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Apolipoprotein A-I, A-II, and H mRNA and protein
accumulation sites in the developing lung in late
gestation
Mélissa Côté1,3, Pierre R Provost1,2,3 and Yves Tremblay1,2,3*

Abstract

Background: Expression of apolipoprotein A-I (apoA-I), A-II, and H was previously observed at 16 to 50-fold higher
levels in the fetal than the adult mouse lung. Here, sites of apoA-I, A-II, and H mRNA and protein accumulation
were determined in mouse fetal lungs by in situ hybridization and immunohistochemistry in late gestation.

Results: Expression sites vary for the three genes and change for the distal epithelium before the end of the
canalicular stage, thus where and when the surge of surfactant synthesis occurs. Messenger of apoH, but not those
of apoA-I and A-II, was also observed in the proximal epithelium and smooth muscles surrounding arteries. In
contrast to apoC-II protein, none of the three studied apolipoproteins accumulated within secretory granule-like
structures. Immunohistochemistry revealed that apoA-I and apoH accumulated mainly in capillaries. Three different
positive signals with the anti-apoA-II antibody were found: one transient signal in the nucleus of a portion of
mesenchymal cells, a second at lower levels throughout the mesenchyme, and another in capillaries with a specific
increase from gestation day 17.5/18.5.

Conclusion: Temporal and geographic co-expression of apoAI, AII, and H genes with surfactant production site
suggests that the three apolipoproteins are secreted to play roles supporting the lung-specific surfactant lipid-
related metabolism.

Background
It is well recognized that the incidence and the severity
of respiratory distress syndrome (RDS) affecting preterm
neonates presents a sex difference with a disadvantage
for males [1-5]. This sex difference was attributed to the
effect of androgens in males which delay the surge of
surfactant synthesis [2,6-10]. Recently, we reported in a
real time quantitative PCR (QPCR) study that four apo-
lipoproteins, namely, apolipoprotein A-I (apoA-I), apoA-
II, apoC-II, and apoH, are expressed in the fetal mouse
lung with a sex difference (P = 0.0896, 0.0896, 0.0195,
and 0.0607 respectively) [11]. In addition, an increase in
apoA-I-, apoA-II-, apoC-II-, and apoH mRNA levels was
observed from gestation day (GD) 16.5 to GD 17.5 in
correlation with the emergence of mature type II pneu-
monocytes [11]. Accordingly, lipoprotein lipase (LPL)

mRNA was found in the developing lung with stable
levels over time from GD 15.5 to 17.5, followed by a sta-
tistically significant small increase from GD 17.5 to 18.5.
Surfactant synthesis necessitates fatty acids, which can

be provided by de novo synthesis or triglyceride-rich
lipoproteins through LPL activity. When activated by its
essential co-factor, apoC-II, LPL catalyzes cleavage of
acyl-glycerol esters in triglycerides of circulating VLDL
and chylomicrons. A role for LPL in surfactant synthesis
was proposed [11-14]. In many tissues including adipose
tissue and skeletal muscle, delivery of fatty acids from
triglyceride-rich lipoproteins occurs by hydrolysis on the
luminal surface of the capillary endothelium. This is
also the major localization site for LPL protein in the
developing lung [12]. Recently, we also showed that
apoC-II and LPL mRNAs correlate temporally and geo-
graphically with surfactant lipid synthesis in preparation
for birth [12] and that apoC-II is present in secretory
granule-like structures located near the basal membrane
of the distal epithelia [11] with no or small lumina
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during a short perinatal period [12]. Taken together, our
results suggested that fatty acid recruitment from the
circulation by apoC-II-activated LPL could be regionally
controlled by modulation of apoC-II secretion [12] for
the purpose of surfactant synthesis.
ApoH was reported to play a role in triglyceride

removal from the plasma [15] and to enhance apoC-II-
activated LPL activity [16]. ApoA-I and apoA-II are
known to be involved in lipid transport [17,18] and a
role for apoA-II in triglyceride metabolism was sug-
gested (see review [18]). Therefore, a role for these apo-
lipoproteins in fatty acid recruitment from triglycerides
for surfactant lipid synthesis can be postulated. Because
apoA-I, apoA-II, and apoH were co-regulated with
apoC-II both over developmental time and from sample
to sample in our previous QPCR study with whole lungs
[11], it would be relevant to determine whether similar
patterns of mRNA and protein accumulation sites,
including the presence of apolipoproteins in secretory
granules, are common features to all these apolipopro-
teins. In the present study, we determine similarities
and differences between these apolipoproteins in their
mRNA and protein distribution in the developing lungs
over gestation time. Using in situ hybridization and
immunohistochemistry, we show that despite several
similarities, major differences exist between apolipopro-
teins. Time-dependent accumulation of the positive
apoA-II epitope in association with the nucleus of sev-
eral mesenchymal cells is a noteworthy novel
observation.

Results
It should be noted that all the results reported here
were reproduced for two fetuses of three different litters
for each time point.

ApoA-I
As demonstrated by in situ hybridization, the site of
apoA-I gene expression changes between GD 15.5 and
GD 17.5 (Figure 1a-e). On GD 15.5, mRNA was found
almost exclusively in mesenchymal cells. In contrast, on
GD 17.5, positive signals were found on epithelial cells
of the distal epithelium, but not in the proximal epithe-
lium and the mesenchyme. A week signal was observed
in the mesenchyme on GD 16.5 (data not shown).
These results were confirmed by using a second apoA-I
RNA probe (data not shown).
The apoA-I protein was then localized by immunohis-

tochemistry. In contrast to apoA-I mRNA, the apoA-I
protein was found in similar structures from GD 15.5 to
GD 17.5 (Figure 1f-k and data not shown). A strong
positive signal was observed mainly in capillary-like
structures, while a diffuse weak signal was observed
throughout the tissue sections. An example of capillaries

in fetal lungs is shown in our recent publication (platelet
endothelial cell adhesion molecule-1 (PECAM-1)-posi-
tive structures in Figure three of [12]). No major change
in sites of apoA-I accumulation was observed over
developmental time, except a possible decrease in the
intensity of the diffuse signal, but little variations from
sample to sample prevent us from drawing a definitive
conclusion.

ApoA-II
Similarities were found between the apoA-I and the
apoA-II gene expression patterns. As for apoA-I, the
major site of apoA-II expression switches from the
mesenchyme to the distal epithelium before the end of
the canalicular stage (Figure 2a-f compared to Figure
1a-e for apoA-I). However, the positive signal observed
for apoA-II by in situ hybridization on GD 15.5 and
16.5 (Figure 2a-b, d) is more cell specific than that of
apoA-I (Figure 1a-b) in that it was mainly found in clus-
ters of mesenchymal cells. As for apoA-I, the mesench-
yme and the distal epithelium were respectively negative
for apoA-II on GD 17.5 and GD 15.5, while the proxi-
mal epithelium was always negative. It should be noted
that the structure corresponding to the most distal
epithelium on GD 15.5 is different from that on GD
17.5, the latter being more differentiated.
Three types of positive signals were obtained by

immunohistochemistry for apoA-II (Figure 2). The first
one had a weak to medium intensity and spread
throughout the mesenchyme; the second was found on
the nucleus of several but not all mesenchymal cells;
and the third was found on capillaries. Obviously, the
diffused signal in the mesenchyme was not associated to
apoA-II producing cells both on GD 17.7 when the gene
is rather expressed in epithelial cells, and on GD 15.5
when the protein signal was not restricted to the clus-
ters of mesenchymal apoA-II producing cells. Nuclei
positive for apoA-II protein were observed on GD 15.5
and GD 17.5 (Figure 2g-k) but not on GD 18.5 (Figure
2l-m) and are thus a gestation time-dependent feature.
The fact that apoA-II gene was not expressed in the
mesenchyme on GD 17.5 strongly suggests that the
nuclear anti-apoA-II-positive proteins were internalized
by positive cells from the extracellular microenviron-
ment. Such a nuclear signal was not observed for apoA-
I (Figure 1), apoH (Figure 3) and apoC-II [11,12]. An
obvious apoA-II positive signal on capillaries, similar to
that obtained for apoA-I, was observed for one third of
the tissues from GD17.5 (Figure 2k and data not shown)
and all the samples from GD 18.5 (Figure 2l-m and data
not shown). In contrast, a weaker positive signal was
detected on capillaries for samples from GD 15.5 (Figure
2g and data not shown) and two third of the samples
from GD 17.5 (Figure 2h and data not shown). Taken
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Figure 1 Distribution of apolipoprotein A-I mRNA and protein in the mouse fetal lung. Mouse tissue sections are from pseudoglandular
(GD 15.5: a-b, f-g) or late canalicular (GD 17.5: c-e, h-k) stages. In situ hybridization (within blue frames) (a-e) was performed with apoA-I anti-
sense (a-d) and sense (e) probes. Positive signals (blue) show that the site of apoA-I mRNA synthesis changes according to developmental time.
Immunohistochemistry (within red frames) (f-k) was performed using an anti-apoA-I polyclonal antibody (f, h-j) or goat IgG as negative control
(g, k). Positive signals (red) were mainly found on capillaries with no change in localization between GD 15.5 and 17.5. GDs are indicated on
photographs. Dashed frames, negative controls. Scale bars, 50 μm (a, c, e-h, k) or 20 μm (b, d, i-j). A, artery; C, capillaries; D, distal epithelium; M,
mesenchyme; P, proximal epithelium; SM smooth muscle.
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Figure 2 Distribution of apolipoprotein A-II mRNA and protein in the mouse fetal lung. Mouse tissue sections are from pseudoglandular
(GD 15.5: a-b, g), junction between pseudoglandular and canalicular (GD 16.5: d), late canalicular (GD 17.5: c, e-f, h-k), or early saccular (GD 18.5:
l-m) stages. In situ hybridization (within blue frames) (a-f) was performed with apoA-II anti-sense (a-e) and sense (f) probes. Positive signal is blue.
A change in sites of apoA-II gene expression was observed according to gestation time. Immunohistochemistry (within red frames) (g-m) was
performed using an anti-apoA-II polyclonal antibody (g-h, j-m) or goat IgG as negative control (i). Positive signal (red) was found in the
mesenchyme. Some mesenchymal cells presented a stained nucleus between GD 15.5 and GD 17.5. Positive signals were also observed on
capillaries. GDs are indicated on photographs. Dashed frames, negative controls. Scale bars, 50 μm (a, c-d, f-i, k-l) or 20 μm (b, e, j, m). C,
capillaries; D, distal epithelium; M, mesenchyme; N, positive nuclei; P, proximal epithelium.
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Figure 3 Distribution of apolipoprotein H mRNA and protein in the mouse fetal lung. Mouse tissue sections are from pseudoglandular
(GD 15.5: f-h) or late canalicular (GD 17.5: a-e, i-l) stages. In situ hybridization (within blue frames) (a-e) was performed with apoH anti-sense (a,
c-e) and sense (b) probes. Positive signals (blue) were found on GD 17.5 in the distal and proximal epithelia and smooth muscles surrounding
large arteries. Immunohistochemistry (within red frames) (f-l) was performed using an anti-apoH polyclonal antibody (f-g, i-k) or goat IgG as
negative control (h, l). Positive signals (red) were mainly found on capillaries with no change in localization between GD 15.5 and 17.5. GDs are
indicated on photographs. Dashed frames, negative controls. Scale bars, 50 μm (a-b, e-f, h-l) or 20 μm (c-d, g). A, artery; C, capillaries; D, distal
epithelium; M, mesenchyme; P, proximal epithelium; SM smooth muscle.
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together, our results are compatible with an increase in
apoA-II protein accumulation on capillaries over gesta-
tion time with significant levels from GD 17.5/18.5.

ApoH
There are great similarities between apoH and LPL [12]
localization of mRNAs and proteins. Both proteins were
found in capillary-like structures on GD 15.5, GD 16.5,
and GD 17.5 (Figure 3f-l, [12] and data not shown) and
both mRNAs were found in epithelial cells of the distal
epithelium on GD 17.5 (Figure 3a-c, [12]). In contrast to
apoA-I and apoA-II, apoH was generally expressed in
the proximal epithelium (Figure 3d). Some cells of the
proximal epithelium were also positive for LPL [12].
The amounts of apoH mRNA on GD 15.5 (8 fetuses
from 4 litters) and GD 16.5 (5 fetuses from 3 litters)
were below the detection limit by in situ hybridization
(data not shown), although apoH mRNA was detected
by QPCR on these gestation times [11].
ApoH mRNA was also observed in smooth muscle

surrounding large arteries (Figure 3e), while no hybridi-
zation signal was observed in this structure for apoA-I
and apoA-II (data not shown). ApoH (Figure 3k) and
LPL [12] proteins were found in smooth muscles of
arteries, but signal intensities were lower than those
found in adjacent capillaries. A similar result was
obtained for apoA-I protein (Figure 1j).

Discussion
For apoA-I, apoA-II and apoH, our data show that
mRNAs and proteins do not accumulate at the same
sites. This is expected for secreted proteins. Messenger
RNA localization sites changed according to gestation
time similarly for the three studied apolipoproteins and
apoC-II [12] in that the mRNAs were present in the dis-
tal epithelium on GD 17.5 but not on GD 15.5. Know-
ing that the surge of surfactant synthesis occurs in the
distal epithelium on GD 17.5 in the mouse [19-21], a
role for these four apolipoproteins in association with
surfactant synthesis in the developing lung is suspected
on the basis of gene expression. In contrast, there are
some differences in mRNA accumulation sites on GD
15.5. While apoA-I mRNA was found throughout the
mesenchyme (Figure 1a-b), apoA-II mRNA was found
only in clusters of mesenchymal cells (Figure 2a-b)
whereas apoH mRNA was not found (data not shown),
which could be attributed to the fact that apoH mRNA
is less abundant than mRNAs encoding for the other
analyzed apolipoproteins [11]. In the mouse, levels of
mRNAs encoding for apoA-I, apoA-II, and apoH are
very high in fetal lungs compared to adult lungs where
only 2 to 6% of the fetal levels were found by QPCR, in
contrast to apoC-II mRNA which showed similar levels
for fetal and adult lungs [11]. A similar situation was

found for human with higher pulmonary mRNA levels
for apoA-I, apoA-II, and apoH between the 32-35
weeks’ gestation period compared to adulthood, and
similar apoC-II mRNA levels for these two periods [22].
Therefore, transient roles for apoA-I, apoA-II and apoH
are expected in the developing lung.
The protein accumulation sites presented more differ-

ences between apolipoproteins than the mRNA accumu-
lation sites. Firstly, none of the three studied
apolipoproteins were found in secretory granules on GD
17.5, which is a major difference compared to apoC-II
[11,12]. Therefore, the postulated control of apoC-II
secretion according to growth of the distal epithelium
[12] is not a common feature to all apolipoproteins
secreted in the lung in late gestation. However, this does
not exclude the possibility that one or some other apoli-
poproteins may participate in surfactant synthesis with
apoC-II. Accordingly, apoH was shown to enhance
apoC-II-activated LPL activity [16] and its presence in
capillaries in fetal lungs is compatible with an effect on
LPL activity. A role for apoA-II in triglyceride metabo-
lism was also suggested [18].
The widely distributed low positive signals obtained

with the anti-apoA-I and the anti-apoH antibodies and
the general signal obtained for apoA-II in the mesench-
yme could correspond to local lipid transport. Whether
lung-originating apoA-I, apoA-II and apoH interact with
several cells before reaching capillaries, where strong
positive signals were found, is not determined but is a
plausible hypothesis. We know that ATP-binding cas-
sette transporter A-I (ABCA-I) promotes transfer of
cholesterol and phospholipids from cells to lipid-free
apolipoproteins, particularly apoA-I, initiating HDL for-
mation [18,23]. In the lung, ABCA-I was found in
macrophages [24] and in type I and type II pneumono-
cytes [25,26] while Abca-/- mice showed severe respira-
tory distress, lung congestion, and bronchopulmonary
dysplasia [27].
Plasma phospholipid transfer protein (PLTP) was

shown to bind both purified apoA-I and apoA-II [28]
and the lung is one of its major sites of gene expression
[29,30]. In addition to its roles in lipoprotein metabo-
lism [31], PLTP was proposed to play an integral role in
surfactant lipid trafficking and reutilization in type II
pneumonocytes, where it was shown to be expressed
[32]. PLTP expression was also reported during late
gestation [33] when high apoA-I and apoA-II expression
was found [11]. Whether binding of apoA-I and apoA-II
to PLTP occurs in the developing lung and has a phy-
siological relevance remains to be determined.
An increase in apoA-II expression was reported to

inhibit hydrolysis of VLDL and chylomicron triglycerides
by LPL [34]. This should be explained at least in part by
the capability of apoA-II to displace apoC-II from
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lipoproteins [35]. Such an effect could be attributed in
the fetal lung to the apoA-II positive signal present in
lung capillaries and increasing with gestation time.
Therefore, apoA-II could participate to the regulation of
the amount of phospholipids entering in the developing
lung.
In a proteomic study, apoA-I precursor and apoA-IV

were found in lamellar bodies in adult rat lungs [36].
While higher apoA-I mRNA levels were observed in
fetal lungs compared to mature lungs in mouse and
human, no apoA-I signal was found by immunohisto-
chemistry in association with granule structure in our
study. It would be surprising that enough apoA-I pro-
tein be present in lamellar bodies for observation of
granules by immunohistochemistry in light microscopy.
This is different from apoC-II-containing secretory gran-
ules that were found near the basal membrane of the
distal epithelia, close to the mesenchyme [11,12], which
should not be secreted in the lumina but rather in the
tissue to target capillary-anchored LPL.
ApoA-I was already reported to have anti-inflamma-

tory effects [37-39]. It was decreased in subjects with
idiopathic pulmonary fibrosis while intranasal apoA-I
treatment in the mouse showed a protective effect
against the development of experimental lung injury and
fibrosis [40]. The study of apoA-I -/- mice revealed that
apoA-I plays important roles in limiting lung inflamma-
tion and oxidative stress [41]. ApoH was reported to be
part of a complex antigen inducing anti-phospholipid
autoantibodies [42,43]. Other studies are requested to
know whether these properties of apoA-I and apoH are
exerted in the fetal lung.
Interestingly, immunohistochemistry positive signals

for apoA-II were observed on the nucleus of several but
not all mesenchymal cells until GD 17.5 but not on GD
18.5 (Figure 2). Counterstaining with Mayer’s hematoxy-
lin can explain the dark-red color of the nuclear positive
signals. Nuclear localization was also reported in specific
experimental conditions for other apolipoproteins such
as apoA-I [44], apo E [44,45], apo D [46], apoJ [47], and
apoB [44], while further investigations revealed that
apoB immunoreactivity was rather perinuclear [48]. A
tetrahydrocortisol-apoA-I complex was shown to
increase gene expression and rate of protein biosynthesis
in hepatocytes, and to interact specifically with DNA
elements [49]. However, in the developing lung, no
nuclear signal was observed for apoA-I, (Figure 1), apoH
(Figure 3), and apoC-II [12]. Whether the apoA-II epi-
tope in nuclei corresponds to gene regulation by apoA-
II remains to be demonstrated, but our results demon-
strate that this characteristic is cell-specific and time-
specific.
Lung cell and explant cultures are not promising

models to study the effect of apolipoproteins on lung

development and metabolism. Indeed, functional studies
of apolipoproteins expressed in the developing lung
should have to be done in vivo because the role of these
proteins most likely involves lipid exchange with circu-
lating blood. Adding to the complexity of the study of
apolipoproteins function(s) in the lung is the fact that
circulating lipids are only one of the two possible
sources of fatty acids for surfactant lipid synthesis. As
discussed elsewhere [12], de novo synthesis through
fatty acid synthase as the only source of fatty acids in
animal models can support surfactant synthesis, as evi-
denced by the fact that LPL and apoC II (the co-factor
of LPL) deficiencies are not associated with respiratory
distress syndrome and with a lack of surfactant [50,51].
The importance of the study of apolipoproteins in the
developing lung lies in the fact that preterm birth fre-
quently leads to surfactant insufficiency and therefore,
local lipid transport that must involve local production
of apolipoproteins may become an interesting pharma-
ceutical target in that context. Similarly, the fact that
apoA I knockout mice survive at birth without respira-
tory distress [52] does not mean that apoA I is not
related to surfactant lipid metabolism. In contrast, sev-
eral observations suggest the involvement of apoA-I, A-
II, C-II and H in the lipid metabolism related to the
surge of surfactant synthesis: apoA-I, A-II, C-II and H
genes present a narrow peak of elevated expression in
human fetal lungs during the 32-35 week gestation win-
dow in correlation with the reported decrease in the
incidence and severity of respiratory distress syndrome
(RDS) [22]; apoA-I, A-II, C-II and H mRNAs show an
increase from GD 16.5 to 17.5 in the mouse in correla-
tion with the emergence of mature type II pneumono-
cytes [11] and, as shown in this report, in correlation
with a change in the site of apolipoproteins expression
favoring the distal epithelium where the surge of surfac-
tant synthesis occurs. Furthermore, it is reported that
VLDL-triglyceride concentrations increased drastically in
the cord blood of preterm neonates from 32-34 weeks’
gestation and that most of the neonates with RDS in
that study were born before the timing of the drastic
VLDL-triglyceride increase [53,54]. Accordingly, mater-
nal loading with VLDL stimulates surfactant synthesis in
rats [14] while in a group of preterm infants weighing
less than 2000 g, lower cord blood total fatty acids levels
were found in RDS infants compared with non-RDS
infants [55]. In conclusion, the fact that knockout of
genes do not lead to death or respiratory distress in
term pups does not eliminate the potential for these
genes to be important for survival in cases of preterm
birth. Therefore, lung-originating apoA-I, A-II, C-II and
H may efficiently contribute to the survival of preterm
infants. In vivo approaches are requested to demonstrate
this hypothesis.
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Conclusion
Our data show that apoA-I, apoA-II and apoH mRNAs
are regulated temporally according to their expression
sites, with the distal epithelium as their major site of
expression on GD 17.5 when the surge of surfactant
synthesis occurs. The study of protein localization
revealed major differences compared to apoC-II in that
none of these three apolipoproteins were found in secre-
tory granules. ApoA-I and apoH were mainly found in
capillaries while the distribution of apoA-II was more
complex, with three distinct positive signals: one of
weak to medium intensity spread throughout the
mesenchyme, a second in nuclei of one fraction of
mesenchymal cells that disappeared before GD 18.5, and
a third increasing in intensity over developmental time
in capillaries. Temporal and geographic co-expression of
apoAI, AII, and H genes with surfactant production site
suggests that the three apolipoproteins are secreted to
play roles supporting the lung-specific surfactant lipid-
related metabolism.

Methods
Mouse tissue preparation
Protocols were approved by the Animal Care and Use
Committee and the Institutional Review Board of the
Centre de Recherche du Centre Hospitalier Universitaire
de Québec (protocols no. 2005-091 and 2008-071-2).
Female and male Balb/c mice (Charles River Labora-
tories St-Constant SA, St-Constant, Qc, Canada) were
mated during the night (mating window ± 8 h). The day
of copulatory plug was considered as GD 0.5 (term GD
19.5). Pregnant females were killed by exposure to a
CO2 atmosphere. The fetal sex was identified by exami-
nation of the genital tract. Confirmation of individual
sex was done by PCR amplification of the Sry gene.
Fetal lungs were collected and either kept frozen until
RNA extraction or fixed in 4% buffered paraformalde-
hyde for 48 h at 4°C. Tissues were paraffin-embedded
and cut in 5 μm slices. In situ hybridization and immu-
nohistochemistry were performed on samples from one
female and one male of three litters for each gestation
day studied.
The surge of surfactant synthesis occurs on gestation

day (GD) 17.5 in the mouse as indicated by the appear-
ance of lamellar bodies [19], an increase in surface activ-
ity in the mouse lung homogenate [19], and by increases
in the activity of some enzymes involved in pulmonary
lipid metabolism [20,21].

RNA probes and in situ hybridization
Specific amplicons were synthesized from fetal lung
cDNA using oligonucleotides designed to span at least
one intron. Amplified gene/GenBank accession number/

position of the amplified sequence/5’ oligonucleotide/3’
oligonucleotide (sequences include one restriction site
for sub-cloning): ApoA-I, NM_009692/first probe/167-
414/GGGGAATTC-TATGTGGATGCGGTCAAAGA/
GGGAAGCTT-TAGGGCTGCACCTTCTGTTT/second
probe/451-765/GGGGAATTC-GAGCTCTACCGCCA-
GAAGG/GGGAAGCTT-ATCAGACTATGGCGCAG
GTC; ApoA-II/NM_013474/99-473/GGGGAATTC-CCA
TCTGTAGCCTGGAAGGA/GGGAAGCTT-CCTTC
CGCATTTATTGGAGA; ApoH/NM_013475/129-430/
GGGGAATTCC-GGTTGTCCCCTTAAAGACA/GG
GAAGCTT-ATCTGGGCTCCATTTTCCTT. These
amplicons were cloned into pGEM-4Z (Promega Corp.,
WI, USA). DNA matrix for SP6 and T7 polymerases
were prepared by PCR amplification of each of the sub-
cloned amplicon with the oligonucleotides GGATT-
TAGGTGACACTATAGAATA and TAATACGACTC
ACTATAGGGAGAC, which overlap the 5’ end of the
SP6 and the T7 promoters, respectively. Then, RNA
probes were prepared using digoxigenin (DIG)-UTP
substrate (Roche Diagnostics, Qc, Canada) and SP6
(sense) or T7 (antisense) RNA polymerases (Roche
Diagnostics), as previously described [56]. In situ hybri-
dization was performed as reported [56] except that
denatured DIG-cRNA probes were used at 5 ng/μl.
Slides were counterstained with 0.25% neutral red.

Immunohistochemistry
Tissues were deparaffinized and subjected to immuno-
histochemistry as reported [56]. All the anti-apolipopro-
tein antibodies were purchased from Santa Cruz
Biotechnology Inc. (CA, USA): goat anti-apoA-I (K-20)
(1:20), goat anti-apoA-II (L-20) (1:20), goat anti-apoH
(N-13) (1:20). A goat IgG preparation (Vector Labora-
tories Inc, ON, Canada) was used instead of primary
antibody as negative control. A biotinylated donkey
anti-goat IgG (Millipore Canada Ltd, ON, Canada) was
used as secondary antibody. The signal was revealed
with the streptavidin-biotin peroxidase reaction method
using an ABC Vectastain elite kit (Vector Laboratories
Inc) and 3-amino-9-ethylcarbazole (AEC, Sigma-Aldrich)
as chromagen. Slides were counterstained with Mayer’s
hematoxylin.

List of abbreviations used
ApoA-I: apolipoprotein A-I; apoA-II: apolipoprotein A-II; apoC-II:
apolipoprotein C-II; apoH: apolipoprotein H; DIG: digoxigenin; GD: gestation
day; LPL: lipoprotein lipase.
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