assign-
ments on three intermediate chromosomes and multiple

Figure 2 Image of a sparrow BAC filter hybridized to a set of
36 overgo probes. The probes were mostly derived from the
chicken sequence. The filter has six panels, with gray double spots
of anchor probes shown at panel intersections and utilized for filter
grid alignment at the computer image analysis stage. Other black
and gray double spots represent hybridization signals.
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Table 2 Results of the first round of the white-throated sparrow BAC library screen

Chromosome or linkage
group

No. of overgos
used

No. of successful
overgos

Success rate,
%

No. of positive
BACs

Positive BACs per
probe

Macrochromosomes

GGA1 21 8 38.1 58 7.3

GGA2 12 5 41.7 29 5.8

GGA3 98 23 23.5 192 8.3

GGA4 12 6 50 77 12.8

GGA5 4 4 100 34 8.5

Intermediate chromosomes

GGA6 4 1 25 8 8

GGA7 4 3 75 25 8.3

GGA8 4 0 0 0 0

GGA9 3 0 0 0 0

GGA10 3 1 33.3 7 7

Microchromosomes

GGA11 3 3 100 36 12

GGA12 3 2 66.7 8 4

GGA13 3 1 33.3 6 6

GGA14 2 0 0 0 0

GGA15 2 2 100 17 8.5

GGA16 4 1a 25 18 18

GGA17 2 2 100 14 7

GGA18 2 1 50 18 18

GGA19 2 1 50 12 12

GGA20 2 1 50 7 7

GGA21 2 1 50 7 7

GGA22 2 0 0 0 0

GGA23 2 1 50 3 3

GGA24 2 1 50 13 13

GGA25 2 0 0 0 0

GGA26 2 1 50 11 11

GGA27 2 1 50 1 1

GGA28 2 1 50 7 7

LGE22C19W28_E50C23 2 0 0 0 0

Sex chromosomes

GGAW 1 1 100 15 15

GGAW_randomb 1 0 0 0 0

GGAZ 6 5 83.3 17 3.4

GGAUn_random 1 1a 100 15 15

For footnotes, see Table 1.

Table 3 The overall success rate of overgo probes and efficiency rate among 77 successful overgo probes

Overgo sequence
type

No. of probes by
type

No. of successful
probes

Percentage relative to probes by
type

Percentage relative to 77 successful
probes

Coding regions 91 58 63.7% 75.3%

5’ and 3’ UTRs 37 6 16.2% 7.8%

Introns 27 4 14.8% 5.2%

Other non-coding
regions

55 8 14.5% 10.4%

Exon-intron boundary 6 1 16.7% 1.3%

The data are specified depending on sequence type used for probe design
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microchromosomes as well as the W chromosome.
Finally, we plotted on the map the appropriate zebra
finch chromosomes that involve the same 77 loci. For a
few loci, their exact position in the zebra finch genome
remains unknown, and so they were arbitrarily placed
on a non-specific chromosome, TGUUn.

Discussion
Cross-species hybridization is efficient for deriving large-
insert sequences for species whose genomes have not yet
been fully characterized (e.g. [16,17,35]). With little to no
sequence information, this comparative technique pro-
vides a starting point for genomic studies of non-model
organisms. It is particularly useful for closely related spe-
cies that exhibit much sequence homology and synteny.
For example, the genomes of birds are relatively stable
despite large evolutionary distances and an array of diver-
gent phenotypes [39,40], so they lend themselves particu-
larly well to comparative methodologies. Here we
employed cross-species hybridization to identify relevant
BAC sequences for the white-throated sparrow. By com-
paring identified markers across 26 chicken and zebra
finch chromosomes, we developed a first-generation
chicken-passerine comparative map showing BAC-gene
assignments for the white-throated sparrow relative to
the chicken and zebra finch chromosomal locations.
Such information is a vital first step as it provides the fra-
mework for additional genome-wide studies. In addition,
such comparisons create a basis for understanding how
gene rearrangements affect the development and expres-
sion of complex phenotypic traits, and they form a foun-
dation with which to study the evolutionary transitions
that have occurred across taxa.
As expected, cross-species overgo hybridization proved

more successful with probes derived from the coding
regions of genes. In the present study, the overall effi-
ciency of coding region probes was relatively high (64%

compared to that for non-coding regions, which was 14-
16%). Similarly, of the probes that successfully hybri-
dized to white-throated sparrow BACs, approximately
77% of those were derived from the coding regions of
genes. Therefore, by focusing efforts on coding areas
within the genome, researchers can expect to increase
their hybridization efficiency by 4 to 5 fold.
We also expected that probes derived from the more

closely related zebra finch would bind more successfully
than those from the more distantly related chicken and
turkey, since the sequence divergence between galliform
and passerine birds is much greater (about 100 million
years) [41] than within the passerine lineage itself
(approximately 24 million years) [42]. Although signifi-
cantly fewer probes derived from the zebra finch were
used in our study, all hybridized to white-throated spar-
row BACs. As the zebra finch and other passerine gen-
omes become more characterized, it will be possible to
more fully test this hypothesis. Nonetheless, despite the
evolutionary distances between chicken, turkey, zebra
finch, and white-throated sparrow, cross-species overgo
hybridization was still a highly effective technique.
Despite the relative evolutionary stasis among avian spe-

cies [39], comparative mapping continues to also reveal
significant differences [12,23,43]. In the white-throated
sparrow, overgo hybridization efficiency seemed to differ
according to chromosome (Table 2). For example, in three
of the intermediate chromosomes (GGA6, GGA7, GGA8)
and one macrochromosome (GGA5) each mapped with 4
overgos, hybridization success ranged from 0 to 100%.
Amongst four macrochromosomes in which we used simi-
lar mapping effort (GGA1 through GGA4), hybridization
success varied from 24 to 50%. Since we used overgos
from both coding and non-coding regions, these differ-
ences could be due to a variety of factors including probe
length, target length, temperature, genome duplications, as
well as gene sequence homology. However, when mapping

Table 4 Success rate of overgo probes in cross-species hybridizations

Interspecies
hybridization

No. of probes
by species

No. of
successful
probes

Percentage relative to
probes by species

Overgo
sequence
type

No. of successful
probes by type

Percentage relative to
successful probes

Chicken-sparrow 194 65 33.5% Chicken overgos

Coding regions 47 72.3%

5’ and 3’ UTRs 6 9.2%

Introns 4 6.1%

Other non-
coding regions

8 12.3%

Turkey-sparrow 19 9 47.4% Turkey overgos

Coding regions 9 100%

Zebra finch-
sparrow

3 3 100% Zebra finch overgos

Coding regions 3 100%

The data are shown depending of species specificity of probes and efficiency rate of successful probes by species and by sequence type
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is confined to high-efficiency markers from coding regions,
comparative cross-species overgo hybridization might
reveal areas of differentiation. Since chromosomal rearran-
gements tend to occur in “fragile” regions of the genome
[44], we would predict lower hybridization efficiency in
such areas. Finally, since chicken microchromosomes have
higher gene densities than macrochromosomes [8] and

show higher recombination rates [45-47], we might expect
relatively more overgo probes derived from coding regions
to bind to microchromosomes.
Of a great interest in the white-throated sparrow is

the identification and fine mapping of chromosomal
rearrangements affecting morph-related genes. Thorney-
croft [27,28] first showed that the association between

Figure 3 The first-generation chicken-white-throated sparrow comparative cytogenetic map (chromosomes 1 through 4) based on
sparrow BAC assignments. The chicken chromosomes are designated as GGAn, their total lengths and loci positions being given in
megabases. The orthologous zebra finch chromosomes (TGUn) are also shown. Gene/marker symbol marked with * means that an overgo
sequence did not match any region in the zebra finch sequence according to Build 1.0, and the overgo coordinate is derived from the
alignment of the appropriate chicken gene/marker sequence and the zebra finch whole genome sequence.
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Figure 4 The first-generation chicken-white-throated sparrow comparative cytogenetic map (chromosomes 5 through 23) based on
sparrow BAC assignments. Chicken chromosomes are designated as GGAn (total lengths and loci positions being given in megabases);
orthologous zebra finch chromosomes (TGUn) are also shown. Gene/marker symbol marked with * indicates that an overgo did not match any
region in the zebra finch sequence according to Build 1.0, and that the overgo coordinate is derived from the alignment of the appropriate
chicken gene/marker sequence and the zebra finch whole genome sequence.
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morph and genotype (i.e., the presence or absence of
ZAL2m) was absolute. Much later, researchers have
shown that the rearrangement of ZAL2/ZAL2m is com-
plex, involving multiple inversions and perhaps linkages
with other chromosomes [17,29,30]. However, it is still
unclear how these rearrangements affect gene function
in the two morphs. Characterizing the white-throated
BAC library is an essential first step for physical and
comparative mapping. Here we focused our study on a
number of candidate genes that may be involved in reg-
ulating genetic differences between the white and tan
morphs (see additional file 2: Targeted Candidate Genes
for the list of candidate genes). Each of these genes
plays an important role in controlling pathways with sig-
nificant morphological and behavioral consequences.
Importantly, some of them are located on GGA3 and
GGA4 and might be directly affected with the intra-
chromosomal rearrangements observed in the two
morphs. In addition, positive white-throated sparrow
BACs that were identified as certain genes or markers

are being used in FISH to complete a cytogenetic map
for both tan and white morphs of the white-throated
sparrow. The FISH mapping will reveal new details
about organization and evolution of ZAL2, ZAL3, and
other chromosomes in this species and other related
Emberizids. Eventually, it will be possible to identify
sparrow clones that harbor affected candidate genes cri-
tical for regulation and manifestation of qualitative,
reproductive and behavioral traits in two morphs. These
BAC clones can be sequenced to reveal the DNA varia-
tion underlying the striking phenotypic differences
between the two morphs. Importantly, BAC clones
mapped to ZAL2/ZAL2m and ZAL3/ZAL3a may repre-
sent both normal and rearranged chromosomes because
a single white female (ZAL2/ZAL2m) was used as a
DNA source for the library construction [30]. This
library can be used to reveal genomic differences
(including breakpoints and affected genes) between the
two morphs by BAC end sequence and FISH analyses
(e. g. [18,48,49]).

 

Figure 5 The first-generation chicken-white-throated sparrow comparative cytogenetic map (chromosomes 24 through 28, Z, W, and
random) based on sparrow BAC assignments. Chicken chromosomes are designated as GGAn (total lengths and loci positions being given in
megabases); orthologous zebra finch chromosomes (TGUn) are also shown. Gene/marker symbol marked with * indicates that an overgo did not
match any region in the zebra finch sequence according to Build 1.0, and that the overgo coordinate is derived from the alignment of the
appropriate chicken gene/marker sequence and the zebra finch whole genome sequence..
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A complete understanding of genomes will require
both an interdisciplinary, systems-based approach
[7,50] as well as a toolbase that extends far beyond
model organisms [6]. Here we show the utility of
cross-species overgo hybridization for characterizing
BAC libraries of non-model organisms. Unlike other
techniques that require sequence information (e.g.
[51]), this technique can be accomplished with rela-
tively little starting knowledge of the target genome.
The result of such an analysis is a list of relevant
genes and markers that can be used for physical map-
ping, linkage and candidate gene analyses. Further-
more, comparative overgo mapping advances our
understanding of biological diversity by facilitating evo-
lutionary comparisons across taxa that have diverged
over 100 million years ago.

Additional material

Additional file 1: Overgo Probes. List and description of the 216
overgo probes used for the first screening of the white-throated sparrow
BAC library.

Additional file 2: Targeted Candidate Genes. Major candidate genes
targeted in the first screening of the white-throated sparrow BAC library.
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