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Abstract

from knowledge bases.

restrictiveness in edge and vertex selection.

Background: Reconstruction of protein-protein interaction or metabolic networks based on expression data often
involves in silico predictions, while on the other hand, there are unspecific networks of in vivo interactions derived

We analyze networks designed to come as close as possible to data measured in vivo, both with respect to the set
of nodes which were taken to be expressed in experiment as well as with respect to the interactions between
them which were taken from manually curated databases

Results: A signaling network derived from the TRANSPATH database and a metabolic network derived from KEGG
LIGAND are each filtered onto expression data from breast cancer (SAGE) considering different levels of

We perform several validation steps, in particular we define pathway over-representation tests based on refined
null models to recover functional modules. The prominent role of the spindle checkpoint-related pathways in
breast cancer is exhibited. High-ranking key nodes cluster in functional groups retrieved from literature. Results are
consistent between several functional and topological analyses and between signaling and metabolic aspects.

Conclusions: This construction involved as a crucial step the passage to a mammalian protein identifier format as
well as to a reaction-based semantics of metabolism. This yielded good connectivity but also led to the need to
perform benchmark tests to exclude loss of essential information. Such validation, albeit tedious due to limitations
of existing methods, turned out to be informative, and in particular provided biological insights as well as
information on the degrees of coherence of the networks despite fragmentation of experimental data.

Key node analysis exploited the networks for potentially interesting proteins in view of drug target prediction.

Background

The structure of cell signaling is governed by complex
patterns of interaction. In the past decades, great pro-
gress toward understanding networks of protein interac-
tions and the metabolic flow of matter has been made.
There are many ways of computational network recon-
struction, differing fundamentally in the nature of the
underlying data’s organization and interpretation.
Networks derived from single gene expression profiles
often take advantage of sophisticated mathematical
methods, thus providing a wealth of information on
actual biological conditions. However, they necessarily
involve prediction of interactions. On the other hand,
semantically controlled extraction of database cross-
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sections leads to networks based on carefully organized
knowledge gathered in a great many in vitro and in vivo
experiments. Hence, the static nature of databases may
be contrasted with the snapshot nature of gene expression
data. Reconciling these different approaches is important
for obtaining a unified view on gene expression.

There is vast literature on network inference from
expression data (see for instance [1-9]).

Since databases contain little tissue- or disease-specific
information, they are concerned with a theoretical whole
genome-stem cell. (In a few cases, taxa- or species-specific
networks have been reconstructed though [10,11].)
Furthermore, such theoretically derived networks do not
allow for definition of environmental or histological condi-
tions or time-dependent processes such as signal-triggered
events. Hence, it is often impossible to determine if a
given set of reactions with matching substrates gives a
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biologically plausible chain. In particular, in database-
derived networks molecules can be connected although
they are in no tissue simultaneously highly expressed.

Both methods of network inference, the one based on
expression time-series and the other on databases carry a
high probability of inferring undesirable links. Thus, tis-
sue- or disease-related information is concealed in plenty
of unspecific data. Several approaches to link both meth-
ods have been proposed. However, this has often been
done on an ad hoc-basis, taking knowledge only for
selected molecules into account [12,13]. A concept for
the extraction of tissue- and cell type-specific transcrip-
tion factor-gene networks based on EST abundance of
transcription factor-encoding genes has been proposed
recently [14].

It is the goal of the present paper to set up networks
whose nodes are expressed in a single tissue while the
interactions are taken from prior knowledge, contained in
manually curated databases. We thus aim at coming as
close as possible to data measured in vivo by excluding
any prediction in network inference. Precisely, we filter
the reference networks defined in [15] onto expression
data from breast cancer tissue samples and analyze the
results. Specifically, we map the detectable expression set’s
genes onto database-derived networks and prune the latter
by retaining only those vertices which are mapped to
detectable genes and their edges. A second filtering
method includes the shell defined by the latter network’s
1-neighborhood in the complete network. These two
methods are called strict and 1-extended, respectively.

The reference networks’ protein identifier format is
abstracted in order to be coarse enough to identify very
similar proteins. On the one hand, this leads to good net-
work connectivity properties, on the other hand, this
implies the need to perform “benchmark tests” for net-
work validation. Thus, we pay particular attention to
assessing the degree to which this coarseness leads to
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information loss; in fact, we show that tissue-specificity
properties are retained and that, similarly, the suspicious
pathways are over-represented. This is done by perform-
ing statistical hypothesis tests against refined null models;
these become necessary because quite often common
null models are biologically unfeasible. The next step is
to extract new information from the filtered networks.
Precisely, we analyze the networks for key nodes and
show that this yields information which fits well to the
findings of the pathway over-representation analysis in
the sense that both analyses often hint independently at
the same or closely related underlying molecular
mechanisms. In particular, these mechanisms turn out to
be those around cell cycle regulation.

The databases we rely upon are the TRANSPATH
database on signal transduction [16] and the KEGG bio-
chemical database [10].

Methods

Overview

The workflow is depicted in Figure 1. We associated to a
fixed reference network and to several gene expression
sets sub-networks of the reference network by means of
mapping the expression data on the reference network’s
vertices. The procedure’s potential to yield tissue-specific
information on biological functions was assessed, invol-
ving tissue-specificity analysis, pathway analysis, and key
node analysis. We propose modified methods for assess-
ment of pathway over-representation whereas the key
node algorithms and tissue-specificity checks we
employed have been published.

Data acquisition

Network extraction

The reference network used in our study was retrieved
from the TRANSPATH database (release 2008.4) by
extracting all semantic molecular reactions which take

-
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Figure 1 Workflow scheme for the analysis of the filtered networks. We obtain publicly available expression sets from breast cancer data
(CGAP SAGE libraries); these are mapped to TRANSPATH signaling molecules and KEGG metabolic activities. Strict resp. 1-extended filtering yields
4 networks per disease condition.
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part in signal transduction. The network’s vertices are
proteins with signaling function and small signaling
molecules while edges are created by the semantic syn-
tax as described in [17] and used in [15], yielding a net-
work with 1843 vertices and 3931 edges with a largest
strongly connected component of 328 vertices, 454 in
the bow-tie-analysis’ in-component, and 546 in the out-
component [18]. All information available on ortholo-
gous (in most cases, mouse, human and rat) proteins
and their reactions was merged, giving rise to the so-
called ortho-level of gene identifiers. Similarly, informa-
tion about tissue- or cell type-specificity was ignored.
We studied the molecular networks defined by leaving
out information on transcription regulation, in contrast
to the (usually larger) gene regulatory networks. The
reason for focusing on the former is to ensure network
consistency, i.e. to stay within the same level of molecu-
lar biology and on the narrower time-scale of mere pro-
tein-protein interaction; moreover, there is considerable
uncertainty about the complete target pool of a single
or even the compound of several transcription factors.
The KEGG-LIGAND-based (release 40.0) metabolic
reference network was designed in an enzyme-centered
way in order to be comparable with the protein-centered
view of the TRANSPATH-derived network. Each node is
an EC number representing a metabolic enzyme activity
with edges standing for a common substrate which is the
product of the reaction catalyzed by the enzyme on the
tail and the educt of the reaction catalyzed by the enzyme
on the head. Substrates such as ATP or water taking part
in more than 100 reactions were discarded. This is the
gene-family equivalent to the network extraction method
presented and used in [19]. The metabolic reference net-
work is included in Additional File 1.
Expression data
Breast cancer expression data were downloaded from
NCBI CGAP database using the Sage Digital Gene
Expression Displayer (DGED) [20]. We considered the
union of normal and disease tissue, thus retaining
silenced or induced genes for consideration.
Mapping
The SAGE data’s UNIGENE identifiers were mapped on
TRANSPATH, resp. KEGG, gene entries and subsequently
to the encoded proteins as well as restricted to those
which are contained in the reference network. Due to the
fact that this new network’s vertex set only consists of
those vertices of the reference network that reflect the
expression data, the corresponding subnetwork of the
reference network was called strictly filtered. Additionally,
we considered for each such subset of the reference graph
a larger variant, called 1-extended filtering, which includes
all nodes adjacent by an edge in either direction to a node
in the strict subset. This graph includes more prior knowl-
edge since it is slightly closer to the reference network.
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Global network analysis

ExPlain

Functional analysis is done with ExPlain 3.0 (BIOBASE
GmbH, Germany) [21] to provide further information on
tissue-specificity and disease marker over-representation.
In this context, an advantage of the ExPlain tool is that no
further information loss by gene format mapping occurs
since the signaling reference graph is already given in
TRANSPATH identifier format. These identifiers are
internally mapped by ExPlain onto species-specific level
from human. Nevertheless this analysis is used to tell how
much information is already present on the ortho-level.
Internal FDR control methods were used throughout (see
below for general information on the FDR).

Pathway over-representation

In order to exhibit those TRANSPATH resp. KEGG
pathways which are differentially expressed with respect
to all other tissues than the one of the probe’s origin.

In order to integrate quantitative information, we pur-
sued an approach based on the BioGPS expression data
U133A/GNF1H [http://biogps.gnf.org/downloads/, down-
load date 05/17/2010, [22]], which provides tissue-specific
information in the form of a matrix A where A;; is the
GCRMA-normalized intensity of gene spot i for tissue j.
We used the BioGPS matrix as is because none of the 84
tissues is super- or subordinate to lactiferous duct. The
overall expression value E; of spot i was then taken to be
the sum X; A;; over all these 84 in the data set, and the
drawing probability for the reference network entry that
corresponds to spot i was set to be the ratio E; /%, E,, of
the latter value to the sum over all rows which correspond
to such gene identifiers that could be mapped to the refer-
ence graph, where “average” corresponds to the pathway
resp. non-pathway but mappable group. Thus, the null
hypothesis was that the subset of the reference graph’s ver-
tices was chosen from a gene pool where the amount of a
certain gene corresponds to its expression in any different
tissue. As described by [23], the resulting distribution is
the univariate non-central Fisher distribution, contained in
the R-package BiasedUrn. The distribution was extended
to a non-central Fisher test as described in [24] defining
the p-value as the sum of the probabilities with an out-
come at least as extreme as the observed one, i.e. in this
case, as the sum over all those contingency tables’ prob-
abilities which have the same marginal counts (i.e. row
and columns sums) as the observed event.

We assumed independence of genes in the case of the
strict network. This assumption is reasonable in this con-
text and commonly applied. (Remark D in [25] gives an
account of to what degree this hypothesis is justified.)

For the 1-extended networks, we performed Monte
Carlo sampling of overlap sizes by drawing 10* samples
in the associated strict network and subsequently apply-
ing the strict-to-1-extended mapping procedure to each
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single one of these samples. This procedure gave the
matrices which were taken as the basis for the pathway
over-representation analyses of the extended networks.
Monte Carlo p-values were calculated as done in [26]
(where they are called empirical p-values; see the same
article also for more references on the different ways of
calculating them). Their convergence for our sample
sizes was verified. A one-tailed test was used in order to
test for over-representation only rather than for over-
and under-representation simultaneously.

For comparison, the filtered networks were tested for
over-representation of pathways using the usual Fisher’s
exact test against the respective reference network as
background set; results were corrected for FDR as
described below. The tests’ source codes are included in
Additional file 2.

Also for comparison, gene set enrichment analysis
(GSEA, [27]) was performed. The first way this was done
relied on the pure expression sets as such, the results can
be found in the supplementary data, Additional file 1. The
second was to perform GSEA on the reference as well as
on the filtered networks with respect to the canonical
pathways of the MsigDB, namely the BioCarta, the gen-
map and the KEGG pathway sets as gene sets. We limited
the expression data set to those entries which could be
linked to the filtered or reference networks’ vertices
mapped form the ortho-level to gene symbols, and per-
formed GSEA with standard parameters while permuting
the gene set rather than the phenotype.

False discovery rate control

For all tests, correction for multiple hypothesis testing
was necessary. Multiplicity issues arose by performing
hypothesis tests for each one out of several pathways or
tissues. For this purpose, we used the method developed
by (FDR) [24] controlling the positive false discovery rate
as measured by g-values. As written, Storey’s methods
only apply to the case of continuous test statistics, where
the p-values are equidistributed. However, the p-values
computed from overlap sizes are discrete-valued. Indeed,
this is not a problem since discrete p-values are always
greater than corresponding continuous p-values which
fully exhaust the level. The q-values are monotone in the
p-values, thus for discrete p-values they are never too lib-
eral and FDR control is achieved.

Key node analysis

The pairwise disconnectivity index (Dis) [15] is a vertex
scoring defined as the fraction of nodes of the whole
network that become disconnected after the removal of
a given vertex. As such, it is a “non-local bottleneck” or
“non-local degree” measure.

Each filtered network was compared with the reference
network by plotting the filtered node’s normalized Dis
against the corresponding value in the reference network.
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In order to describe the far-from-diagonal outliers, we
defined the Dis-increase of a vertex v as

Disfilered (V) Disreference (V)

ADis (v) = . - . ,
max,Disfiiered (W) — MaxyDiSreference (W)

obtaining the increase resp. decrease of a vertex’ influ-
ence in the filtered compared with its influence in the
reference network.

Orphan vertices were discarded due to the fact that
removing vertices without edges yields no changes in
the connectivity of the network. Additionally, we per-
formed GO-term over-representation analysis with
Onto-Express [28,29] on the metabolic networks.

Differential expression values were tested for equal
variances using Levene’s test [30] due to its aptitude for
symmetric, moderate-tailed, distributions [30].

Biological functions were retrieved from TRANS-
PATH unless mentioned otherwise.

Results

Mapping

The basic data which underlies the procedure is a refer-
ence network. Here, we chose to consider signaling net-
work derived from the TRANSPATH database by the
“semantic network syntax” [17]; this means that an arrow
stands for a process of active forwarding of information, a
typical edge A — B may therefore stand for the process
“kinase A phosphorylates protein B”. The metabolic refer-
ence network is the KEGG network with enzymatic activ-
ities as nodes. Each reference network was filtered with
the SAGE breast cancer (BC) expression data from CGAP.
In turn, the resulting networks were considered in two
variants. The first one, called strictly filtered network, is
the set of detected and mapped protein identifiers, while
the second one includes their in- and out-neighbors in the
underlying reference network. In both cases, all TRANS-
PATH resp. KEGG edges were drawn between the chosen
vertices. We used the union of normal and disease sample
sets in order to treat both conditions in a unified frame-
work, retaining the information on the difference sets (the
union minus the intersection) for detailed analysis on a
case-to-case basis. This approach has the advantage of
minimizing fragmentation and maximizing the number of
vertices. For instance, we have 183 weakly connected com-
ponents in the disease sample’s strictly filtered network
(585 vertices), 190 in the normal tissue sample (606 ver-
tices), 168 in the strict union (609 vertices) but 43 in the
1-extended union (1410 vertices). Another reason for
choosing the union rather than the normal resp. disease
set or the intersection was to prioritize tissue- over dis-
ease-specificity. The symmetric difference set (i.e. the set
of nodes detected in either disease or normal tissue but
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not in both) of the breast cancer networks was found to be
relatively small.

For over-representation analyses, the whole vertex set
including the orphans was used, whereas the orphans
were discarded for topological analyses.

The sizes of the resulting networks are given in Table 1
ranging between 170 and 609 nodes with an average
degree between 1.2 and 1.3 in the first and 1.82 in the
second filtering step. The numbers of vertices of the 1-
extended networks are between 2.3 and 6.4 times those
of the strict ones.

ExPlain

It is of interest to assess to which extent tissue-specifi-
city is retained in the filtered networks, due to possible
information loss inferred by the mapping procedure.
The ExPlain tool [21] is the only one designed for this
purpose and appropriate for the TRANSPATH gene
identifier format. However, the ExPlain and tissue analy-
sis was only performed on the signaling network; a simi-
lar analysis of the metabolic network would be severely
hampered by an unavoidable explosion of the numbers
of genes due to the fact that enzyme identifiers are
linked to a huge set of genes, which would render any
over-representation analysis virtually meaningless.

It turned out that in most cases the sample tissue or
tissues in their anatomical proximity can be recovered. In
fact, ExPlain confirmed the mammary origin in four out
of the six cases given by the three top-ranked networks
in each of the two signaling networks, and inferred
lymph tissue characteristics in the 1-extended case.

Likewise, tissues of the mammary gland occurred,
showing that also the 1-extended filtered network retains
very tissue-specific information. Moreover, the male
reproductive organs figured among the least significant
tissues in both networks with p > 0.5 which may be seen
as a negative control (data not shown).

Additionally, we found that the most over-represented
disease in both networks is breast neoplasms (p = 2.8 x

Table 1 The filtered networks’ sizes.

Network Data Strict 1-extended
#V #E #WCC #V #E # WCC
Signaling  Ref. 1843 3931 54
Filtered 609 770 168 1410 2564 43
Metabolic  Ref. 1793 5711 21
Filtered 172 225 71 1091 1983 16

This table shows the two reference networks (Ref.) and their filtered sub-
networks with their number of vertices (# V), number of edges (# E) and their
number of weakly connected components (# WCC). The expression data was
obtained from experiments comparing breast cancer with normal breast
tissue. The number of weakly connected components is reduced drastically
between strict and 1-extended filtering.
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107 in the strict, p = 1.8 x 10™** in the 1-extended,
ExPlain disease category over-representation analysis).

Pathways

Over-representation analysis was carried out on grounds
of TRANSPATH and KEGG pathways as underlying
databases. We tested the resulting strict and 1-extended
networks’ gene sets for pathway over-representation
against the null hypothesis that genes are drawn at ran-
dom from the reference network with probabilities
which correspond to overall expression values across all
tissues, i.e. we consider the situation where it is more
likely to draw a ubiquitously expressed gene such as
beta-actin than to draw a highly specialized one such as
alpha-synuclein. A significant test result will then imply
the presence of highly specialized genes.

For the strict case, samples are drawn without replace-
ment from the pool of reference vertices with probabil-
ities given by the portion of expression level, averaged
over all tissues, among all expression averages of the
reference network, leading to a test whose null distribu-
tion is the non-central hypergeometric distribution [23],
in contrast to the central one occurring in Fisher’s exact
test. For the 1-extended network, dependence of the
genes caused by the construction is accounted for by
means of Monte Carlo sampling of the resulting 1-
extended overlap sizes, leading to empirical p-values.

Since over-representation analysis would favor large
TRANSPATH orthofamilies, the pathways were mapped
to the reference graph identifiers, yielding 137 pathways
with 48 members on average, and subsequently the lat-
ter to the human Affymetrix identifiers.

Spindle checkpoint

In most cases, we found that it is possible to interpret
and group the pathways by assigning them to superordi-
nate functional categories. There were 53 pathways over-
lapping with the strictly filtered breast cancer signaling
network in at least two vertices (see supplement). Among
them, six have significantly larger overlap than predicted
by the null model (q < 0.05), “Aurora-B cell cycle regula-
tion”, the “TGF-beta pathway”, the “metaphase to ana-
phase transition”, the “wnt pathway”, the “cyclosome
regulatory network” and the “PDGF pathway”. Among
those, Aurora-B, metaphase to anaphase and cyclosome
are cell-cycle-related, and in fact several of the filtered
networks’ proteins belong to all of them. We compared
those vertices which belong to at least one of these three
pathways with the neighborhood in the 1-extended net-
work (Figure 2). Several functional relationships between
the strict vertices became visible only upon the network’s
extension. One of the core proteins regulating the meta-
phase-anaphase transition and exit from mitosis is cyclo-
some. In fact, interactions of cyclosome with other
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Figure 2 Neighborhood of over-represented pathways in the breast cancer signaling networks. The three significantly over-represented cell-
cycle-related pathways' strict overlaps and the corresponding 1-extended nodes in the breast cancer signaling networks are connected, and a
selected neighborhood of them is depicted in this figure. The pathways are “metaphase to anaphase transition”, “cyclosome regulatory network” and
“Aurora B cell cycle regulation”. Those nodes of the strict network which belong to at least one of these pathways are depicted in green, those strict
nodes which do not belong to a pathway are depicted in yellow, and those which belong to the 1-extended but not to the strict one in red.
Inhibitory arcs are depicted in red, blue-colored arcs comprise non-inhibitory semantics such as activation and binding. The red nodes strongly
enhance the network's connectivity. All paths from cyclosome to p53 pass at least one red node. The interaction between the three nodes Aurora B,
cyclosome and p53, and thus the metaphase/anaphase-cell cycle-functional module only appears in the T-extended network since securin, MAD2B
and BRCAT1, crucially involved in spindle assembly and spindle checkpoint, are not part of the strict but included in the 1-extended network.
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crucial cell-cycle regulators such as Aurora-B, p53 and
the prominent breast cancer related protein BRCA1
could only be observed in the 1-extended network. The
metaphase to anaphase transition is characterized on the
molecular level by separation of the sister chromatides
which is controlled by the mentioned proteins crucially
involved in the spindle checkpoint of the cell-cycle. For
instance, Aurora-B regulates the correct bi-orientation of
the chromatides and prevents the next cell-cycle phase if
the microtubules bind incorrectly [31]. In general, pas-
sing the spindle checkpoint is necessary for cell prolifera-
tion, clearly increased in breast cancer cells. In fact,
inhibitors for Aurora proteins, thus inhibitors for mitosis,
have been proposed to be candidates for future che-
motherapies [31]. Aurora-B, BRCA1 as well as other cell-
cycle regulators, such as securin and MAD2B are not
part of the strict but included in the 1-extended network.
In general, the complex interactions of crucial pathways
in the reference network resolved into a manageable
situation in the strictly filtered one while the principal
molecular agents are completely listed in the 1-extended
one. Moreover, the clear interactions of the mentioned

pathways were obscured in the reference network by the
high connectivity of p53 with 20.94% of all reference ver-
tices being reached in its 2-neighborhood (defined by
applying the extension procedure twice), cyclosome (65
vertices in the 2-neighborhood) and ERK2 (339 vertices
in 2-neighborhood).

Monte Carlo pathways over-representation analysis yields
that the two over-represented pathways of the 1-extended
breast cancer network are the “cyclosome regulatory net-
work” and the “alpha IIb beta3 pathway” having both the
maximal overlap. Receptors of the integrin family are on
top of signaling cascades targeting proliferation, differentia-
tion and apoptosis. Thus, the analysis of the 1-extended
network added the valuable piece of supplementary
information.

The situation in the strict metabolic network case was
similar, with the set of significantly over-represented path-
ways being very small. Only “chondroitin sulfate biosynth-
esis” and “sphingolipid metabolism” were significant. The
chondroitin sulfate forms “melanoma-associated chondroi-
tin sulfate proteoglycan” involved in cell motility of cancer
cells [32].
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The second pathway shows consistency with the signal
transduction network analysis, allowing for analysis from
an integrated viewpoint. In fact, sphingolipids gain their
pro-and anti-survival effect by activation of ERK1/ERK2
[33,34].

Passing to the 1-extended metabolic network, seven
pathways were significantly over-represented with respect
to the 1%-significance level. These pathways can be
grouped into three functional categories, namely signal
molecule biosynthesis (“sphingolipid metabolism” and
“chondroitin sulfate biosynthesis”), energy metabolism-
related pathways (“starch and sucrose metabolism”,
“glycolysis/glyconegenesis”), and essential metabolite-
producing pathways (“Methionine metabolism”,
“pantothenate and CoA biosynthesis”, “pyrimidine
metabolism”).

For comparison, GSEA yields only two enriched path-
ways, namely “glycolysis” (q = 0.026) and “gluconeogen-
esis” (q = 0.042) on the genmap gene set for the BC
phenotype (supplementary data), restricting the expres-
sion data to the metabolic reference network’s nodes.
The detailed result sets are included in Additional file 3.

Key nodes

In this section, we aim at the extraction of biological
insights in the form of predictive information on the
networks’ key nodes, defined as those vertices whose
knock-out is predicted to influence the network’s func-
tioning in the most harmful way. This concept is made
precise by the Pairwise Disconnectivity Index, hence-
forth called Dis, established by [15]. It measures the
fraction of connected pairs of nodes which become dis-
connected after the node’s removal. As our main focus
is on filtering, we shall also be interested in the increase
in a node’s disconnectivity inferred by passing from the
reference to the filtered network (see Table 2).

The nodes with the highest Dis-increase turned out to
often belong to over-represented pathways. In the sig-
naling network (see Figure 3), most of the nodes with
highest Dis-increase between the reference and strict
situations were part of the EGF pathway, with all of its

Table 2 Summary of the disconnectivity key node analysis.
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kinases, namely MEK1, ERK1, ERK2, Src, PKC and
PDK1, appearing among the first eight entries with
respect to Dis-rank. Thus, the EGF pathway plays a cru-
cial role, detected by topological features rather than by
mere over-representation. The second-ranked vertex
SHP-2 shares with EGF’s ErbB1 and Grb-2 the close
common downstream molecule RAS. Additionally, it is
part of the PDGF-pathway which has been identified as
the sixth-ranked over-represented pathway. Remarkably,
members of the top-ranked pathways, especially those of
the “metaphase to anaphase transition” have small or
even decreasing Dis, which is explained by the fact that
none of its members belong to the bow-tie-model’s
LSCC which tends to assemble the nodes with high Dis
(Figure 4A).

In total, the PDGF and EGF pathways’ impacts on the
breast cancer networks added to pathway analysis. The
scatter plot of the scaled disconnectivity values of the 1-
extended network differed drastically from the one in
the strictly filtered network (Figure 3) in the sense that
they form a large cluster consisting of nodes with small
Dis before as well as after filtering, and a distinct outlier,
the transcription factor p53. This is explained by the
fact that on average single nodes have lower overall dis-
connectivity weights in large networks while adding all
neighbors of p53 increases its influence.

The plot of differential expression against disconnec-
tivity (Figure 4A) shows that the central molecules, i.e.
those with highest disconnectivity, remain stably
expressed or induced in cancer with the exception of
ERK1 and PDK1, both up-regulated in breast cancer. In
fact, it has been described that both kinases regulate
RSK1 activation through distinct events; RSK1, in turn,
regulates proto-oncogene and transcription factor c-Fos.
Both phosphorylations together have been shown to be
required for full activation of RSK1 [35].

Furthermore, visual inspection of Figure 4A suggests
that the amplitude of variation of differential expression
varies between the compartments of the bow-tie model; in
particular, differential expression of the in-components
seems to be larger than that of the LSCC (Figure 4B). This

Network Method 1°* Key node 2" Key node 3" Key node 4™ Key node 5% Key node
Signaling strict MEK1 (0.21) SHP-2 (0.20) Abl (0.18) ERK1 (0.14) MEKK1 (0.13)
Network
T-ext. p53 (0.16) SHIP (0.06) PIAST (0.06) Fyn (0.06) PAK2 (0.04)
Metabolic strict Nucleoside-diphosphate  Hexokinase (0.32) Phosphatidate phosphatase  Glucosyl- Glucosyl-ceramide
Network kinase (0.39) (0.26) ceramidase (0.25) synthase (0.24)
1-ext. Lipoprotein lipase (0.22)  Nucleoside-diphosphate  Succinate-CoA ligase (GDP-  5-nucleotidase Hexokinase (0.11)
kinase (0.14) forming) (0.14) 0.12)

The five Dis-top-ranked vertices are shown for each filtered network. Most prominent vertices in the signaling networks are related to the “EGF network”. The
proteins hexokinase, lipoprotein lipase and further high-ranking nodes of breast cancer metabolism indicate that energy supply and conversion play the major

role.
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is confirmed by the Levene test for inhomogeneity of var-
iances, p = 0.01615. Thus, there is a remarkable correla-
tion between topological features of the filtered signaling
network and differential expression: Constituents of the
LSCC are more vital for cellular functioning, and hence
more stably expressed than the tendrils.

Expanding the signaling network to the 1-extended fil-
tered one, the set of high-ranked nodes fell into two
functional categories, an apoptosis-related one and an
EGF-related one (Figure 3). The latter consisted of the
proteins SHIP, PIAS1, Fyn, PAK2 and ERK2 [36,37].

Thus while the EGF network’s constituents themselves
appeared in the strictly filtered network, some positively
and negatively acting crucial regulatory elements on top
of it emerged in the 1-extended network’s analysis. The
apoptosis subset was made of p53, Bcl-B, Caspase-9,
Bak and Bid. Among these, p53 and Caspase-9 are well-
known apoptosis regulators, while Bcl-B and Bid are
biomarkers for frequent cancers such as breast neo-
plasms [38]. Those members of the apoptosis group
which belonged already to the strict network showed a
drastic Dis-increase between strict and 1-extended; simi-
larly, the apoptosis-related functional group of over-

represented pathways mostly increased in significance-
ranking between strict and 1-extended (Figure 3).

The top ten Dis-high-ranked enzymes of the strictly
filtered metabolic network can be clustered into four
groups, namely purine and pyrimidine metabolism,
energy metabolism, sphingolipid metabolism and fatty
acid metabolism.

The members of top-ranked pathways were recognized
by pairwise disconnectivity analysis as a core component
of the strictly filtered breast cancer metabolic network’s
cancer-affected metabolism.

All top-ranked and top-increased vertices of the 1-
extended network clustered in purine and pyrimidine
metabolism, energy metabolism or fatty acid metabolism.

Discussion

Construction of the reference network and its mapping
properties are crucial for subsequent analysis. We could
show that the TRANSPATH signaling network provides
the right compromise between coarseness and specifi-
city. The KEGG-derived network did not have this well-
balanced property, leading to difficulties in large-scale
interpretation.
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Network validation is strongly dependent on theoretical
tools. However, it seems that so far no such tool has
turned out to provide the gold standard for this purpose.
The tools at hand did not recognize in all cases the initial
expression data’s origin (tissue resp. disease) to a satisfac-
tory level of significance. Although it is doubtlessly not
possible to recover all characteristics of the initial data, we
determined a reason for the limited analytical power of
the tools at hand to be related to a problematic choice of
the null hypotheses. This was shown by the lack of over-
represented pathways in the Fisher’s exact test-analysis
(supplementary data) involving the hypergeometric distri-
bution as the standard null distribution with the draw-
backs described above. Here, we proposed two different
approaches. First, we proposed for each the strict and 1-
extended networks a test for over-represented pathways
based on an adjusted null distribution. Therefore, we
replaced in the strict case the standard Fisher’s exact test
by a non-central Fisher’s exact test, in order to include the
expression levels of the present and non-present genes.
This test performed better than the standard test in terms

of smaller p-values and biological interpretability (supple-
mentary data).

There are a few obstacles for comparison with GSEA.
First, GSEA’s focuses on the identification of enriched
sets on the basis of differential gene expression. Subra-
manian et al. explicitly mentioned [26] that “GSEA con-
siders all of the genes in an experiment, not only those
above an arbitrary cut-off in terms of fold-change or sig-
nificance”. In contrast, our approach is deliberately non-
quantitative-we are merely interested in presence or non-
presence. The reason is that for the signaling network
even small but hard-to-detect changes in expression may
have impact on transduction, and for the metabolic net-
work that we are interested in the enzymes whose
expression is not well correlated with reaction rates.
Moreover, there is some difficulty in relation with gene
identifier mapping. In fact, the signaling networks are
given in terms of TRANSPATH identifiers and these
would have to be mapped backwards to UniGene identi-
fiers, inferring a considerable loss of specificity. More-
over, the data obtained from CGAP is rather unsuitable
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for GSEA analyses since the samples’ expression values
are pooled, leading to class permutation being impossi-
ble. In general, it is hard to compare our pathway analysis
methods basing on network membership and additional
expression information, with a tool implementing differ-
ent statistical tests on qualitative gene expression data.
Thus, information from GSEA was hard to interpret;
moreover, there were few significant gene sets. This may
also be explained by the fact that GSEA relies on differ-
ential expression; however, most of the strictly filtered
signaling networks” members were not differentially
expressed (see Figure 4).

All proposed tests show that it is well feasible to
develop approaches to overcome the drawbacks of the
standard tools. The problem of correction for multiple
hypothesis testing turned out to be important even for
the relatively small numbers of tests. The standard pro-
cedure for this purpose is the Benjamini-Hochberg cor-
rection. However, recent literature points out that the
BH procedure is in many situations too conservative
and suggests replacing the control of the false positive
rate performed by the p-values by that of the false dis-
covery rate performed by q-values. A technical issue
concerns the problem of the statistical dependency of
different tests, meaning that it is hard to take account
for the fact that often test statistics are correlated. For
instance, overlap counts with different pathways are sta-
tistically dependent whose impact on the multiple
hypothesis testing problem is nearly impossible to esti-
mate; in particular it is unclear to what extent Benjamini
and Yekutieli’s notion of positive regression dependency
is applicable [39]. However, the problem has already
been recognized and discussed in the literature [24].

There are some recently proposed approaches to
reconstruct networks combining database knowledge
with expression data, namely for instance Cytoscape [40]
or TS-REX [14]. Nevertheless, our proposed gene expres-
sion analysis work-flow differs fundamentally from the
one implemented in these tools. Cytoscape is designed as
a platform enabling the user to create plug-ins to manip-
ulate and visualize networks by attributing external data
to its entities. TS-REX scopes at reducing false-positive
edges in a predicted TF-Network by using tissue-specific
expression probabilities derived from EST libraries and
known interactions from the TRANSFAC database. In
contrast, we focus on reliable database-derived networks
limited to expressed genes and their neighbors. We pre-
sented a set of consistent analysis methods to identify the
filtered networks’ core components.

The pipeline we have described is rather sensitive to
the choice of the underlying gene set; first, one has to
find a detection threshold, second, there is the ambiguity
which samples of the expression data, i.e. their intersec-
tion, union or both are preferable. In our cases, we chose
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the union of both samples each, however, any set of
genes can be applied in our approach. For SAGE data it
clearly lends itself to use all genes whose corresponding
tags occurred in the resulting set. Whenever another type
of data source, for instance microarrays, is used, an
appropriate way of classification of active genes has to be
considered.

Mapping of gene identifiers, being a potential source
of ambiguity, was resolved due to the good cross-links
to the used expression data’s TRANSPATH identifiers,
while the mapping possibilities of the KEGG-Ligand
database were sparse, resulting in smaller strict net-
works. For instance, whenever an enzyme activity is
linked to many genes, it is often unclear whether all
genes are necessary for building this enzyme, all genes
encode for different proteins with the same enzymatic
activity, or something in between.

Subsumingly, we obtained better and biologically more
meaningful results in the analysis of the TRANSPATH-
derived signaling network than in that of the metabolic
one.

The most satisfactory and meaningful information
could be extracted from the filtered networks whenever
it was possible to find common entities between pathway
analysis and the key node set. For instance, both analyses
hinted independently to cell cycle regulation in the sig-
naling networks. Passing from metaphase to anaphase,
i.e. the spindle checkpoint, was the most significant
recurring molecular event hinted at by pathway analysis,
whereas most of the nodes from the EGF network were
among the top-ranked and top-increased ones. Likewise,
the metabolic networks comprised sphingolipid metabo-
lism as well as energy producing metabolism within its
significantly over-represented pathways and key nodes.

Conclusions

We have shown that in the filtered signaling networks
cell cycle regulation plays an important role. Therefore,
we suggest to turn experimental attention to those
genes whose vertices showed the highest Dis-increase
and are part of cell cycle-related pathways with a view
toward their drug target potential. In fact, vertices show-
ing a very high Dis-increase have small influence on the
reference network’s topology, indicating that their inacti-
vation might have less side effects than vertices with
high Dis but small Dis-increase.

We could demonstrate a tendency of differential
expression to happen off the topologically central parts
of the networks. Key node interpretability is increased
when combining their scoring value with expression data.

The procedure can be easily adapted for further analy-
sis with other networks and other data. In any case, it
should be advantageous not to focus on just one type of
reference network in order to find the most consistent
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elements of the underlying disease by integration of sig-
nal-transductory and metabolic aspects.

It is necessary to explore the extent to which the pro-
posed pipeline can be synthesized with the numerous
non-prior knowledge based approaches in microarray
analysis and network inference. For instance, it should
be possible to extend the mapping procedure to use
Bayesian networks as the reference network or the start-
ing point for validation. Due to the binary nature of
data-based derived networks, it would clearly be benefi-
cial to integrate the Bayesian networks’ quantitative
information.

Availability and requirements

The programs which are available in the Additional file
2 are written in Perl (v5.10.0) and R (2.7.1). The Perl
scripts require local implementations of the TRANS-
PATH and KEGG database and the BioGPS
U133GNF1B.gcrma table.

Additional material

Additional file 1: Data collection (compressed). This zip-file contains
the networks and the background data. Further information is given in a
README file. The TRANSPATH derived signaling network’s adjacency list
is excluded due to license agreements.

Additional file 2: Code collection (compressed). This zip-file contains
the code for all pathway over-representation tests. Further information is
given in a README file.

Additional file 3: Summary of the pathway over-representation
analysis (compressed). For each pathway analysis, the corresponding
Fisher's exact p- and g-values are included. GSEA was performed on the
pure expression data set as well as those subsets of the gene identifier
which could be mapped to the reference networks’ or the filtered
networks’ vertices. Further information is given in a README document.
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