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Simple parametric survival analysis with
anonymized register data: A cohort study with
truncated and interval censored event and
censoring times
Henrik Støvring1* and Ivar S Kristiansen2

Abstract

Background: To preserve patient anonymity, health register data may be provided as binned data only. Here we
consider as example, how to estimate mean survival time after a diagnosis of metastatic colorectal cancer from
Norwegian register data on time to death or censoring binned into 30 day intervals. All events occurring in the
first three months (90 days) after diagnosis were removed to achieve comparability with a clinical trial. The aim of
the paper is to develop and implement a simple, and yet flexible method for analyzing such interval censored and
truncated data.

Methods: Considering interval censoring a missing data problem, we implement a simple multiple imputation
strategy that allows flexible sensitivity analyses with respect to the shape of the censoring distribution. To allow
identification of appropriate parametric models, a c2-goodness-of-fit test–also imputation based–is derived and
supplemented with diagnostic plots. Uncertainty estimates for mean survival times are obtained via a simulation
strategy. The validity and statistical efficiency of the proposed method for varying interval lengths is investigated in
a simulation study and compared with simpler alternatives.

Results: Mean survival times estimated from the register data ranged from 1.2 (SE = 0.09) to 3.2 (0.31) years
depending on period of diagnosis and choice of parametric model. The shape of the censoring distribution within
intervals did generally not influence results, whereas the choice of parametric model did, even when different
models fit the data equally well. In simulation studies both simple midpoint imputation and multiple imputation
yielded nearly unbiased analyses (relative biases of -0.6% to 9.4%) and confidence intervals with near-nominal
coverage probabilities (93.4% to 95.7%) for censoring intervals shorter than six months. For 12 month censoring
intervals, multiple imputation provided better protection against bias, and coverage probabilities closer to nominal
values than simple midpoint imputation.

Conclusion: Binning of event and censoring times should be considered a viable strategy for anonymizing register
data on survival times, as they may be readily analyzed with methods based on multiple imputation.

Background
Individualized register data are routinely collected in
many countries on a broad variety of diseases, and are
becoming an indispensable source of information for
health research. However, as informed consent is not

obtained from patients, preservation of anonymity is a
key concern when allowing researchers access to register
data. Often, access is only allowed to binned data in
which individuals can no longer be identified. Such data
may pose an analytic challenge to researchers since
dedicated statistical procedures for this situation are not
readily available in standard statistics software, and
hence there is a need for general purpose strategies that
can be easily implemented in these settings.
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The example of binned register data which we will
study in this paper arose in the context of colorectal
cancer, one of the most frequent malignancies in indus-
trialized countries. Since a substantial proportion of
patients either have clinical metastases at the point of
diagnosis or develop them in the course of the disease,
the prognosis is poor. For Norwegian patients diagnosed
in the period 1997-2001 with metastatic rectal cancer
(ICD9 C19-21), the survival was limited with a 10.4% 5-
year survival for males and 7.8% for females [1]. Corre-
sponding figures for colon cancer (ICD9 C18) were 7.4%
for males and 8.6% for females, ibid. In a pivotal study
by Hurwitz et al [2], patients with metastatic colorectal
cancer were randomized to either conventional che-
motherapy alone or conventional chemotherapy with
addition of bevacizumab. Hurwitz et al found a signifi-
cant treatment effect for adding bevacizumab (hazard
ratio for mortality: 0.66, p < 0.001).
Consequently, the Norwegian Knowledge Centre for

Health Care in spring 2007 was commissioned to under-
take a health technology assessment of bevacizumab as
guidance for the decision on introducing the drug into
standard Norwegian treatment practice. As a key part of
the assessment, estimates of recent and current mean
survival times in this group of patients were requested,
since it was believed that the prognosis had changed
over the last two decades and was potentially quite dif-
ferent from those observed in the Hurwitz et al study.
In 1991, Norwegian physicians’ attitude to metastatic
colorectal cancer was pessimistic, as only few patients
had surgery to remove liver metastases and/or received
chemotherapy–and if the latter then 5-fluorourcil only.
In recent years, oncologists search more actively for
metastases, which are then likely detected earlier; liver
metastases are removed if technically possible and the
patient is otherwise in good condition; chemotherapy is
offered more frequently, and then usually oxaliplatin or
irinotecan based.
To preserve anonymity of individual patients, CRN

provided counts of deaths and censoring events without
any patient specific information grouped into 30 day
intervals (termed months in the following). Further,
since the clinical trial reported by Hurwitz et al
excluded patients with a prognosis of less than three
months of survival (90 days) [2], it was argued that
exclusion of all deaths and loss-to-follow-up events
occurring within three months of diagnosis would
improve comparability with the clinical trial data. Note,
however, that in the clinical trial, deaths did occur also
within the first three months, and so the truncation in
the Norwegian registry not only removed patients ineli-
gible for treatment with bevacizumab, but inadvertently
also those who merely happened to have short survival
times and who would otherwise have been eligible.

Although the anonymized data from CRN are interval
censored, they are neither of the standard type I or type
II interval censored data. Type I is known as current
status data, where survival times are only known to be
smaller or larger than a given point in time. In type II
data, event times are observed to belong to intervals
where either both limits are finite and observed, or
alternatively one is finite and observed and the other is
infinite–see [3] for a detailed discussion. Thus, the
monthly counts of deaths are type II interval censored,
but the monthly counts of loss-to-follow-up are not, as
they do not assign a definitive (left) limit to the interval
containing the event. Put differently, the CRN data
includes interval censoring of censoring times (loss-to-
follow-up). From another perspective, the CRN data
may be viewed as an example of life table data with left
truncation, but life table data are for non-standard ana-
lyses best regarded as interval censored [4]. While it is
known that Maximum Likelihood Estimation (MLE) is
generally superior to other analytic strategies for interval
censored data [5-7], it is not straightforward to conduct
a full MLE analysis for this type of data, unless one is
willing to adopt restrictive assumptions on the censoring
distribution (see below). Using multiple imputation for
analyzing interval censored data has been suggested by
several, for example [8,9], but not for data with interval
censored censorings.
The objective of the present paper is to investigate if a

multiple imputation strategy can be utilized to validly fit
parametric models to the CRN data. Secondly, it is to
develop diagnostic procedures that can be used to assess
the fit of any parametric distribution. Finally, to investi-
gate whether mean survival times comparable to those
obtained from the clinical trial data by Tappenden et al
[10] can be reliably estimated, i.e. are reasonably robust
to choice of parametric distribution.
The paper is organized as follows: First in the Meth-

ods section the CRN data are described and the model
is introduced. We then describe a simulation study to
assess the validity and statistical efficiency of the devel-
oped strategy, develop diagnostic procedures, and intro-
duce a simulation strategy for estimating uncertainty of
estimated mean survival times. Parameterization of dis-
tributions and details of the implemented strategies are
presented at the end of the Methods section. The
Results section first reports the results of the simulation
study before proceeding to the results of analyzing the
CRN data. Finally, results and their implications are
discussed.

Methods
Material
The Cancer Registry of Norway holds follow-up data on
all patients diagnosed with malignancies in Norway in
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the period 1991-2005. For the present study, data was
requested on all patients diagnosed with colorectal can-
cer (ICD9 codes C18, C19, and C20) for the first time,
and where patients at the time of diagnosis had distant
metastases (stage 4) and were less than 70 years at diag-
nosis. Patients who either died or were lost to follow-up
earlier than 90 days after diagnosis were excluded, as it
was assumed that the remaining patients would be more
comparable to those included in the Hurwitz trial [2].
For the included patients, CRN only provided 30 day
counts of deaths and loss-to-follow-up, respectively, due
to confidentiality concerns. CRN provided data sepa-
rately for patients diagnosed within each of three time
periods (1991-6, 1997-2001, and 2002-5) to allow period
specific estimation. All patients were followed until
death or Jan 1, 2006, whichever came first. The data
provided by CRN are summarized in Table 1, where
they have been binned in years for legibility. The full
data set is available upon request from the lead author.

Ordinary model for survival times
Let Y be time to death after diagnosis with survivor dis-
tribution function SY (·; θ), density function fY (·; θ), and
hazard hY (·; θ), where θ is a parameter vector. Let Z be
a censoring event so that the observable time variable,
X, is the minimum of Y and Z, accompanied by an

indicator variable denoting which type of event was
observed, i.e.:

X = min(Y, Z) and δ = I(X = Y)

If censoring is assumed independent, the marginal
likelihood based on all n individuals for inference on θ,
where the censoring contributions have been factored
out, looks as follows

l(θ ; (x, δ)) =
n∏
i=1

hY(xi; θ)δi SY(xi; θ) (1)

with x = (x1, x2, ..., xn) and δ = (δ1, δ2, ..., δn).

Model for truncated and interval censored data
In the data provided by CRN, we are not observing from
the entire distribution of survival times–events are only
observed if they exceed a constant M which here is 90
days–and so the likelihood given above in Equation 1
must be modified accordingly. Handling such trunca-
tion, or delayed entry as it is, corresponds to considering
the conditional distribution of X given that X ≥ M.
Hence the likelihood becomes

lX|X≥M(θ ; (x, δ)) = (SY(M; θ))−1
n∏
i=1

hY(xi; θ)δi SY(xi; θ)

Further in the CRN data, all event times, X, are sub-
ject to interval censoring induced by a sequence of time
points, t1, t2, ..., tm+1. This means that for each subject
only the interval, [tj; tj+1), and the type of event, δ, is
observed. Let n1j and n0j be the counts of Xi’s falling
within a given period for the two event types, i.e. n1j is
the number of deaths and n0j the number of censorings
between tj and tj+1, respectively. If we let gj be the con-
ditional density of censoring events on the interval [tj ;
tj+1) given it occurs in the interval, the likelihood takes
the following form when not taking truncation into
account

l(θ ; (t, n)) =
m∏
j=1

(SY(tj; θ) − SY(tj+1; θ))n1j
(∫ tj+1

tj
SY(t; θ)gj(t)dt

)n0j

(2)

where t is the j × 2 matrix with interval end points, tj
and tj+1, as rows, and n is the corresponding j × 2
matrix with rows of event counts, n0j and n1j.
If events are subject to both truncation and interval

censoring the likelihood takes the form

lX|X≥M(θ ; (t, n)) =
m∏
j=1

(
SY(tj; θ) − SY(tj+1; θ)

SY(M; θ)

)n1j
(
(SY(M; θ))−1

∫ tj+1

tj
SY(s; θ)gj(s)ds

)n0j

(3)

Equations 2 and 3 implies that for censored events the
likelihood involves a term for the censoring distribution,
even though censoring is considered to be independent
or non-informative. If gj is non-constant over [tj ; tj+1),

Table 1 Deaths and censorings among patients with
colorectal cancer, Norway, 1991-2005

1991-1996 1997-2001 2002-2005

FU-Year E C E C E C

.25 583 0 471 1 360 1

1 393 0 355 3 287 132

2 125 0 143 0 89 97

3 53 0 76 0 33 67

4 33 0 31 0 6 29

5 26 0 19 36

6 9 0 6 20

7 9 0 4 25

8 5 0 2 25

9 1 0 0 12

10 3 13

11 1 13

12 0 7

13 0 10

14 0 7

15 1 7

16

Total 1242 57 1107 122 775 326

Event counts in dataset provided by Cancer Registry of Norway, stratified by
period of onset. FU-Year is lower limit of follow-up interval, with the interval
extending to the subsequent limit. E is count of events, C count of censorings.
Original data were provided as monthly counts, but is here collapsed into
annual counts to improve legibility.
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then even under an assumption of independent cen-
soring, its shape will be informative when evaluating
these contributions as it cannot be factored out. It is
thus natural to consider gj being constant over [tj ; tj
+1) as a starting point for analysis, since only this
model (the simplest possible) will for most parametric
distribution allow direct analytical evaluation of the
integrals. For example, for the Weibull survivor func-
tion direct analytical evaluation is possible only with
uniform gj ’s and then by use of the incomplete Γ-
functions. While the time intervals [tj ; tj+1) are all
rather short–making the assumption realistic–there
are drawbacks to this direct approach. Besides being
complex to implement numerically, it more impor-
tantly suffers from not allowing the distributional
shapes of gj to be varied easily. Sensitivity analyses
can thus not be readily undertaken using this
approach. Instead, we suggest to consider this a miss-
ing data problem. From this point of view, a simple
multiple imputation strategy lends itself naturally to
be applied here: Generate for each censored indivi-
dual i a censoring time (uil) that is independent and
distributed according to gj on the interval wherein
censoring is known to have happened–this creates a
completed dataset which we label by l . This is
repeated k times to result in k completed datasets.
The l’th dataset can be analyzed by maximizing the
following marginal likelihood, where the censoring
distribution has been factored out due to the assump-
tion of non-informativeness:

lX|X≥M(θ ; (t, u, n)) =
m∏
j=1

(
SY(tj; θ) − SY(tj+1; θ)

SY(M; θ)

)n1j ∏
{i:δi=0}

SY(uil; θ)
SY(M; θ) (4)

Rubin’s formula can be applied to obtain a combined
estimate with accompanying uncertainty measures [11],
and sensitivity analyses can straightforwardly be con-
ducted by generating uil’s from various distributions. As
distributions we considered those shown in Figure 1,
with the diagonal line representing the uniform distribu-
tion. Note that the distributions presented in Figure 1
are the conditional distributions on single sub-intervals,
i.e. they are not representing the global censoring
distribution.

Simplistic analyses
To allow comparison with simpler analytical strategies,
we also present analyses based on single, midpoint
imputation (replacing intervals with their midpoint) or
ignoring truncation. If all censoring events are replaced
by the midpoint of the interval they occur in, but event
times are maintained as interval censored, we base the
analysis on the following likelihood

lX|X≥M(θ ; (t, n)) =
m∏
j=1

(
SY(tj; θ) − SY(tj+1; θ)

SY(M; θ)

)n1j

⎛
⎜⎝SY(

tj + tj+1
2

; θ)

SY(M; θ)

⎞
⎟⎠

n0j

(5)

If also the event times are replaced by the midpoint of
the relevant interval, the likelihood becomes

lX|X≥M(θ ; (t, n)) =
m∏
j=1

⎛
⎜⎝ fY(

tj + tj+1
2

; θ)

SY(M; θ)

⎞
⎟⎠

n1j⎛⎜⎝SY(
tj + tj+1

2
; θ)

SY(M; θ)

⎞
⎟⎠

n0j

(6)

To ignore truncation, the term SY (M)-1 is removed
from the relevant likelihood.

Simulation study
To investigate the statistical properties of the multiple
imputation strategy developed above, we set up a simu-
lation study in which we compared the multiple imputa-
tion strategy with a simple, single imputation of interval
midpoints for interval censored censoring events (Equa-
tion 5 above). We generated event times as Weibull dis-
tributed (SY (t; l, g) = exp(-lyg)), where we as true
values of the parameters used those estimated for the
last period of the Norwegian registry data (log l =
-0.5902 and g = 0.9425, cf. results below). Censoring
was taken to be non-informative and occurring with
constant rate corresponding to annual proportions of
3%, 6%, and 9%, respectively. All event times were cen-
sored at the end of follow-up, which occurred at ten
years. We varied the width of censoring intervals (1, 2,
6, and 12 months, where each month is 30 days) and
the sample size (500, 1,000, and 10,000). In each of the
36 settings we analyzed 2,500 generated datasets. For
each setting we report the median relative bias (the dif-
ference between the median of estimates and the true
value relative to the true value), the empirical coverage
probability of 95% confidence intervals, and the inflation
factor of standard errors. The latter is defined as the
ratio between the median standard error obtained with
interval censored data and the median of standard
errors obtained from analysis of identical data that have
not been subjected to interval censoring, but only to
ordinary right censoring. Note, that the performance of
the method is not evaluated under misspecification (in
practical applications misspecification should be dealt
with using the tools developed below) as the focus is
here only on studying the ability to handle interval
censoring.

Goodness-of-fit test
To conduct valid parametric analyses it is essential to
have access to diagnostic procedures that allow assessing
the fit of the chosen parametric family. As the data
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under study are already binned, we propose a variant of
the c2 goodness-of-fit test that accommodates censoring.
The expected counts can be derived from considering

the following density, evaluated at the fitted parameter
values:

fY|Y≤Z,Y≥M(t; θ̂) =

∫ ∞
t f(Y ,Z)(t, u; θ̂)du∫ ∞

M

∫ ∞
z f(Y ,Z)(t, u; θ̂)du dz

(7)

where f(Y ,Z)(., ·; θ̂) is the joint density of times of
death and censoring, Y and Z, evaluated at the maxi-
mum likelihood estimate θ̂. Since Y and Z are indepen-
dent, this can be written as

fY|Y≤Z,Y≥M(t) =
fY(t; θ̂)SZ(t)∫ ∞

M fY(z; θ̂)SZ(z)dz

While fY was estimated above, we now additionally
need an estimate of the censoring distribution, specifi-
cally SZ. Had Y and Z not been interval censored, it

would have been straightforward to get an estimate of
SZ via Kaplan-Meier with deaths considered as censor-
ing events and censorings as failure events. We thus
propose to impute Y and Z and then estimate SZ by use
of the Kaplan-Meier estimator, before computing
expected values for each interval by averaging over
imputations. Specifically, we suggest the following algo-
rithm for generating imputed datasets:

1. For each observed event Yi in interval [tj ; tj+1),
the event time is imputed from the fitted survival
function fY(·; θ̂) conditional on Y Î [tj ; tj+1).
2. For each censoring event Zi in interval [tj; tj+1),
the time of censoring is imputed from a uniform dis-
tribution over this interval.
3. From the imputed dataset, the Kaplan-Meier esti-
mate of SZ is found by considering loss-to-follow-up
as event times and deaths as censoring events.
4. From the fitted distributions for Y and Z, the den-
sity in Equation 7 is numerically integrated over

0
.2

.4
.6

.8
1

0 .2 .4 .6 .8 1

Gj(z) = z Gj(z) = z2

Gj(z) = 1− (1− z)2 Gj(z) =
√
z

Gj(z) = 1−√
1− z

G
j

z

Figure 1 Censoring distribution functions for sensitivity analysis. Distribution functions used in the sensitivity analysis on the impact of
assuming different shapes of the censoring distribution. Gj is the conditional distribution of Z for each of the intervals [tj ; tj+1), j = 1, ..., m, given
that Z belongs to the j’th interval.
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each relevant time interval. The expected count for
each interval is found by multiplication with the
total number of observed events.

Steps 1 to 4 are repeated to create 10 imputed data-
sets with expected counts. The overall expected count is
then found by averaging over the imputed datasets.
Finally, the c2 goodness-of-fit test statistic was com-

puted as follows: If the expected number of events in an
interval was smaller than five, the interval was joined
with its lower neighbor. This procedure was repeated
until all expected values were greater than five. The
goodness-of-fit test statistic was evaluated as

χ2 =
m̃∑
j̃=1

(Oj̃ − E(Nj̃))
2

E(Nj̃)

where j̃ and m̃ are the index and count of joined
intervals, respectively, and Oj̃ is the observed count of
events in the j̃’th interval. The test statistic was evalu-
ated in the c2 distribution with m̃ − q − 1 degrees of
freedom, where q is the number of parameters fitted in
the parametric model.

Estimation of mean survival time
For all the distributions analyzed in this paper (see
Table 2), the mean survival could be computed directly
from the estimated parameters, except for the Gompertz
distribution. The Gompertz estimates did however cor-
respond to infinite mean survival, and so no alternative,
numerical strategy was needed in this case. To reflect

the uncertainties of the estimated parameters in com-
puted means, we used a simulation strategy since this
avoids the assumption of normality of the estimated
mean and the assumption of differentiability, both of
which are required by the delta method. For each para-
meter set, we thus sampled 10,000 times from a multi-
variate normal distribution defined by the estimate and
their estimated covariance matrix, and for each sampled
value computed the corresponding mean. As overall
estimate of the mean survival time we used the median
of the means accompanied by an empirical 90% confi-
dence interval, i.e. the 5% and 95% percentiles in the
sampled distribution of means.

Implementation
The parametric distributions considered and their para-
meterization are shown in Table 2. All analyses were
conducted using Stata 9 [12]. More specifically, the like-
lihoods in Equations 1 and 4, respectively, were both
coded and evaluated using the general maximum likeli-
hood command, -ml-, available in Stata 9, cf. [13]. The
multiple imputation used the -micombine- command
of the ICE add-on package to obtain joint estimates
across imputations [14]. Throughout we have chosen
the number of imputations to be 10 [11, p. 114]. Exam-
ples of code used for the computations are available
upon request to the authors.

Results
Simulation results
Table 3 presents relative bias, coverage probabilities and
inflation of standard errors when either using single
midpoint imputation or multiple imputation for interval
censored censoring events. When interval censoring is
induced by intervals with lengths up to six months, both
analytic strategies perform well with negligible bias, cov-
erage probabilities of confidence intervals close to the
nominal value, and standard errors that are only mar-
ginally increased relative to the ordinary situation, i.e.
when only ordinary right censoring is present. As a gen-
eral tendency, however, the multiple imputation has
lower relative bias and better coverage, in particular
when censoring becomes more dominant in terms of
higher censoring rates and wider censoring intervals.
Only in extreme cases of 6% and 9% annual censoring
proportions, censoring intervals of one year length, and
larger sample sizes of 10,000, does coverage probabilities
of the multiple imputation strategy decrease unaccepta-
bly to levels around 75% to 80%, albeit not as low as
when single midpoint imputation is used. This poor per-
formance in extreme cases is to be expected, as the con-
ditional censoring distribution is taken to be uniform in
the multiple imputation analysis, while censoring times
are actually generated from an exponential model–it is

Table 2 Parameterization of distributions

Model S(y) Parameter
restrictions

Mean

Weibull: exp (-lyg) l > 0, g > 0
�(1 + 1

γ
)

λ1/γ

Gamma: I(α, y
β
)† a > 0, b > 0 ab

Gompertz: exp
(
− λ

γ
(eyγ − 1)

)
g > 0 No closed

formula

Log-
Logistic:

1
1+(y/α)β a > 0, b > 0

απ
βsin(π/β)

Log-
Normal:

�
(
− log(y)−μ

σ

)‡
s > 0 exp(μ + 1

2σ 2)

† I(a, x) is the incomplete gamma function given by

I(a, x) =
1

�(a)

∫ x

0
e−tta−1dt

‡ F(x) is the standard normal cdf given by

�(x) =
1√
2π

∫ x

−∞
e
−
1
2
t2

dt

For each distribution the survivor function S(y) is given accompanied by
parameter restrictions, if applicable, and the formula for the mean survival as
a function of parameters.
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this effect that becomes apparent when datasets become
large and intervals very wide, but not before. In all situa-
tions, both analytic strategies yield virtually identical sta-
tistical efficiency, which depend mostly on the width of
censoring intervals, and less on the rate of censorings.
The loss in statistical efficiency is twice as high for the
shape parameter g as for the scale parameter log(l).

Application results
All the five fitted distributions (Gamma, Gompertz, Log-
Logistic, Log-Normal, and Weibull) fitted the data well
in the last period (2002-2005), cf. Table 4. None of the
distributions achieved adequate fit for the other periods,
including when all data was pooled, although the Gom-
pertz according to p-values and diagnostic plots came

Table 3 Simulation results comparing analyses with multiple imputation or single midpoint imputation in terms of
bias, coverage probability and relative efficiency

1 month 2 months 6 months 12 months

Parameter Censoring Estimation n RB Cov SEIF RB Cov SEIF RB Cov SEIF RB Cov SEIF

log(l) 3% MC 500 3.0 95.5 0.8 -3.2 94.9 1.6 7.8 94.9 6.4 17.7 94.7 16.8

1,000 0.0 94.7 0.8 3.5 94.3 1.7 2.6 95.6 6.4 14.5 94.9 16.7

10,000 0.4 95.4 0.8 -0.3 94.9 1.7 2.9 95.5 6.4 14.2 91.0 16.8

MI 500 3.0 95.5 0.8 -3.4 94.9 1.6 5.7 94.9 6.4 11.1 95.0 16.8

1,000 -0.1 94.8 0.8 3.3 94.3 1.7 1.0 95.4 6.4 8.2 94.8 16.7

10,000 0.3 95.4 0.8 -0.3 94.9 1.7 1.3 95.6 6.4 8.0 94.0 16.8

6% MC 500 2.3 95.7 0.7 0.6 94.7 1.6 9.4 95.4 6.3 29.6 94.0 16.6

1,000 0.4 94.8 0.7 1.2 95.5 1.6 9.1 95.7 6.3 29.6 94.0 16.7

10,000 1.1 94.7 0.8 0.7 94.6 1.7 9.0 94.0 6.3 30.7 77.6 16.8

MI 500 2.2 95.7 0.7 0.4 94.7 1.6 6.9 95.2 6.3 19.7 94.6 16.8

1,000 0.3 94.7 0.7 1.1 95.5 1.6 7.2 95.7 6.3 21.3 94.6 16.9

10,000 1.0 94.7 0.8 0.5 94.6 1.7 6.8 95.0 6.4 22.5 85.7 17.0

9% MC 500 0.4 95.4 0.8 -0.9 95.3 1.6 11.1 95.4 6.2 49.7 92.8 16.9

1,000 0.6 95.4 0.7 0.9 95.4 1.5 12.2 95.0 6.2 46.7 91.8 16.8

10,000 0.7 95.1 0.8 1.5 94.9 1.6 12.2 91.9 6.2 45.7 57.1 16.8

MI 500 0.3 95.4 0.8 -0.9 95.4 1.6 8.3 95.4 6.3 39.3 93.8 17.2

1,000 0.6 95.4 0.7 0.5 95.4 1.5 9.5 95.1 6.3 35.9 93.3 17.1

10,000 0.5 95.1 0.8 1.2 94.8 1.6 9.4 93.4 6.3 34.9 73.7 17.1

g 3% MC 500 0.6 95.0 2.0 1.0 94.8 4.1 3.9 94.5 13.5 7.6 94.8 30.2

1,000 0.8 95.4 2.1 2.1 95.1 4.4 1.6 95.0 13.6 6.9 95.0 30.3

10,000 -0.2 95.3 2.0 0.5 95.1 4.2 1.6 94.9 13.6 6.0 90.7 30.3

MI 500 0.4 94.8 2.0 0.9 94.8 4.1 2.0 94.5 13.4 2.6 94.8 29.8

1,000 0.6 95.4 2.1 2.0 95.0 4.4 -0.0 94.8 13.5 2.1 95.0 29.9

10,000 -0.4 95.2 2.0 0.4 95.2 4.2 -0.1 95.1 13.4 1.2 94.4 29.8

6% MC 500 2.4 95.7 2.0 1.7 94.6 4.1 6.4 94.8 14.1 12.8 94.1 31.6

1,000 -0.4 95.5 2.0 1.8 95.4 4.4 4.5 94.6 14.1 13.3 93.9 31.8

10,000 0.1 94.3 2.2 0.7 94.6 4.5 3.7 92.9 14.3 12.8 79.8 31.9

MI 500 2.2 95.6 2.0 1.5 94.6 4.1 4.1 94.9 14.0 6.8 94.4 31.3

1,000 -0.6 95.5 1.9 1.7 95.4 4.5 2.6 94.4 14.1 7.3 94.8 31.6

10,000 -0.0 94.2 2.2 0.6 94.6 4.5 1.8 94.2 14.2 6.8 91.3 31.7

9% MC 500 3.9 95.6 2.6 3.0 95.7 4.7 6.1 95.4 15.2 20.3 92.4 33.8

1,000 1.9 95.5 2.2 1.8 94.4 4.7 7.2 95.4 15.0 21.0 92.3 33.6

10,000 -0.1 95.5 2.3 1.1 95.0 4.7 5.4 92.4 15.0 20.6 57.1 33.6

MI 500 3.7 95.6 2.6 2.8 95.7 4.7 3.5 95.6 15.2 12.9 93.5 33.7

1,000 1.7 95.6 2.2 1.6 94.4 4.7 4.8 95.4 15.0 13.3 94.6 33.5

10,000 -0.3 95.4 2.3 0.9 95.2 4.7 3.2 94.2 15.0 12.9 80.4 33.5

Simulation results for estimation of log(l) and g from datasets with Weibull distributed event times, constant censoring rates, ten years of follow-up, and varying
widths of interval censorings. Results for each setting represent analyses of 2,500 generated datasets. Column headers in months indicate width of intervals
inducing interval censoring; censoring refers to annual proportion of censoring; Estimation refers to estimation procedure: MC to single imputation of midpoint
for censoring events (Equation 5) MI to multiple imputation, (Equation 4). RB is median relative bias in percent, Cov is coverage probability of nominal 95%
confidence intervals, while SEIF is percent increase in median standard error relative to analysis with ordinary censoring, but no interval censoring.
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close for the first period, 1991-1996 (plots not shown,
available upon request). Figure 2 displays diagnostic
plots for the Weibull distribution in each of the three
periods separately and when pooled, which supports
that the fit was adequate only in the last period, 2002-
2005. In the other periods, the number of events is gen-
erally overestimated in the beginning, then underesti-
mated from six months to approximately three years,
and finally overestimated at the right tail. As the last
period has a shorter follow-up period, the fit of any
parametric model is only determined by the events in
the earlier part of the follow-up period. Plots for the
other distributions are available upon request.
The estimated means varied substantially between the

distributions, both when the fit was poor (long follow-
up time, 1991-1996), and when the fit was good (shorter
follow-up time, 2002-2005). The means ranged from
1.89 years (Gamma) to 3.14 years for the Log-Logistic
and even infinity for the Gompertz in the last period,
2002-2005 (Table 4). The likelihood ratio test for homo-
geneity of Weibull distributions across periods showed

statistical significance with a c2 value of 122.7 on 4
degrees of freedom yielding p ≪ 0.0001. Note, that
while mean survival times varied between periods, the
direction of change was not consistent from distribution
to distribution: For the Weibull, Log-Normal, and the
Gamma distribution mean survival time increased with
period, the Gompertz found it to be infinite in all peri-
ods, whereas the Log-Logistic suggested an increase
between the first two periods and then a small decline
for the last. Both the Gamma and Log-Logistic distribu-
tions have asymmetric confidence intervals for the
mean, something that would not easily have been
detected if we had used the delta method for estimating
means from the parameter estimates. Based on the trial
by Hurwitz et al [2], the mean survival was estimated to
1.98 years in the intervention group and 1.57 years in
the control group by Tappenden et al [10].
For the Weibull distribution we estimated parameters

using different approaches for handling the interval cen-
soring and truncation, cf. Table 5. As expected from the
simulation study above, the use of single midpoint
imputation for censoring events in this situation yields
virtually identical estimates to those based on multiple
imputation–a consequence of the short censoring inter-
vals. Results based on imputing midpoints of intervals
for both events and censoring differ slightly more, but
are for all practical purposes still identical. Ignoring the
truncation does however create noticeably bias in the
estimated mean survival time.
Table 6 gives the results of applying the four different

assumptions regarding the shape of the censoring distri-
bution within each interval of one month length when
using a Weibull distribution for event times. We only
give results for the last time period and for all three
time periods joined together, but results for the other
time periods (not shown) were similar in the sense that
changes in estimates were negligible with respect to
choice of censoring distribution. This is a result of the
censoring intervals being short in this case (one month),
but in applications with longer intervals we would sug-
gest mimicking this sensitivity analysis, as the assumed
shape of censoring distribution becomes more important
with long intervals.

Discussion
The analyses above showed how a multiple imputation
strategy combined with a relatively simple maximum
likelihood estimation procedure could yield a flexible
and valid parametric analysis of interval censored data,
and at the same time avoid numerical complexities.
Based on the estimated parameters, mean survival times
and their uncertainty could be estimated, and finally a
goodness-of-fit test was implemented by utilizing the
inherent binning of the interval censored data together

Table 4 Goodness-of-fit tests and estimated mean
survival times for five parametric distributions, patients
with metastatic colorectal cancer, Norway 1991-2005

Period Model χ2
ob1s d.f. p Mean 90% CI

1991-1996 Gamma 225.1 62 0.0000 -† -

Gompertz 75.9 55 0.0324 ∞ -

Log-Logistic 81.3 56 0.0151 2.29 (2.06; 2.58)

Log-Normal 116.9 58 0.0000 1.61 (1.49; 1.75)

Weibull 179.7 60 0.0000 1.19 (1.06; 1.34)

1997-2001 Gamma 154.2 60 0.0000 1.25 (0.91; 1.50)

Gompertz 79.2 53 0.0114 ∞ -

Log-Logistic 80.8 55 0.0135 3.20 (2.80; 3.79)

Log-Normal 98.2 56 0.0004 2.06 (1.92; 2.22)

Weibull 137.5 60 0.0000 1.71 (1.56; 1.87)

2002-2005 Gamma 46.9 36 0.1053 1.89 (1.77; 2.02)

Gompertz 44.5 35 0.1312 ∞ -

Log-Logistic 43.1 34 0.1358 3.14 (2.76; 3.65)

Log-Normal 45.3 35 0.1142 2.39 (2.24; 2.54)

Weibull 46.4 37 0.1392 1.92 (1.81; 2.05)

All Gamma 319.7 81 0.0000 1.23 (1.06; 1.38)

Gompertz 135.8 70 0.0000 ∞ -

Log-Logistic 127.5 74 0.0001 2.87 (2.67; 3.11)

Log-Normal 170.0 77 0.0000 2.01 (1.93; 2.09)

Weibull 277.1 79 0.0000 1.64 (1.55; 1.73)
† Could not be meaningfully estimated due to unreliable parameter estimates
(the estimated standard error of the a parameter approached infinity).

Goodness-of-fit c2 test statistics, degrees of freedom (d.f.), and p-value is
given for each period and all data pooled. The mean survival times are based
on 10,000 draws from a bivariate normal distribution given by the estimated
parameters and their covariance. For each draw a mean is computed with the
appropriate formula given in Table 2, and the median together with 5% and
95% percentiles of this posterior distribution are used as estimate and
confidence interval, respectively.
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with a multiple imputation strategy. The simulation stu-
dies demonstrated that as long as intervals are not too
wide, the multiple imputation is a valid analytic strategy
with low loss of statistical efficiency relative to analyses
of data without interval censoring.
In the simulation study we focused attention on the

statistical properties of the imputation strategy when the
parametric model is correctly specified. As shown in our
analysis of the Norwegian register data, it is however
often not simple in actual applications to identify which
model is correctly specified–if such a tractable model
exist at all–even with adequate statistical diagnostic pro-
cedures. While the problem is not restricted to binned
data, it may become attenuated by the binning, as it
may make the detection of deviations from the assumed
distribution more difficult. If this aspect should have
been studied in a simulation study, one might suggest to

compare the results of misspecified analyses based on
ordinary right censored data and binned data, respec-
tively. We are however confident that only when inter-
vals become wide will the problem of misspecification
have the potential to become more pronounced than in
the ordinary right censored situation, as for short inter-
vals results are virtually identical between analyses based
on right censored and binned data. Our simulation
study shows that the imputation method should with
wide intervals be used cautiously anyway, as the bias is
then large even when the model is correctly specified.
While the CRN data were truncated and interval cen-

sored, it might be argued that both features were not
prominent for the data: Only the first 90 days of data
are discarded, and the binning in 30 day intervals is but
a fine grained filtering. Even though three months is
short compared to the length of follow-up–in particular
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Figure 2 Goodness-of-fit plots. Difference between expected and observed counts of events over the time scale. c2 is the goodness-of-fit test
statistic value with d.f. degrees of freedom and associated p-value. Note that the plot for all periods pooled has a differently scaled Y-axis than
the period specific plots.
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for the earlier cohorts–we showed that three months is
considerable with respect to estimated means, and this
aspect of the data can thus not be ignored. The simula-
tion studies revealed that the impact of interval censor-
ing was generally less important, especially for narrow
intervals. Even so, the simulation studies revealed that
while single midpoint imputation yielded identical
results for narrow intervals, the suggested multiple
imputation strategy provided better protection against
bias and confidence intervals with coverage probabilities

closer to nominal values in situations with wider censor-
ing intervals. Although both deaths and censoring events
were interval censored in the CRN data, multiple impu-
tation was only done with respect to censoring events in
the estimation process. The rationale was that the distri-
bution of deaths was predetermined by a parametric dis-
tribution, and so their likelihood contributions were
given and straightforward to calculate. The censoring
distribution on the other hand is not itself of interest,
and so the focus here is on sensitivity of main parameter
estimates to different choices of the distribution of cen-
soring. If the interest had been in conducting semi-para-
metric estimation (Cox regression) of the event
distribution, then multiple imputation for events
(deaths) might be a simple alternative to dedicated
methods for interval censored data.
Finally, it should be noted that although cost-effective-

ness analyses may mandate estimation of mean survival
times, this should not be considered a trivial endeavor,
see for example [15]. In most studies involving survival
times, the right tail of the distribution is unobserved
due to right censoring, and yet this tail is highly influen-
tial on the mean–even in situations where only a small
proportion survives past the end-of-follow-up and differ-
ent parametric distributions fit equally well, as docu-
mented in our analyses above. It is for this reason that
the mean restricted to the observation period is com-
monly used in cost-effectiveness analyses, although it
makes comparisons with studies with different lengths

Table 5 Weibull Parameter estimates and estimated mean survival times, patients with metastatic colorectal cancer,
Norway 1991-2005

Period Estimation ̂log(λ) (s.e.) γ̂ (s.e.) Mean s.e. Median 5% 95%

1991-1996 MI 0.2662 (0.0669) 0.4945 (0.0287) 1.196 0.086 1.194 1.057 1.340

MC 0.2662 (0.0669) 0.4944 (0.0287) 1.196 0.086 1.194 1.057 1.340

MA 0.1982 (0.0799) 0.3741 (0.0256) 1.203 0.086 1.201 1.064 1.346

NT -0.6520 (0.0358) 0.9200 (0.0185) 2.116 0.065 2.115 2.011 2.223

1997-2001 MI -0.0700 (0.0679) 0.5962 (0.0334) 1.709 0.095 1.706 1.556 1.867

MC -0.0700 (0.0679) 0.5962 (0.0334) 1.709 0.095 1.706 1.556 1.867

MA -0.1752 (0.0685) 0.5801 (0.0319) 1.713 0.094 1.710 1.561 1.871

NT -0.8462 (0.0399) 1.0051 (0.0230) 2.317 0.071 2.314 2.204 2.435

2002-2005 MI -0.5902 (0.0664) 0.9425 (0.0516) 1.926 0.074 1.925 1.806 2.051

MC -0.5904 (0.0664) 0.9428 (0.0516) 1.925 0.074 1.925 1.806 2.050

MA -0.6118 (0.0659) 0.9506 (0.0509) 1.926 0.074 1.925 1.807 2.050

NT -1.0586 (0.0467) 1.3282 (0.0386) 2.043 0.057 2.042 1.952 2.138

All MI -0.0650 (0.0385) 0.6099 (0.0197) 1.641 0.052 1.641 1.555 1.728

MC -0.0650 (0.0385) 0.6099 (0.0197) 1.641 0.052 1.641 1.555 1.728

MA -0.0722 (0.0424) 0.5048 (0.0178) 1.645 0.052 1.645 1.559 1.731

NT -0.8148 (0.0229) 1.0132 (0.0133) 2.224 0.040 2.223 2.159 2.291

Weibull parameter estimates for the three observation periods for survival after colon-rectal cancer based on data from the Cancer Registry of Norway. Estimated
mean survival time for each of the three periods. Mean, s.e., median, 5%, and 95% percentiles all refer to the distribution of computed means obtained when
sampling from the distribution of estimates. All subjects with event times smaller than three months are excluded by design. MI is multiple imputation (Equation
4), MC means replacing censored observations with the midpoint of their interval (Equation 5), MA means replacing all events and censored observations with
the midpoint of their interval (Equation 6), NT means multiple imputation, but ignoring the truncation (Equation 4 with the term SY (M)-1 omitted).

Table 6 Results of sensitivity analysis with respect to the
assumed shape of the interval specific censoring
distribution

2002-2005 All

Gj(z) ̂log(λ)
(s.e.)

γ̂ (s.e.) ̂log(λ)
(s.e.)

γ̂ (s.e.)

z -0.5902
(0.0664)

0.9425
(0.0516)

-0.0650
(0.0385)

0.6099
(0.0197)

z2 -0.5884
(0.0666)

0.9383
(0.0516)

-0.0642
(0.0386)

0.6090
(0.0197)

1 - (1 - z)2 -0.5924
(0.0663)

0.9473
(0.0517)

-0.0658
(0.0385)

0.6109
(0.0197)√

z -0.5926
(0.0663)

0.9475
(0.0517)

-0.0659
(0.0385)

0.6109
(0.0197)

1 − √
1 − z -0.5882

(0.0666)
0.9381
(0.0516)

-0.0642
(0.0386)

0.6090
(0.0197)

Weibull parameter estimates for the period 2002-2005 and all periods joined
together, respectively, under four different assumptions regarding the shape
of the censoring distribution on each interval, Gj.
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of follow-up impossible. The estimated mean from a
parametric model will necessarily depend on the specific
shape implicitly assumed for the unobserved part of the
distribution, and so the sensitivity of the mean to distri-
butional assumptions should be explored whenever pos-
sible, as we have done here.

Conclusion
Provision of binned data to maintain anonymity of
patients should be considered a viable procedure, since
a multiple imputation strategy can be used to account
for the interval censoring created by the binning, as
long as intervals are not too wide.
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