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Abstract

Background: Na™/I" symporter (NIS)-mediated iodide uptake allows radioiodine therapy for thyroid cancer. NIS is
also expressed in breast tumors, raising potential for radionuclide therapy of breast cancer. However, NIS
expression in most breast cancers is low and may not be sufficient for radionuclide therapy. We aimed to identify
biomarkers associated with NIS expression such that mechanisms underlying NIS modulation in human breast
tumors may be elucidated.

Methods: Published oligonucleotide microarray data within the National Center for Biotechnology Information
Gene Expression Omnibus database were analyzed to identify gene expression tightly correlated with NIS mRNA
level among human breast tumors. NIS immunostaining was performed in a tissue microarray composed of 28
human breast tumors which had corresponding oligonucleotide microarray data available for each tumor such that
gene expression associated with cell surface NIS protein level could be identified.

Results and Discussion: NIS mRNA levels do not vary among breast tumors or when compared to normal breast
tissues when detected by Affymetrix oligonucleotide microarray platforms. Cell surface NIS protein levels are much
more variable than their corresponding NIS mRNA levels. Despite a limited number of breast tumors examined, our
analysis identified cysteinyl-tRNA synthetase as a biomarker that is highly associated with cell surface NIS protein

levels in the ER-positive breast cancer subtype.

breast cancers patients.

Conclusions: Further investigation on genes associated with cell surface NIS protein levels within each breast
cancer molecular subtype may lead to novel targets for selectively increasing NIS expression/function in a subset of

Background

The Na*/I" symporter (NIS) (also known as SLC5A5,
solute carrier family 5 member 5) is a transmembrane
glycoprotein that uptakes iodide into the thyroid follicu-
lar cells for the biosynthesis of thyroid hormones.
Accordingly, radioiodine has been used to ablate thyroid
tumors and metastases. NIS is induced in the breast
during lactation to accumulate iodide for the nursing
infant to synthesize its own thyroid hormones [1,2]. NIS
has also been detected in the majority of breast tumors,
raising promise for radionuclide therapy of breast cancer
[3-6]. However, only a minority of NIS-positive breast
tumors had detectable radionuclide accumulation [4-6],
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indicating that strategies for selectively increasing cell
surface NIS expression are critical for realizing radionu-
clide therapy of breast cancer patients.

Mechanisms underlying NIS modulation in human
breast cancer are poorly understood. NIS expression is
increased in breast tumors [3], suggesting that NIS
expression is correlated with malignant transformation.
However no biomarkers of breast cancer progression
such as breast tumor subtype, hormone receptor status,
or tumor grade [3,7-9] have been reported to correlate
with NIS protein levels among tumors. The MCF-7 cell
line is the only human breast cancer cell line with indu-
cible endogenous NIS expression. Kogai et al. [10] first
reported that trans-retinoic acid (tRA) induces NIS
mRNA in MCEF-7 cells at the transcriptional level.
Moreover, a combination of tRA and hydrocortisone
(tRA/H), further increases tRA-induced NIS expression/
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function in MCF-7 cells [11-15], most likely by increas-
ing NIS mRNA stability [11]. While NIS induction by
tRA has been observed in MCEF-7 cell xenografts in vivo
[12], normal mammary glands of mice [13], and the
PyVT transgenic mouse model [12], Kogai et al. [11,12]
stated that the dose of tRA required for maximum NIS
induction in MCEF-7 cell xenografts in vivo was ten-fold
greater than the maximum tolerable tRA dose in
humans. In this study, we aimed to identify biomarkers
that correlate with NIS expression in order to elucidate
mechanisms of NIS regulation in human breast tumors
such that novel strategies for selectively increasing NIS
expression/function in breast cancers patients can be
developed.

Methods

Publicly Available Oligonucleotide Microarray Datasets
Published microarray datasets from NCBI GEO database
[16] (http://www.ncbi.nlm.nih.gov/geo/) that detected
genome wide expression in breast tumors were exam-
ined in our analysis: GSE3744 [17] (Affymetrix HG
U133 Plus 2.0 Array); GSE10797 (unpublished, HG
U133 Plus 2.0); GSE1561 [18] (Affymetrix HG U133A
Array); GSE6367 [19] (Affymetrix HG U95Av.2);
GSE6434 (unpublished data, Affymetrix HG U95A);
GSE3155 [20] (Agilent-012391 Whole Human Genome
Oligo Microarray and Applied Biosystems Human Gen-
ome Survey Microarray Version 1); GSE6861 [21] (Affy-
metrix Human X3P Array); GSE14548 [22](Affymetrix
Human X3P Array).

Cell Culture and RNA Extraction

MCF-7 human breast cancer cells were maintained in a
1:1 ratio of DMEM and Ham’s F-12 media (Gibco), 10%
FBS (Invitrogen) and 1% penicillin/streptomycin. MCF-7
cells were treated with DMSO vehicle, tRA, or tRA/H
for 12 hours, and total RNA was extracted with Trizol
reagent (Invitrogen) and chloroform (Sigma).

Generation of microarray data and real-time gRT-PCR
RNA integrity and quantity were determined by the
Agilent Bioanalyzer 2100 by the MicroArray Shared
Resource (MASR) for the OSU Comprehensive Cancer
Center (OSUCCC). The MASR performed sample pre-
paration and labeling, chip hybridization and staining,
chip scanning and initial image analysis according to
Affymetrix instructions. Briefly, cRNA was generated
using GeneChip T7-Oligo(dT) Promoter Primers kit
and the raw data was generated with Affymetrix Gene-
Chip Operating Software on a Human Genome U133
plus 2.0 Affymetrix platform. Raw microarray data
from MCF-7 breast cancer cells treated with DMSO,
tRA and tRA/H are included on the GEO database
(GSE32161).
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Quantitative RT-PCR was performed using Power
SYBR Green PCR Master Mix (Applied Biosystems).
NIS was amplified with primers: 5-CCGGATCAACCT-
CATGGACT-3" and 5-CTGAGGGTGCCACTGTAAG-
3’. Human GAPDH was amplified with primers: 5’-
CATCATCTCTGCCCCCTCTGCTG-3" and 5-GCAAT
GCCAGCCCCAGCGTCAAAGG-3'. PCR using the ABI
7900HT instrument (Applied Biosystems) was per-
formed by OSUCCC Nucleic Acids Shared Resource.

Breast tumor tissue microarray with corresponding, pre-
existing microarray data

A breast tumor tissue microarray composed of 28
tumors of various histological and molecular subtypes
was previously described by Lu et al. [23] (GEO data-
base, GSE5460). Briefly, all samples were cases of pri-
mary tumors from untreated breast cancers with known
axillary lymph node status. Information on invasive
tumor subtype, molecular subtype, estrogen receptor
(ER) status, progesterone receptor (PR) status, Her-2/
neu status, p53 status, Bloom-Richardson grade and the
presence of lymph node metastases were also obtained
for each tumor, as described by Lu et al. [23]. Each
tumor had available corresponding gene expression data
from the HG-U133 Plus 2.0 microarray platform.

Immunohistochemistry

Immunohistochemistry was performed as described by
our previous study [24]. Tissues were incubated with
either p442 anti-hNIS (1:25) or anti-CARS (Sigma,
1:500) primary antibodies for one hour. The level of cell
surface NIS protein in each case was scored on a scale
of 0, 1+, 2+ and 3+, using criteria analogous to the eva-
luation of Her-2/neu staining. For CARS protein,
tumors scored as 0 or 1+ were considered negative and
tumors scored as 2 or 3+ were considered positive.
Statistical Analyses

Oligonucleotide microarray analysis For all the micro-
array studies, background correction and normalization
was performed and gene expression level was summar-
ized over probes using the RMA method [25]. Normal-
ized data sets are included on the GEO database
(GSE32161). A filtering method based on the percentage
of samples with expression values above noise level was
applied to filter out probe-sets with little or no expres-
sion. Generalized linear models based on Limma [26]
were used to detect differentially expressed genes
between NIS “0” and NIS “2+ and 3+” breast tumor
groups, as well as between DMSO-, tRA- or tRA/H-trea-
ted MCEF-7 cells. In order to improve the estimates of
variability and statistical tests for differential expression,
a variance shrinkage method was employed [27]. The
differentially expressed genes were claimed based on the
p-values by controlling the average number of false
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positives at 1 [28] over all the tested probe sets. Fold
changes of at least 1.5 were used to further reduce the
list of significant probe sets after controlling the number
of false positives. In order to detect NIS-associated
genes, Spearman rank correlation and/or Pearson corre-
lation method was applied using the normalized and fil-
tered microarray data. Genes with absolute correlation
coefficients greater than 0.6 and p-values above the sig-
nificance level (controlling 1 false positive over all the
tested probe-sets) were selected. Differentially expressed
genes or NIS correlated genes were subjected to hier-
archical clustering using Euclidean distance based on
their relative expressions and average linkage clustering
method using software MEV [29].

Bioinformatics Tools After NIS-associated genes were
identified by Linear Models, Pearson correlation and
Spearman correlation analyses, bioinformatics tools were
used for data analysis. Ingenuity Pathway Analysis (Inge-
nuity Systems) allowed us to identify cell signaling path-
ways or functional categories that were over-represented
among the NIS-associated genes. Ingenuity Pathway
Analysis also compared and contrasted gene lists identi-
fied by each statistical method, as indicated by Venn
diagrams. ToppFun was also used to determine whether
the identified NIS-associated genes were regulated by a
common transcription factor [30].

Correlation studies Fisher’s exact test was used to test
the association between cell surface NIS protein levels
and HER-2 status, tumor type, ER status, PR status, p53
mutation status, and CARS protein.

Results

NIS mRNA levels detected by HG U133A oligonucleotide
microarray (NIS probe set ID 211123_at) do not vary
among breast tumors or when compared to normal
breast tissue

NIS expression among breast tumors within the
GSE3744 dataset [17] was detected by the 211123_at
NIS probe set on the Affymetrix HG-U133 Plus 2.0.
However, the 211123_at NIS probe set did not detect
significant differences in NIS mRNA levels despite that
not all breast tumors have been reported to express NIS
mRNA [5,9,31]. As shown in Figure 1A, log, NIS
mRNA levels detected among normal, non-lactating
breast tissues (mean 5.1 + 0.42, light gray line) were
comparable to breast tumor NIS mRNA levels (ER+, 5.4
+ 0.38, dark gray line, and ER-, 5.2 + 0.51, black line).
NIS mRNA levels detected by the 211123 _at NIS probe
set deviated by less than 10% of the mean. In compari-
son, as shown in Figure 1B, log, ERo. mRNA levels were
greater in ERa-positive tissues compared to ERo-nega-
tive tumors. Overall, ER mRNA level deviated by up to
38% of the mean. Taken together, the NIS probe set
may not have sufficient sensitivity to detect NIS
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variability among tumors and/or NIS protein levels may
be primarily regulated at the post-mRNA level.

Only modest increases in NIS mRNA expression were
detected in tRA- and tRA/H-treated MCF-7 breast cancer
cells by the 211123_at NIS probe set

In agreement with previous reports [10,11], qRT-PCR
detected 7-fold and 12.6-fold increases in NIS mRNA
levels with tRA and tRA/H treatment of MCF-7 cells,
respectively. Oligonucleotide microarray technology only
detected 2.1- and 2.4-fold increases in tRA- and tRA/H-
induced NIS mRNA levels, respectively (Figure 2A).
Gene expression profiles of tRA-treated MCF-7 cells
were compared to DMSO vehicle-treated MCF-7 cells
(Additional File 1) with the objective of identifying
genes contributing to tRA-induced NIS expression.
However, NIS was not among the differentially
expressed genes. It is important to note that many
genes previously reported to be up-regulated by tRA
treatment were identified, including cytochrome P450,
G-protein coupled receptor, S100 calcium binding pro-
tein, LY6/PLAUR domain containing protein, lamins A
and C, ceruloplasmin and transforming growth factor 3
[reviewed in [32]], thus validating our method of analy-
sis. These results further indicate that the 211123 at
NIS probe set is not sufficient to detect increased NIS
mRNA level in tRA/H treated MCEF-7 cells.

Since the 211123_at NIS probe set is composed of 11
perfect match probes, we next examined the extent of
tRA- and tRA/H-induced NIS mRNA levels detected by
each individual probe to determine whether this may
contribute to the low sensitivity of the NIS probe set.
The extent of change in signal was highly variable
among the 11 probes. While most probes indicated
minimal increases in signal with tRA and tRA/H treat-
ment, one probe showed no increase in signal intensity
with tRA- or tRA/H treatment (Figure 2B, probe 2) and
another decreased in intensity (Figure 2B, probe 7).
Selecting for individual probes that most accurately
reflect variability in NIS mRNA expression may improve
the detection of NIS mRNA by the 211123_at NIS
probe set.

Variability in NIS mRNA expression among breast tumors
could not be detected by additional oligonucleotide
microarray platforms

As shown in Table 1, NIS mRNA expression among
breast tumors deviated from the mean by less than 12%
in two additional datasets utilizing the HG U133 Plus
2.0 platform, confirming that the sensitivity of the
211123_at probe set was too low to detect variability in
NIS mRNA levels among breast cancers. We analyzed
four additional microarray platforms that detected gen-
ome-wide expression among breast tumors on the GEO
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Figure 1 NIS mRNA levels detected by HG U133A oligonucleotide microarray (NIS probe set ID 211123_at) do not vary among breast
tumors or normal breast tissue. The Gene Expression Omnibus dataset GSE3744 consists of normalized log,-transformed genome-wide
expression of 7 normal breast tissues, 15 normal ER+ breast tumors and 24 ER- breast tumors. NIS and ER mRNA expression are plotted for each
individual breast tissue sample and horizontal lines represent mean expression values among normal breast tissues (light gray line), ER+ breast
tumors (dark gray line), and ER- breast tumors (black line). Mean + standard deviation are also indicated. (A) NIS mRNA levels of breast tissues in
the GSE3744 Gene Expression Omnibus dataset did not significantly vary among normal breast tissues (mean 5.1 + 042, range 4.5-5.7), ER+
breast tumors (mean 54 + 0.39, range 4.6-6.0) or ER- breast tumors (mean 5.2 + 0.51, range 4.4-64). (B) In contrast, ER mRNA levels for normal
breast tissues (mean 10.1 + 1.56, light gray line; range 7.4-11.9) and ER+ breast tumors (mean 10.9 + 2.29, dark gray line; range 5.5-13.9) were
significantly greater than ER- tumors (mean 4.2 £+ 1.6, black line; range 1.9-8.2).
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Figure 2 Only modest increases in NIS mRNA expression were detected in tRA- and tRA/H-treated MCF-7 breast cancer cells by the
211123_at NIS probe set. MCF-7 human breast cancer cells were treated with DMSO vehicle, tRA(T uM) or tRA(T uM)/H(1 uM) for 12 hours,
total RNA was harvested, and NIS mRNA was detected by parallel gRT-PCR and microarray (HG U133 Plus 2.0) experiments. The quantification of
hNIS by gRT-PCR was normalized according to the level of GAPDH and the data are presented as a fold change in NIS mRNA over GAPDH
control. (A) While gRT-PCR detected 7.0- and 12.6-fold increases in NIS mRNA with tRA and tRA/H treatments, respectively, only 2.1- and 2.4-fold
increases were detected by microarray. The mean + standard deviations of two independent trials are plotted. (B) Signal intensities detected by
the 11 individual perfect match probes within the NIS probe set are depicted for two independent trials of DMSO-, tRA- and tRA/H-treated MCF-
7 cells. The figure depicts variability in the extent of change in NIS mRNA among all 11 probes with tRA and tRA/H treatment. Fold changes in
normalized NIS mRNA levels are also indicated for each individual trial.
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Table 1 NIS mRNA levels do not vary among human breast tumors as detected by oligonucleotide microarray

technology
Microarray Platform NIS Probe Set ID Probe Length Target (NIS Standard Deviation
Sequence)
Affymetrix HG U133 Plus 2.0 211123 _at 25-mer (n* = 11) 5-1521-1991-3 Avg. 0.23, Range 0.17-0.28 N" =2
Affymetrix HG U95A 32459 _at 25-mer (n* = 16) 5'-1522-1998-3" Avg. 0.20, Range 0.14-0.26 (N* = 2)
Affymetrix Human X3P (G2887404_3p_at  25-mer (n* = 11) 5-1693-1992-3' Avg. 0.18, Range 0.18-0.18 (N* = 2)
Applied Biosystems Human Survey Microarray V1 193100 60-mer (N* = 1) Proprietary 021 (N" = 1)
Agilent-012391 Human Genome 30047 60-mer (n* = 1) 5-1707-1767-3" 013 (NF = 1)

*, Number of perfect match oligonucleotide probes within the NIS probe set.

#, Number of datasets examined that utilized each respective microarray platform.

database. Table 1 summarizes the NIS probe sets among
these four additional microarray platforms, as they var-
ied according to probe length, quantity of individual
perfect match probes, and target sequence within the 3’
region of NIS cDNA. NIS mRNA level deviated by less
than 12% of the mean regardless of the NIS probe set/
microarray platform utilized, suggesting that NIS varia-
bility among breast cancers cannot be reliably detected
by several Affymetrix platforms. Moon et al. [5] pre-
viously reported that nearly all breast tumors examined
(N = 24/25) had detectable NIS mRNA by RT-PCR and
the extent of variation in NIS mRNA levels among
tumors was about 10-fold (median 0.6 + 0.27, range
0.10-1.27 arbitrary units).

Cell surface NIS protein levels are more variable than
corresponding NIS mRNA levels detected by
oligonucleotide microarray

To identify gene expression profiles associated with cell sur-
face NIS protein levels, NIS-immunostaining was per-
formed using a TMA with cDNA microarray data available
for each breast tumor (GEO dataset GSE5460)[23]. Two
cores extracted from different regions of each tumor were
included on the TMA and independently scored by three
individuals, including an experienced breast cancer patholo-
gist (R.J.). Among the tumors on the TMA, 5 (18%) were
scored 0, 6 (21%) were 0/1+, 7 (25%) were 1+, 5 (18%) were
1/2+, 3 (11%) were 2+, and 2 (7%) were assigned a score of
3+. Similar to our previous study [24], only 7% (3+) to 18%
(2-3+) of breast tumors strongly expressed NIS protein and
18% (0+) of breast tumors were considered negative for
NIS protein. Also consistent with previous reports [3,7-9],
there was no correlation between cell surface NIS protein
and breast tumor subtype (p = 0.50), hormone receptor sta-
tus (ER, p = 0.17; PR, p = 0.58; Her-2/neu, p = 0.97), p53
status (p = 0.71), tumor grade (p = 0.57), or the presence of
lymph node metastases (p = 0.59) (Table 2).

As expected, there was no correlation between NIS
mRNA levels detected by the 211123_at NIS probe set
and cell surface NIS protein levels (Figure 3). Indeed,
NIS mRNA levels did not vary between cell surface
NIS-negative tumors (0+) and cell surface NIS-positive

tumors (3+). Thus, identifying gene expression profiles
associated with cell surface NIS protein may be a more
effective approach than identifying gene expression pro-
files associated with NIS mRNA levels.

Linear Models Analysis identified 44 genes to be
significantly up- or down-regulated in cell surface NIS-
positive breast tumors compared to cell surface NIS-
negative breast tumors
Considering the inherent limitations and subjectivity
associated with quantifying cell surface NIS protein
levels by immunohistochemical staining, we initially
identified gene expression profiles associated with NIS
protein by comparing tumors that were strongly positive
for cell surface NIS (2+, n = 3; 3+, n = 2) and negative
for cell surface NIS (0+, n = 4). Forty four genes were
significantly differentially regulated according to cell sur-
face NIS protein level by Linear Models analysis, with 42
up-regulated and 2 down-regulated in NIS-positive
breast tumors compared to NIS-negative breast tumors.
Clustering analysis of the 44 identified genes appears to
group tumors based on their molecular subtypes rather
than distinguishing NIS-positive tumors from NIS-nega-
tive tumors (Additional File 2: Figure A). However, the
distinction in gene expression profiles between NIS-posi-
tive basal tumors and NIS-negative basal tumors was read-
ily apparent by the heat map (breast tumor ID 1, 2 vs. 27,
28). Indeed, scatter plots show that mRNA levels of
IGFBP2 and SPIB, the two most differentially regulated
genes, were significantly different between NIS-negative (0
+) versus NIS-positive (3+) breast tumors (Additional File
2: Figure B). Taken together, while the power of this Lin-
ear Models analysis was limited by the small number of
breast tumors examined, this analysis suggests that bio-
markers associated with cell surface NIS expression may
vary according to breast cancer molecular subtypes.

Pearson and Spearman correlation analyses identified
genes positively- and negatively-correlated with cell
surface NIS protein levels in breast cancer

Pearson correlation analysis identified 63 genes that
exhibited a linear correlation (r > 0.6) with cell surface
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Table 2 Summary of cell surface NIS protein levels and characteristics of 28 breast tumors included on the TMA

Tumor Cell surface NIS Molecular Invasive Bloom- PR ER Her-2/neu P53 Lymph Node
ID protein Subtype Tumor Type Richardson Grade Status Status Status Status Metastases
1 0 Basal D Il - - -
2 0 Basal D Il - - - -
3 0 ER+ D Il +Low + - + +
4 0 HER2/neu D Il + + - +
5% 0 HER2/neu M Il + + + - +
6* 0/1 HER2/neu D 1l - + + +
7 0/1 ER+ D Il + + + Unknown -
8 0/1 ER+ L I - + - - +
9 0/1 ER+ D Ml + + - + +
10 0/1 HER2/neu L Il + + + Unknown +
M 0/1 ER+ L Il + + - - +
12 T+ HER2/neu D Il + + -
13 T+ Basal D Il - - + +
14 1+ HER2/neu D Il - + + +
15 1+ HER2/neu D Il - + - +
16 1+ ER+ L I + + - Unknown +
17* 1+ ER+ L Il +Low + - +Low +
18* 1+ HER2/neu D Il +Low + - +Low Unknown
19 1+/2+ HER2/neu D Il - - + - -
20 1+/2+ Basal D Il - - - +
21 1+/2+ Basal D Ml - + -
22 1+/2+ Basal M Il - + + +
23 1+/2+ ER+ D Il + + - Unknown +
24 2+ ER+ D Il - - -
25 2+ ER+ D Il + + - - +
26 2+ HER/neu L I - - + + +
27 3+ Basal D 1l - - + +
28 3+ Basal D Il - - - +

*: Tumors not included in microarray analysis due to microarray data quality; +: Positive; +Low: Positive-Low; -: Negative; D: ductal carcinoma; L: Lobular

carcinoma; M: Mixed ductal and lobular carcinoma; ER: estrogen receptor.

NIS levels among the 24 breast tumors. However, the
cluster analysis did not appear to group breast tumors
according to molecular subtype or cell surface NIS levels
(Additional File 3: Figure A). Since Pearson correlation
is more susceptible to outliers, Spearman rank correla-
tion was also performed to identify gene expression that
was monotonically correlated with cell surface NIS
levels. Spearman rank correlation identified 64 genes,
and the cluster analysis appeared to group tumors
according to cell surface NIS protein level rather than
molecular subtype (Additional File 3: Figure B).

NIS gene was not included among the positively cor-
related genes identified by either analysis, most likely
due to the insensitivity of the 211123_at NIS probe set.
No over-represented cell signaling pathways or func-
tional categories of genes were identified by Ingenuity
Pathway Analysis (Ingenuity Systems) and no transcrip-
tion factors commonly associated with the identified
genes were found by ToppFun (ToppGene Suite)[30].
There were 30 genes in common between Pearson and

Spearman rank correlation analyses, suggesting that at
least 47% of the 64 genes identified by Spearman corre-
lation exhibited linear relationships with cell surface NIS
levels. Scatter plots showed that both QRICH1 and ND6
mRNA levels appeared to have linear relationships with
cell surface NIS protein levels, however, the extent of
variation in QRICHI mRNA level according to NIS cell
surface levels is limited (Additional File 3: Figure C).

Pearson correlation, Spearman rank correlation, and
Linear Models analyses identified CARS and PYROXD1 to
be highly associated with cell surface NIS protein in
breast cancer

Genes commonly identified by Pearson correlation,
Spearman rank correlation, and Linear Models analyses
were further examined. As shown by the Venn diagram
in Figure 4A, cysteinyl-tRNA synthetase (CARS) and
two different probe sets targeting pyridine nucleotide-
disulphide oxidoreductase domain (PYROXD1) were
identified by each statistical analysis. Scatter plots
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Cell Surface NIS ProteinLevels

Figure 3 Cell surface NIS protein levels are more variable than corresponding NIS mRNA levels detected by oligonucleotide
microarray. A human breast tumor TMA composed of 28 breast tumors with corresponding cDNA microarray data was immunostained with
the p442 anti-hNIS antibody and each tumor was evaluated according to the level of cell surface NIS protein on a scale of 0, 0/1+, 1+, 1+/2+, 2
+ and 3+. NIS mRNA levels detected by the 211123_at NIS probe set of the HG U133 Plus 2.0 Affymetrix microarray platform were examined
and compared among breast tumors expressing each assigned level of cell surface NIS protein. Maximum, minimum and median NIS mRNA
levels for each level of cell surface NIS are indicated. As shown by the box and whisker plot, there was no correlation between NIS mRNA and
cell surface NIS protein among breast tumors. The length of the box represents the interquartile range (i.e, the middle 50% of the data). The
median (line through the middle of each box), the lower quartile (bottom line of each box), and the upper quartile (top line of each box) are also
specified on the plot for each level of cell surface NIS protein. The sample minimum and maximum values are represented as T-shaped lines
extending from the ends of the box. Maximum outliers (gray squares) and minimum outliers (black diamonds) are also plotted. Representative
images of breast tumors scored as 0 (18%, n = 5), 0/1+ (21%, n = 6), 1+ (25%, n = 7), 1+/2+ (18%, n = 5), 24+ (11%, n = 3) and 3+ (7%, n = 2)

for cell surface NIS protein (denoted by arrows) are also shown (400x).
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showed that CARS and PYROXD1 were not only highly
correlated with cell surface NIS protein level but also
differentially regulated between NIS-positive and NIS-
negative breast tumors (Figure 4B).

CARS protein is associated with cell surface NIS protein
among ER+ breast tumors

Immunostaining was performed on a different TMA
enriched for NIS-positive tumors (42 tumors, including
19 NIS-positive tumors (2+/3+) and 23 NIS-negative
tumors (0+/1+) to confirm the results of our

oligonucleotide microarray analysis. Unfortunately, there
was no antibody available for confirmatory experiments
involving PYROXD]1, as this gene codes for the pyridine
nucleotide-disulphide oxidoreductase domain, a domain
found among proteins involved in disulphide bond for-
mation [33]. As shown in Figures 5A and 5B, CARS
showed a pattern of over- or under-expression in NIS-
positive or negative tumor groups, respectively, consis-
tent with our oligonucleotide microarray data. However,
this trend did not reach statistical significance among all
42 breast tumors (p > 0.05). It was not until cell surface
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Figure 4 CARS and PYROXD1 genes were identified by Pearson correlation, Spearman rank correlation, and Linear Models analyses.
(A) Overlapping genes identified by the Spearman rank correlation, Pearson correlation and Linear Models microarray analyses are indicated by
the venn diagram. Two PYROXD1 probesets (denoted as PYROXD1, and PYROXD1g) and CARS (probeset ID 212971_at) were identified by all three
analyses. (B) The box and whisker plot examines and compares normalized mRNA expression of CARS and PYROXD1 among breast tumors
scored as 0, 0/1+, 1+, 1+/2+, 2+ or 3+ for cell surface NIS protein. As shown by the scatter plot, CARS and PYROXD1 mRNA levels correlate with
cell surface NIS protein levels. The length of the box represents the interquartile range (i.e., the middle 50% of the data). The median (line
through the middle of each box), the lower quartile (bottom line of each box), and the upper quartile (top line of each box) are also specified on
the plot for each level of cell surface NIS protein. The sample minimum and maximum values are represented as T-shaped lines extending from
the ends of the box. Maximum outliers (gray squares) and minimum outliers (black diamonds) are also plotted.




Beyer et al. BVIC Research Notes 2011, 4:397 Page 10 of 14
http://www.biomedcentral.com/1756-0500/4/397

A.

Breast Tumor1 Breast Tumor2

All Breast Tumors

Cell Surface NIS
- +
- 16 8

+ 7 11
(P=0.12)

CARS

C.

ER+ Breast Tumors Triple-Negative Breast Tumors
Cell Surface NIS Cell Surface NIS
- + - +

- 15 1 - 1 0

+ 7 9 + 6 1
P=0.0059 P=1.00

Figure 5 CARS protein is associated with cell surface NIS protein among ER+ breast tumors. Cell surface NIS and CARS protein were
probed by immunohistochemistry on another breast tumor TMA composed of 42 tumors of various histological subtypes and tumors were
assigned a score of 0, 1+, 2+ and 3+ for each respective protein. Scores of 0 and 1+ were considered to be negative and scores of 2+ and 3+
were considered positive. (A) Positive and negative NIS and CARS immunostaining from two representative breast tumors are shown. (B) While
there appeared to be a trend of over- or under-expression of CARS in all NIS positive and negative tumors, respectively, the correlation did not
achieve statistical significance by Fisher's exact test (P > 0.05). () Interestingly, CARS protein significantly correlated with breast tumors of ER+
histological subtype but not tumors triple negative for ER, PR and Her-2/neu.

CARS
CARS
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NIS and CARS protein levels were examined in only ER
+ breast tumors (n = 32) that the association between
cell surface NIS and CARS reached statistical signifi-
cance (Figure 5C, p < 0.05). In contrast, triple-negative
breast tumors (ER-, PR-, and Her-2/neu-, n = 8) showed
no relationship between cell surface NIS protein and
CARS protein (Figure 5C, p > 0.05), again indicating
that biomarkers of NIS protein level may vary among
different breast cancer subtypes.

Discussion

NIS variability among breast cancers could not be reli-
ably detected by any one of multiple Affymetrix plat-
forms included in our study. Instead, we identify CARS
as a biomarker that is correlated with cell surface NIS
levels among ER+ breast cancers. Our analysis indicates
that the underlying mechanism of NIS modulation is
most likely to be different among different subtypes of
breast cancer. Gene expression profiling for biomarkers
associated with cell surface NIS protein levels among
breast cancer subtypes with a larger sample number is
warranted. Biomarkers identified will not only help to
recognize subsets of breast cancer patients likely to ben-
efit from NIS-targeted radionuclide therapy, but may
also serve as novel targets for developing strategies to
selectively increase NIS-mediated radionuclide uptake in
corresponding breast cancer subtypes.

Microarray technology is known to underestimate fold
changes in gene expression compared to qRT-PCR. Stu-
dies have reported significantly higher changes in
mRNA levels detected by qRT-PCR compared to micro-
array technology [34], as microarray technology is based
on hybridization rather than gene amplification. In some
cases, saturation of microarray probes has been reported
to contribute to underestimations in gene expression
[35]. Moreover, while individual probes within probe
sets of microarray platforms are designed to improve
signal-to-noise ratio and minimize non-specific hybridi-
zation, the variability in signal intensity detected by
these probes can introduce error [36]. Alternatively, NIS
mRNA levels quantified by an qRT-PCR array may be
better equipped to distinguish between NIS-positive and
NIS-negative breast tumors for gene expression profil-
ing, however, qRT-PCR arrays capable of detecting gen-
ome wide expression are not yet commercially available.
Moreover, additional breast tumor mRNA is unfortu-
nately not available for confirming our microarray and/
or NIS immunohistochemical staining results by quanti-
tative RT-PCR.

It is not known whether NIS is modulated at the post-
mRNA level in breast cancer. It has been reported that
34-96% of breast tumors express NIS mRNA [5,9,30].
However, Moon et al. [5] was the only study to quantify
NIS mRNA levels among breast tumors by competitive
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RT-PCR followed by densitometry of ethidium bromide
staining. Interestingly, Moon et al. [5] reported that
nearly all breast tumors had NIS mRNA levels compar-
able to that of peri-tumoral normal breast tissues. More-
over, the overlap in mRNA levels among breast tumors
with and without detectable **™Tc pertechnetate uptake
[5] further suggests that NIS may be regulated at the
post-mRNA level. Accordingly, a correlation analysis in
which NIS mRNA levels detected by a more sensitive
qRT-PCR assay compared with corresponding cell sur-
face NIS protein levels among breast tissues should be
performed to elucidate the extent of post mRNA NIS
regulation. However, the variability in total NIS protein
(combination of intracellular and cell surface NIS pro-
tein) among breast tumors remains debatable. Indeed,
NIS cell surface trafficking impairments that result in
the accumulation of intracellular NIS immunostaining
has been suggested to occur in breast cancer [3,6]. How-
ever, our recent study [24] and Peyrottes et al. [37] indi-
cated that intracellular anti-NIS antibody
immunostaining may be non-specific. Finally, gene
expression profiles associated with cell surface NIS
levels may not only reflect differences in NIS expression,
but also differences in NIS protein stability and NIS cell
surface trafficking. Nevertheless, our breast cancer
microarray analysis did not identify cell signaling factors
previously reported to modulate NIS cell surface locali-
zation, such as the proto-oncogene PTTG-binding factor
(PBF) [38] or phosphatidylinositol-3 kinase (PI3K) [7].

The biological relationship between CARS and NIS
remains uncertain. Interestingly, while CARS is best
known for its role in the ligation of cysteine to tRNA
during protein translation, its expression has also been
associated with breast cancer [39]. CARS is located on
chromosome 11p15.5, one of the most highly imprinted
chromosomal regions. Many genes on chromosome
11p15.5, including insulin growth factor II (IGF II), are
susceptible to loss of imprinting (LOI), in which both
paternal and maternal alleles are aberrantly expressed
during breast cancer progression [40]. In fact, IGF II,
has not only been reported to have increased expression
in breast tumors compared to normal breast tissues, it
has also been reported to transiently increase NIS
expression in MCF-7 breast cancer cells [41]. Thus, the
positive association between CARS mRNA and cell sur-
face NIS protein in breast tumors could be contributed
indirectly by the location of CARS on chromosome
11p15.5. It would therefore be interesting to further
explore the relationship between CARS and NIS expres-
sion by determining whether siRNA-mediated loss of
CARS function interferes with functional NIS expression
in MCEF-7 breast cancer cells.

Finally, the TMA selected to perform CARS immu-
nostaining contained breast tumors categorized as ER+
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or triple negative (ER-, PR- or Her-2/neu). Since triple-
negative breast tumors are not synonymous with basal
breast tumors [reviewed in [42]], it would be interesting
to further examine whether the association between
CARS and cell surface NIS protein level is restricted to
ER+ breast tumors.

Conclusions

NIS modulation among various breast tumors mainly
occurs at the translational and/or post-translational
levels. The cysteinyl-tRNA synthetase is highly asso-
ciated with cell surface NIS protein levels in breast
tumors of the ER-positive subtype. Further investigation
on biomarkers correlated with cell surface NIS protein
levels within each breast cancer molecular subtype may
lead to tailored strategies enabling NIS-targeted radio-
nuclide therapy for subsets of breast cancer patients.

Additional material

Additional file 1: Cluster analysis of 138 genes identified to be
significantly up- or down-regulated with tRA treatment compared
DMSO vehicle in MCF-7 cells, as determined by Linear Models
analysis. MCF-7 human breast cancer cells were treated with DMSO
vehicle or tRA (1 uM) for 12 hours, total RNA was harvested, genome-
wide expression was detected by oligonucleotide microarray (Affymetrix
HG U133 Plus 2.0) and genome-wide expression was compared between
treatments by Linear Model analysis. Significance was assigned to 138
genes with a false discovery rate <0.045% and a p-value less than
0.00045. The heat map shows expression of these 138 genes in tRA- and
DMSO vehicle-treated MCF-7 cells from two independent trials. Twenty
eight genes were significantly up-regulated and 110 genes were
significantly down-regulated in tRA-treated MCF-7 cells compared to
DMSO vehicle control, although the NIS gene was not identified among
them. Genes with high expression are denoted in red and genes with
low expression are denoted in green. No genes were commonly
identified by both the MCF-7 cell model and breast tumor analyses.

Additional file 2: Cluster analysis of 44 genes identified to be
significantly up- or down-regulated in cell surface NIS-positive
breast tumors compared to cell surface NIS-negative breast tumors
by Linear Models analysis. The Linear Models analysis compared gene
expression of 4 breast tumors considered to be negative for cell surface
NIS protein (0+) to 5 tumors considered to be strongly positive for cell
surface NIS protein (2+/3+). (A) Breast tumor IDs, molecular subtypes and
cell surface NIS protein levels of breast tumors are indicated on the heat
map. Significance was assigned to genes with a False Discovery Rate
threshold of <0.038% and a p-value < 0.0004. The Linear Models analysis
identified 42 genes to be significantly up-regulated and 2 genes to be
significantly down-regulated in cell surface NIS-positive tumors compared
to cell surface NIS-negative tumors. The cluster analysis shown in the
heat map above appeared to cluster ER+ and HER-2/neu breast tumors
according to molecular subtype and, within the ER+ molecular subtype,
breast tumors appeared to group according to the level of cell surface
NIS protein. In general, gene clusters capable of distinguishing between
NIS-positive and NIS-negative ER+ and Her-2/neu breast tumors could
not be identified. In contrast, cluster analysis distinguished between cell
surface NIS-positive and cell surface NIS-negative basal breast tumors.
High gene expression is denoted in red and low gene expression is
denoted in green on the heat map. (B) The box and whisker plot
examines and compares normalized mRNA expression of IGFBP2 and
SPIB among breast tumors scored as 0, 0/1+, 1+, 1+/2+, 2+ or 3+ for cell
surface NIS protein. The length of the box represents the interquartile
range (i.e, the middle 50% of the data). The median (line through the
middle of each box), the lower quartile (bottom line of each box), and the
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upper quartile (top line of each box) are also specified on the plot for
each level of cell surface NIS protein. The sample minimum and
maximum values are represented as T-shaped lines extending from the
ends of the box. Maximum outliers (gray squares) and minimum outliers
(black diamonds) are also plotted.

Additional file 3: Genes identified to be positively- or negatively-
correlated with cell surface NIS protein levels in breast cancer. The
(A) Pearson and (B) Spearman rank correlation analyses compared gene
expression of 24 breast tumors to identify genes that highly correlate
with cell surface NIS protein levels. The heat maps are labeled with
breast tumor IDs, molecular subtypes, and cell surface NIS protein levels
corresponding to each breast tumor. Significance was assigned to genes
with a correlation coefficient greater than 0.6 in conjunction with a p-
value < 0.002. Sixty three genes were positively correlated (n = 44) or
inversely correlated (n = 19) with NIS expression by Pearson correlation
and 64 genes were positively (n = 42) or negatively (n = 22) correlated
with cell surface NIS protein levels by Spearman rank correlation. High
gene expression is shown in red and low gene expression is shown in
green. (C) The box and whisker plots examine and compare normalized
MRNA expression of two of the most highly correlated genes identified
by both analyses, QRICH1 and ND6, among breast tumors scored as 0, 0/
1+, 1+, 14+/2+, 2+ or 3+ for cell surface NIS protein. The length of the
box represents the interquartile range (i.e., the middle 50% of the data).
The median (line through the middle of each box), the lower quartile
(bottom line of each box), and the upper quartile (top line of each box)
are also specified on the plot for each level of cell surface NIS protein.
The sample minimum and maximum values are represented as T-shaped
lines extending from the ends of the box. Maximum outliers (gray
squares) and minimum outliers (black diamonds) are also plotted.

Acknowledgements

This work was supported by National Institutes of Health grant PO1CA124570
(project 3 leader: SJ) and T32GM068412 (trainee: SB). Generation of the gene
expression data and corresponding breast tissue microarrays was partially
supported by Breast Cancer Research Foundation in New York and from the
US National Cancer Institute Specialized Program of Research Excellence in
Breast Cancer at Harvard (CA89393). Breast tumor samples for confirmatory
immunohistochemical experiments were obtained from the Spielman Breast
Cancer Tissue Bank, Human Cancer Genetics Program and Comprehensive
Cancer Center at The Ohio State University. We thank Dr. Shili Lin for her
advice on statistical analyses for microarray data, Dao-Peng Chen for
performing the MCF-7 breast cancer cell analysis and Susie Jones for her
assistance with immunohistochemistry.

Author details

'Integrated Biomedical Sciences Graduate Program, The Ohio State
University, Columbus, Ohio 43210, USA. “Department of Physiology and Cell
Biology, The Ohio State University, Columbus, Ohio 43210, USA. 3Center for
Biostatistics, The Ohio State University, Columbus, Ohio 43210, USA.
“Department of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota
55901, USA. “Department of Epidemiology and Biostatistics, University of
Maryland, College Park, Maryland 20742, USA. ®Department of Pathology,
Brigham and Women’s Hospital, Harvard Medical School Boston,
Massachusetts 02115, USA. 7Departmem of Biomedical Informatics, The Ohio
State University, Columbus, Ohio 43210, USA.

Authors’ contributions

SB performed the MCF-7 cell microarray and RT-PCR experiments, analyzed
the MCF-7 cell and breast tumor microarray data and helped to draft the
manuscript. XZ and ML performed statistical analyses for the microarray
experiments. RJ, a breast cancer pathologist, was involved in reading and
scoring immunostained breast tumors for cell surface NIS levels. AR
contributed the breast tumor microarray data and tissues. KH offered
suggestions for the study design and analyzing data using bioinformatics
approaches. SJ was involved in designing the study, supervising experiments
and drafting the manuscript. All authors read and approved the final
manuscript.


http://www.biomedcentral.com/content/supplementary/1756-0500-4-397-S1.TIFF
http://www.biomedcentral.com/content/supplementary/1756-0500-4-397-S2.TIFF
http://www.biomedcentral.com/content/supplementary/1756-0500-4-397-S3.TIFF

Beyer et al. BVIC Research Notes 2011, 4:397
http://www.biomedcentral.com/1756-0500/4/397

Competing interests 19.

The authors declare that they have no competing interests.

Received: 6 July 2011 Accepted: 11 October 2011

Published: 11 October 2011 20.

References

1.

2.

Nurnberger CE, Lipscomb A: Transmission of radioiodine (1131) to infants
through human maternal milk. JAMA 1952, 150:1398-1400.

Mountford PJ, Coakley AJ, Fleet IR, Hamon M, Heap RB: Transfer of
radioiodine to milk and its inhibition. Nature 1986, 322:600.

Tazebay UH, Wapnir IL, Levy O, Dohan O, Zuckier LS, Zhao QH, Deng HF,
Amenta PS, Fineberg S, Pestell RG, Carrasco N: The mammary gland iodide
transporter is expressed during lactation and in breast cancer. Nat Med
2000, 6(8):871-878.

Renier C, Yao C, Goris M, Ghosh M, Nowles K, Gambhir S, Wapnir I:
Endogenous NIS Expression in Triple-Negative Breast Cancers. Ann Surg
Oncol 2009, 16:962-968.

Moon DH, Lee SJ, Park KY, Park KK, Ahn SH, Pai MS, Chang H, Lee HK,

Ahn IM: Correlation between ?*™Tc-pertechnetate uptakes and
expression of human sodium iodide symporter in breast tumor tissues.
Nucl Med Biol 2001, 28:829-834.

Wapnir IL, Goris M, Yudd A, Dohan O, Adelman D, Nowels K, Carrasco N:
The Na+/I- symporter mediates iodide uptake in breast cancer
metastases and can be selectively down-regulated in the thyroid. Clin
Cancer Res 2004, 10:4294-4302.

Knostman K, McCubrey J, Morrison C, Zhang Z, Capen C, Jhiang S: PI3K
activation up-regulates sodium iodide symporter expression yet impairs
cell surface trafficking in breast cancer. BMC Cancer 2007, 7:137.
Rudnicka L, Sinczak A, Szybinski P, Huszno B, Stachura J: Expression of the
Na+/I symporter in invasive ductal breast cancer. Folia Histochemica et
Cytobiologica 2003, 41(1):37-40.

Oh HJ, Chung JK, Kang JH, Kang WJ, Noh DY, Park IA, Jeong JM, Lee DS,
Lee MC: The relationship between expression of the sodium/iodide
symporter gene and the status of hormonal receptors in human breast
cancer tissue. Cancer Res Treat 2005, 37(4):247-250.

Kogai T, Schultz JJ, Johnson LS, Huang M, Brent GA: Retinoic acid induces
sodium/iodide symporter gene expression and radioiodide uptake in
the MCF-7 breast cancer cell line. Proc Natl Acad Sci USA 2000,
97:8519-8524.

Kogai T, Kanamoto Y, Li Al, Che LH, Ohashi E, Taki K, Chandraratna RA,
Saito T, Brent GA: Differential Regulation of Sodium/lodide Symporter
Gene Expression by Nuclear Receptor Ligands in MCF-7 Breast Cancer
Cells. Endocrinology 2005, 146:3059-3069.

Kogai T, Kanamoto Y, Che LH, Taki K, Moatamed F, Schultz JJ, Brent GA:
Systemic Retinoic Acid Treatment Induces Sodium/lodide Symporter
Expression and Radioiodide Uptake in Mouse Breast Cancer Models.
Cancer Res 2004, 64:415-422.

Unterholzner S, Willhauk MJ, Cengic N, Schutz M, Goke B, Morris JC,
Spitzweg C: Dexamethasone Stimulation of Retinoic Acid-Induced
Sodium lodide Symporter Expression and Cytotoxicity of 131- in Breast
Cancer Cells. J Clin Endocrinol Metab 2006, 91:69-78.

Willhauk MJ, Sharif-Samani B, Senekowitsch-Schmidtke R, Wunderlich N,
Goke B, Morris JC, Spitzweg C: Functional sodium iodide symporter
expression in breast cancer xenografts in vivo after systemic treatment
with retinoic acid and dexamethasone. Breast Cancer Res Treat 2008,
109:263-272.

Dohan O, De la Vieja A, Carrasco N: Hydrocortisone and Purinergic
Signaling Stimulate Sodium/lodide Symporter (NIS)-Mediated lodide
Transport in Breast Cancer Cells. Mol Endocrinol 2006, 20:1121-1137.
Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene
expression and hybridization array data repository. Nucleic Acids Res 2002,
30(1):207-210.

Richardson AL, Wang ZC, De Nicolo A, Lu X: X chromosomal abnormalities
in basal-like human breast cancer. Cancer Cell 2006, 9(2):121-32.

Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P,

Larsimont D, Macgrogan G, Bergh J, Cameron D, Goldstein D, Duss S,
Nicoulaz AL, Brisken C, Fiche M, Delorenzi M, Iggo R: Identification of
molecular apocrine breast tumours by microarray analysis. Oncogene
2005, 24(29):4660-71.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

Page 13 of 14

Umemura S, Shirane M, Takekoshi S, Kusakabe T, Itoh J, Egashira N,
Tokuda Y, Mori K, Osamura YR: Overexpression of E2F-5 correlates with a
pathological basal phenotype and a worse clinical outcome. Br J Cancer
2009, 100(5):764-71.

Serlie T, Wang Y, Xiao C, Johnsen H, Naume B, Samaha RR, Barresen-

Dale AL: Distinct molecular mechanisms underlying clinically relevant
subtypes of breast cancer: gene expression analyses across three
different platforms. BMC Genomics 2006, 7:127.

Bonnefoi H, Potti A, Delorenzi M, Mauriac L, Campone M, Tubiana-Hulin M,
Petit T, Rouanet P, Jassem J, Blot E, Becette V, Farmer P, André S,

Acharya CR, Mukherjee S, Cameron D, Bergh J, Nevins JR, Iggo RD:
Validation of gene signatures that predict the response of breast cancer
to neoadjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00-
01 clinical trial. Lancet Oncol 2007, 8(12):1044-5.

Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC: Gene expression
profiling of the tumor microenvironment during breast cancer
progression. Breast Cancer Res 2009, 11:R7.

Lu X, Lu X, Wang ZC, Iglehart JD, Zhang X, Richardson AL: Predicting
features of breast cancer with gene expression patterns. Breast Cancer
Res Treat 2008, 108(2):191-201.

Beyer S, Jimenez R, Shapiro C, Jhiang S: Do cell surface trafficking
impairments account for variable cell surface sodium iodide symporter
levels in breast cancer? Breast Cancer Res and Treat 2009, 115(1):205-12.
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U,
Speed TP: Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostat 2003, 4:249-64.

Smyth GK: Limma: linear models for microarray data. In Bioinformatics and
Computational Biology Solutions using R and Bioconductor. Edited by:
Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W. New York: Springer;
2005:397-420.

Smyth GK: Linear models and empirical bayes methods for assessing
differential expression in microarray experiments. Stat Appl Genet Mol Biol
2004, 3, Article3.

Gordon A, Glazko G, Qiu X, Yakovlev A: Control of the mean number of
false discoveries, Bonferroni and stability of multiple testing. Annals of
Applied Statistics 2007, 1:179-90.

Saeed Al, Bhagabati NK; Braisted JC, Liang W, Sharov V, Howe EA: TM4
microarray software suite. Methods in Enzymology 2006, 411:134-193.
Chen J, Bardes EE, Aronow BJ, Jegga AJ: ToppGene Suite for gene list
enrichment analysis and candidate gene prioritization. Nucleic Acids Res
2009, 37.W305-W311.

Kilbane MT, Ajjan RA, Weetman AP, Dwyer R, McDermott EWM,

O'Higgins NJ, Smyth PPA: Tissue iodine content and serum-mediated 1125
uptake-blocking activity in breast cancer. J Clin Endocrinol Metab 2000,
85(3):1245-1250.

Balmer JE, Blomhoff R: Gene expression regulation by retinoic acid:
review. J Lipid Res 2002, 43:1773-1808.

Wang C, Wesener SR, Zhang H, Cheng YQ: An FAD-dependent pyridine
nucleotide-disulfide oxidoreductase is involved in disulfide bond
formation in FK228 anticancer depsipeptide. Chem Biol 2009, 16:585-593.
Kane MD, Jatkoe TA, Stumpf CR, Lu J, Thomas JD, Madore SJ: Assessment
of the sensitivity and specificity of oligonucleotide (50mer) microarrays.
Nucleic Acids Res 2002, 28(22):4552-4557.

Yuen T, Wurmbach E, Pfeffer RL, Ebersole BJ, Sealfon SC: Accuracy and
calibration of commercial oligonucleotide and custom cDNA
microarrays. Nucleic Acids Res 2002, 30(10):e48.

Draghici S, Khatri P, Eklund AC, Szallasi Z: Reliability and reproducibility
issues in DNA microarray measurements. Trends Genet 2006,
22(2):101-109.

Peyrottes |, Navarro |, Ondo-Mendez A, Marcellin D, Bellanger L, Marsault R,
Lindenthal S, Ettore F, Darcourt J, Pourcher T: Immunoanalysis indicates
that the sodium iodide symporter is not overexpressed in intracellular
compartments in thyroid and breast cancers. fur J Endocrinol 2009,
160:215-225.

Smith VE, Read ML, Turnell AS, Watkins RJ, Watkinson JC, Lewy GD,

Fong JC, James SR, Eggo MC, Boelaert K, Franklyn JA, McCabe CJ: A novel
mechanism of sodium iodide symporter repression in differentiated
thyroid cancer. J Cell Sci 2009, 122:3393-3340.

Lee SW, Kang YS, Kim S: Multifunctional proteins in tumorigenesis:
aminoacyl-tRNA synthetases and translational components. Curr
Proteomics 2006, 3:233-247.


http://www.ncbi.nlm.nih.gov/pubmed/3018578?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3018578?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10932223?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10932223?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19184238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11578905?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11578905?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11578905?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15240514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15240514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17651485?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17651485?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17651485?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12705478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12705478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19956522?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19956522?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19956522?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10890895?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10890895?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10890895?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15817668?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15817668?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15817668?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14729653?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14729653?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16234306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16234306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16234306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17636401?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17636401?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17636401?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16439463?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16439463?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16439463?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11752295?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11752295?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16473279?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16473279?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15897907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15897907?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19259095?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19259095?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16729877?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16729877?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16729877?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18054869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18054869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18054869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19187537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19187537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19187537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18297396?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18297396?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16939790?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16939790?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19465376?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19465376?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10720070?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10720070?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12401878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12401878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19549597?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19549597?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19549597?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12000853?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12000853?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12000853?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16380191?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16380191?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19029227?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19029227?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19029227?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19706688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19706688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19706688?dopt=Abstract

Beyer et al. BVIC Research Notes 2011, 4:397 Page 14 of 14
http://www.biomedcentral.com/1756-0500/4/397

40. Pedersen IS, Dervan PA, Broderick D, Harrison M, Miller N, Delany E:
Frequent loss of imprinting of PEG1/MEST in invasive breast cancer.
Cancer Res 1999, 59:5449-51.

41, Arturi F, Ferretti E, Presta |, Mattei T, Scipioni A, Scarpelli D, Bruno R,

Lacroix L, Tosi E, Gulino A, Diego R, Filetti S: Regulation of lodide Uptake
and Sodium/lodide Symporter Expression in the MCF-7 Human Breast
Cancer Cell Line. J Clin Endocrinol Metab 2005, 90:2321-2326.

42. Rakha EA, Reis-Filho JS, Ellis 1O: Basal-like breast cancer: a critical review. J

Clin Oncol 2008, 26(15):2568-2581.

doi:10.1186/1756-0500-4-397

Cite this article as: Beyer et al: Microarray analysis of genes associated
with cell surface NIS protein levels in breast cancer. BMC Research Notes
2011 4:397.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central



http://www.ncbi.nlm.nih.gov/pubmed/10554015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15623812?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15623812?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15623812?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18487574?dopt=Abstract

	Abstract
	Background
	Methods
	Results and Discussion
	Conclusions

	Background
	Methods
	Publicly Available Oligonucleotide Microarray Datasets
	Cell Culture and RNA Extraction
	Generation of microarray data and real-time qRT-PCR
	Breast tumor tissue microarray with corresponding, pre-existing microarray data
	Immunohistochemistry
	Statistical Analyses


	Results
	NIS mRNA levels detected by HG U133A oligonucleotide microarray (NIS probe set ID 211123_at) do not vary among breast tumors or when compared to normal breast tissue
	Only modest increases in NIS mRNA expression were detected in tRA- and tRA/H-treated MCF-7 breast cancer cells by the 211123_at NIS probe set
	Variability in NIS mRNA expression among breast tumors could not be detected by additional oligonucleotide microarray platforms
	Cell surface NIS protein levels are more variable than corresponding NIS mRNA levels detected by oligonucleotide microarray
	Linear Models Analysis identified 44 genes to be significantly up- or down-regulated in cell surface NIS-positive breast tumors compared to cell surface NIS-negative breast tumors
	Pearson and Spearman correlation analyses identified genes positively- and negatively-correlated with cell surface NIS protein levels in breast cancer
	Pearson correlation, Spearman rank correlation, and Linear Models analyses identified CARS and PYROXD1 to be highly associated with cell surface NIS protein in breast cancer
	CARS protein is associated with cell surface NIS protein among ER+ breast tumors

	Discussion
	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

