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Epstein-Barr virus Latent Membrane Protein LMP1
reduces p53 protein levels independent of the
PI3K-Akt pathway
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Abstract

Background: Nasopharyngeal carcinoma (NPC) is an epithelial malignancy, which commonly occurs in Southern
China, Taiwan, North Africa and Southeast Asia. Nasopharyngeal carcinoma is strongly associated with Epstein-Barr
virus infection. The p53 tumour suppressor protein is rarely mutated in NPC suggesting that the inactivation of p53
pathway in NPC could be due to the presence of EBV proteins. The aim of this work was to determine the effects
of EBV proteins namely LMP1 and LMP2A on the expression levels of p53 protein.

Findings: In this work we found that LMP1, but not LMP2A, decreased p53 protein levels. Overexpression of LMP1
resulted in increased ubiquitination of p53 suggesting that the decreased p53 protein levels by LMP1 was due to
increased degradation of the protein. The reduction of p53 protein levels was independent of the PI3K-Akt
pathway.

Conclusions: LMP1, but not LMP2A, reduced p53 protein levels through the increase in the polyubiquitination of
p53 protein and was independent of the PI3K-Akt pathway.

Keywords: Nasopharyngeal carcinoma (NPC), Epstein-Barr virus, Latent membrane protein, p53 tumour suppressor
gene, ubiquitination

Background
Nasopharyngeal carcinoma (NPC) is an epithelial malig-
nancy which mostly occurs in Southern China, Hong
Kong, Taiwan, North Africa and Southeast Asia [1]
including Malaysia [2,3]. In contrast to other head and
neck cancers and other epithelial malignancies, NPC is
often associated with Epstein-Barr virus (EBV) infection,
a ubiquitous infectious agent, suggesting that NPC
tumourigenesis involves EBV infection [4].
Epstein-Barr virus (EBV) is a human gamma herpes

virus which primarily involves infection of B lympho-
cytes and certain epithelial cells. It was found to effi-
ciently cause transformation of human primary B
lymphocytes, both in vitro and in vivo, into immorta-
lized lymphoblastoid cell lines (LCL) that proliferate
indefinitely by harbouring the virus in its latent state
[5]. The linear double-stranded EBV DNA genome is

approximately 172 kb in length which encodes about 85
genes. These genes include three latent membrane pro-
teins 1, 2A, and 2B (LMPs), six EBV nuclear antigens
(EBNA1, 2, 3A, 3B, 3C, and EBNA-LP), and two small,
non-coding nuclear RNAs (EBERs). Of these, LMP1 is
oncogenic and was reported to be expressed in more
than 70% of NPC patients [6,7].
LMP1 is a transmembrane protein and is essential for

transformation. LMP1 is able to induce tumour inva-
siveness and metastasis. A study by Wakisaka & Pagano
has shown that LMP1 induces matrix metalloproteinase
9 (MMP-9), an enzyme that disrupts the basement
membrane [8]. Gene transfer studies showed that LMP1
represses apoptosis in B cells by upregulation of anti-
apoptotic protein, Bcl-2 [9-11]. Another EBV transmem-
brane protein, LMP2A, has been shown to inhibit an
epithelial cell line, HaCat, from differentiating in orga-
notypic raft cultures [12].
The p53 tumour suppressor protein is a sequence-spe-

cific DNA damage-inducible transcription factor that
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controls cell growth by regulating cell apoptosis and G1
cell cycle arrest, mainly by upregulating Bax and the
cyclin-dependent kinase inhibitor p21/WAF1/CIP1,
respectively [13]. p53 is activated upon exposure to gen-
otoxic stress, which then upregulates the expression of
p21 resulting in a halt in cell cycle progression to allow
repair of damaged DNA. However, if the damage is too
severe, p53 then induces apoptosis [14,15]. A few
reports have suggested that EBV may interfere with cell
cycle checkpoints at both G1/S and G2/M [16,17]. EBV
might also target p53 upstream pathways such as Chk2
and may affect p53 stability [16,18]. LMP1 was also
shown to interfere with the growth suppression induced
by wild-type p53.
Several studies have shown that the p53 protein was

overexpressed in many cases of NPC as detected by
immunochemistry [19-21]. This is further supported by
the work in our laboratory which showed that p53 pro-
tein was found to be accumulated in 58 NPC biopsy
samples formalin-fixed, paraffin-waxed embedded tissues
of Malaysian patients but the p53 gene was not mutated
at the p53 mutation hot-spots Exons 5-8 [22]. Liu and
co-workers found that LMP1 repressed p53 from med-
iating DNA repair and inactivated p53 transcriptional
activity [23]. This however contradicts with the findings
by Li and co-workers who found that LMP1 activated
p53 transcriptional activity and increased its stability
through multi-sites phosphorylation of p53 protein
resulting in the accumulation of p53 protein in the
nucleus [24,25].
We sought to verify the effect of LMP1 on p53 pro-

tein levels in a heterologous system, the U2OS osteosar-
coma cell line, which is known to harbour wild type p53
and is a commonly used model system to study the p53
pathway.

Methods
Cell Cultures
U2OS, a human osteosarcoma cell line, was maintained
in Dulbecco’s modified Eagle’s medium (DMEM) sup-
plemented with 10% (v/v) foetal calf serum (FCS), 100
U/ml penicillin and 100 μg/ml streptomycin (Invitrogen,
Auckland, New Zealand) in a humidified atmosphere
containing 5% (v/v) CO2 at 37°C. EBV-negative NPC
cells (HONE1), EBV infected NPC cells (HONE-Akata),
stable cell lines CNE1-pBabe and CNE1-pBabe LMP1
were all grown under similar conditions.

Plasmids
Plasmids used in this study were empty vector plasmids
pcDNA3.1(-), pcDNA3.1(+), and pSG5 and plasmid with
LMP1 insert pcDNA3.1(+)LMP1 (a kind gift from
Cesarman E, Cornell University, USA), and plasmids
with LMP2A-HA insert pcDNA3.1(-)LMP2A-HA and

pSG5.LMP2A-HA (a kind gift from R. Longnecker,
Northwestern University, USA) and pcDNA3.1(+)
EBNA1 (a kind gift from Christian Munz, Rockefeller
University, USA). Hup53 gene was subcloned from
pT7.7Hup53 construct (bacterial expression plasmid) (a
kind gift of Steven Picksley, University of Bradford, UK)
into the pcDNA3.1 mammalian expression vector to
generate pcDNA3.1(-)Hup53. We also employed domi-
nant negative Akt construct pcDNA3 DN Akt plasmid
(a kind gift of P.P. Pandolfi, Memorial Sloan Kettering
Cancer Centre, USA). pEGFP plasmid was co-trans-
fected to determine transfection efficiency.

Antibodies
Primary antibodies used in this work were anti-p53
mouse monoclonal antibody (DO-1) (Santa Cruz, Cali-
fornia, USA) at 1:1000 dilution, anti-LMP1 mouse
monoclonal antibody (DAKO, Denmark) at 1:500 dilu-
tion, rat monoclonal EBV LMP2A, Clone 14B7 (E.
Kremmer, Institute for Molecular Immunology, Munich)
at 1:50 dilution, anti-Akt rabbit polyclonal antibody
(Cell Signalling Technology, Danvers, USA) at 1:1000
dilution, anti-ubiquitin rabbit polyclonal antibody
(Sigma, Saint Louis, USA) at 1:100 dilution, and anti-b-
actin mouse monoclonal antibody (Santa Cruz, Califor-
nia, USA) at 1:1000 which served as a loading control
protein. Secondary antibodies used were rabbit anti-
mouse polyclonal antibody (DAKO, Denmark) at 1:2000
dilution, anti-rat Fab HRP/ECL at 1:10000 dilution and
anti-rabbit polyclonal antibody (Cell Signalling Technol-
ogy, Danvers, USA) at 1:15000 dilution.

Western blotting
Plasmid DNA was transfected into U2OS cells using
Lipofectamine 2000 (Invitrogen, Auckland, New Zeal-
and) according to the manufacturer’s instructions. After
6 h of post-transfection, the cells were either left
untreated (as control) or treated with 30 ng/ml Actino-
mycin D (Act D) (Sigma, Saint Louis, USA) or 25 μM
LY294002 (Cell Signaling Technology, Danvers, USA)
and incubated for 24 h before being harvested and sub-
jected to Western blotting. After transfection and treat-
ment with Actinomycin-D (Act D) (Sigma, Saint Louis,
USA) or PI3K inhibitor, LY294002 (Cell Signalling
Technology, Danvers, USA), or vehicle alone (as con-
trol), the cells were harvested and lysed using RIPA lysis
buffer (1% NP-40, 1% sodium deoxycholate, 0.1% SDS,
150 mM NaCl, 10 mM Na2HPO4 pH 7.2) supplemented
with protease inhibitor cocktail (Roche, Mannheim, Ger-
many), 0.2 mM PMSF and 2 mM DTT. Total protein
from the cell lysates was quantitated using Bradford
Protein Assay (BioRad, California, USA). Equal amount
of total protein (20 μg) was loaded onto 10-15% SDS-
PAGE gels and eletroblotted onto polyvinyl difluoride
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(PVDF) membranes (Millipore, Bedford, USA) at 15 V
overnight at room temperature. Following this, the
membranes were then blocked with 5% non-fat dry milk
in TBST (30 mM Tris HCl pH7.3, 0.1 M NaCl, 0.1%
Tween 20) and incubated with primary antibodies and
secondary antibodies for 1 hour each at room tempera-
ture. The proteins were visualised with Western Light-
ningTM Chemiluminescence Reagent Plus (Perkin
Elmer, Boston, USA), AmershamTM ECLTM/sup>
Western Blotting Detection Reagents (GE Healthcare,
Buckinghamshire, UK), or Super SignalR West Femto
(Pierce, Roskford, USA). Representative results of at
least 2 independent experiments were shown in Figures
1, 2, 3, 4, &5. The signals were quantitated using Image
J (NIH, Bethesda, USA).

Immunoprecipitation (IP)
The cell lysates were first pre-cleared by incubating 100
μg total protein from each sample with 50% Protein G
slurry (Upstate Cell Signaling, California, USA) on ice
for 30 min with occasional mixing. After centrifugation,
the supernatants were incubated with 1 μg anti-p53
monoclonal antibody (DO-1) (Santa Cruz, California,
USA) overnight at 4°C on a rotator. Protein G slurry
was added to each sample and rotated for 1 hr at 4°C.
The p53 protein from the immuno-complexes were
then eluted with SDS sample buffer, separated by SDS-
PAGE, and immunoblotted with anti-ubiquitin rabbit
polyclonal antibody (1:100 dilution) (Sigma, Saint Louis,
USA) as the primary antibody and the secondary anti-
body was anti-rabbit polyclonal antibody (1:15000 dilu-
tion) (Cell Signaling Technology, Danvers, USA).
Representative results of at least 2 independent experi-
ments were shown in Figures 2 and 3. The signals were
quantitated using Image J (NIH, Bethesda, USA).
(Our data is not yet publically available.)

Results
1. Effects of LMP1 or LMP2A or both on p53 protein
levels in U2OS cells
We tested the effects of individual EBV proteins LMP1,
LMP2A-HA and EBNA1 on endogenous p53 levels in
U2OS cells by transient transfection of these genes into
the cells. Out of the three EBV proteins, only LMP1 clearly
reduced the levels of endogenous p53 protein in U2OS
cells (Figure 1(a), Lane 2). The p53 protein levels in cells
transfected with LMP2A-HA and EBNA1 (Figure 1(a),
Lanes 3 and 4) did not seem to be reduced in comparison
to its basal levels in the control cells (Figure 1(a), Lane 1).

2. Effect of LMP1 or LMP2A or both on p53 protein levels
in NPC cells
Because p53 was barely detectable in NPC cell lines, we
transiently transfected the NPC cells with p53 construct

in order to study the effects of EBV proteins on exogen-
ous p53 protein levels. We used EBV-negative HONE1
NPC cells to study the effects of EBV LMP1 alone or
EBV LMP2A alone or both on the levels of overex-
pressed p53 proteins. p53 protein level in HONE1 trans-
fected with empty vector pcDNA3.1(+) was barely
detectable (Figure 1(b), Lane 1). p53 protein was highly
expressed in HONE1 transfected with p53 construct
(Figure 1(b), Lane 2). HONE1 cells co-transfected with
LMP1 and p53 showed absence of p53 protein or, in
other words, LMP1 abolished p53 protein (Figure 1(b),
Lane 3). However, LMP2A-HA only slightly reduced the
level of p53 protein in HONE1 cells transfected with
both LMP2A-HA and p53 (Figure 1(b), Lane 4). Co-
transfection of p53, LMP1 and LMP2A-HA again
resulted in the loss of p53 protein (Figure 1(b), Lane 5).
We transiently transfected EBV negative HONE1 and

EBV positive HONE-Akata cells with p53 construct
(Figure 1(c)). Untransfected cells were used as negative
control. The cells after 6 hr post-transfection were then
either treated with 30 ng/ml Actinomycin-D (Act-D) for
18 hr or left untreated. As determined in our earlier
experiment, p53 protein was barely detectable in NPC
cell lines and only slightly induced by Act-D (data not
shown). No p53 protein was detected in untransfected
cells. Upon treatment with Act-D, the p53 protein was
hardly induced. EBV-positive HONE-Akata NPC cells
had lower levels of p53 protein in comparison with
EBV-negative HONE1 both in Act-D induced and unin-
duced state.

3. Immunoprecipitation study on ubiquitinated p53
species in U2OS cells titrated with either LMP1 or LMP2A
p53 protein levels in normal cells are kept in check by
MDM2 protein which acts as a ubiquitin ligase that pro-
motes p53 protein degradation by proteosome. The
degradation of p53 protein then results in the low
expression levels of MDM2 protein, which is a p53 tran-
scriptional target gene, resulting in an autoregulatory
feedback loop between p53 and MDM2 proteins [26-29].
We hypothesised that the mechanism of action for the

reduction of p53 protein levels by LMP1 is through ubi-
quitination of p53 protein. In order to test this hypoth-
esis, we immunoprecipitated p53 protein with anti-p53
mouse monoclonal antibody (DO-1) in U2OS titrated
with increasing amounts of LMP1 and carried out Wes-
tern blot with anti-ubiquitin rabbit polyclonal antibody.
Direct Western blot (Figure 2) confirmed that LMP1
protein levels increased when LMP1 was increased
(Lanes 2-6). Increasing in amounts of LMP1 resulted in
decreasing levels of the p53 protein (Lanes 3-6). Monou-
biquitinated p53 species slightly increased in levels.
Increasing levels of LMP1 resulted in increased levels of
the polyubiquitinated p53 species (Figure 2, Lanes 1-6).
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Figure 1 LMP1, but not LMP2A or EBNA1, reduces p53 protein levels. (A) Western blot analysis of the effects of LMP1, LMP2A and EBNA1
on the expression levels of endogenous p53 protein in U2OS cells. Transfection of LMP1 reduced the level of p53 protein. (B) Co-transfection of
LMP1 abolished p53 protein level in HONE1 NPC cells transiently transfected with p53. A slight reduction in the exogenous p53 protein level in
LMP2A co-transfected in HONE1 NPC cells setting but not in U2OS cells in (A). (C) EBV-negative HONE1 and EBV-positive HONE Akata (HA) cells
were transfected with p53 construct. p53 protein levels were determined in the Actinomycin-D induced and uninduced state. EBV-positive HA
NPC cells have lower levels of p53 protein in comparison with EBV-negative HONE NPC cells. b-actin was served as a loading control in all the
three experiments. Representative blots were quantitated using Image J.
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In contrast, LMP2A-HA did not reduce p53 protein
levels in U2OS cells (Figure 3, Lanes 3-7). The p53 pro-
tein levels in LMP2A-HA transfected cells (Figure 3,
Lanes 3-7) were similar to the basal p53 protein level in
untransfected U2OS cells and in U2OS cells transfected

with empty vector control (Figure 3, Lanes 1 and 2,
respectively). Similar levels of monoubiquitinated p53
species were observed in all samples irrespective of
transfection (Figure 3, Lanes 1-7). However, no polyubi-
quitinated p53 species were seen in LMP2A-HA
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Figure 2 Polyubiquitinated p53 species detected in U2OS cells titrated with LMP1. Western blot detection of transfected LMP1,
endogenous p53 protein levels and detection of ubiquitinated p53 species in U2OS cells transiently transfected with titrated LMP1 (0.05 - 4.0
μg). For the ubiquitination experiment, p53 protein was immunoprecipitated from the cell lysate with anti-p53 mouse monoclonal antibody
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Representative blots were quantitated using Image J. Increased polyubiquitinated p53 protein was seen as high molecular weight aggregates in
LMP1 expressing cells.
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transfected U2OS cells (Figure 3, Lanes 3-7) compared
to untransfected control (Figure 3, Lane 1).

4. Reduction of p53 protein levels by LMP1 is not
dependent on the PI3K-Akt Pathway
LMP1 is known to activate the PI3Kinase/Akt pathway.
Akt activation has been shown to phosphorylate MDM2
and induces its migration into the nucleus where it

binds, ubiquitinates and degrades p53 protein resulting
in a lower level of p53 protein [30]. Therefore we
hypothesised that LMP1 reduces the p53 protein levels
through the PI3K/Akt pathway.
To determine whether LMP1 reduces p53 protein

levels through activation of the PI3K/Akt pathway in
U2OS cells, we overexpressed LMP1 in the cells in the
presence or absence of PI3K inhibitor, LY294002. As
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Figure 3 Only monoubiquitinated p53 species detected in U2OS titrated with LMP2A. Western blot detection of transfected LMP2A-HA,
endogenous p53 protein levels and ubiquitinated p53 species in U2OS cells transiently transfected with titrated LMP2A-HA (0.05 - 4.0 μg). For
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expected, the p53 level was lower in U2OS cells overex-
pressing LMP1 compared with the control (Figure 4(a),
Lanes 4 and 1, respectively). Treatment with LY294002
did not affect the reduction of p53 levels by LMP1 (Fig-
ure 4(a), Lane 6). Since we have established NPC cells
stably expressing LMP1, we then transfected CNE1-
pBabe and CNE1-LMP1 NPC stable cells with p53 con-
struct, at 6 hr post-transfection, treated with either 25
μM LY294002 overnight (18 hr) or vehicle alone
(DMSO). In the presence of LMP1 in CNE1-LMP1 cells,
the levels of transfected p53 protein were greatly
reduced (Figure 4(b), Lanes 2 and 4) when compared to
its basal levels in CNE1 with empty vector CNE1-pBabe
cells (Figure 4(b), Lanes 1 and 3) regardless of the pre-
sence or absence of LY294002.
In order to further verify the results, we transfected

U2OS cells with increasing amount of dominant

negative Akt (DN-Akt) to inhibit the PI3K/Akt pathway
in the presence of a fixed amount of LMP1. Expression
of LMP1 resulted in a reduction in the basal p53 protein
level. Increasing amount of DN-Akt did not rescue the
reduction of p53 protein levels by LMP1 (Figure 5). In
conclusion, the PI3K/Akt pathway was not involved in
the reduction of p53 protein levels by LMP1 in U2OS
cells.

Discussion
The aim of this work was to determine the effects of
EBV LMP1 and LMP2A on the levels of p53 protein. In
order to do this, we transfected U2OS cells with either
LMP1, LMP2A or EBNA1. LMP1 obviously reduced the
levels of p53 protein when compared to its basal level in
U2OS transfected with empty vector control. The levels
of p53 protein did not seem to be reduced in U2OS
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Figure 4 PI3K-Akt inhibitor LY294002 does not restore p53 protein levels. (A) Western blot analysis of the effects of PI3K inhibitor
LY294002 on the endogenous p53 protein levels in U2OS cells. The cells were treated overnight, with 25 μM LY294002 or vehicle alone (DMSO).
Treatment by LY294002 did not rescue the reduction of p53 protein levels by LMP1. (B) Western blot analysis of the effects of PI3K inhibitor
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with LY294002 did not rescue the reduction of p53 protein levels by LMP1.
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cells transfected with LMP2A-HA and EBNA1 in com-
parison to its basal levels in the control cells.
We then verified the results by transiently transfecting

HONE1 NPC cells with p53 construct, either with or
without LMP1, or LMP2A, or both. In this study we
found that LMP1 reduced the expression of p53 protein.
We then proceeded to check the expression levels of
endogenous and exogenous p53 protein levels in EBV
negative HONE1 and EBV positive HONE-Akata cells,
either treated or untreated with Actinomycin D. We
found that EBV-positive HONE-Akata NPC cells had
lower levels of p53 protein in comparison to EBV-nega-
tive HONE1 NPC cells.
In this work we have shown that LMP1 reduced or

totally abolished the exogenous p53 protein levels in
HONE1 cells co-transfected with p53 and LMP1 and

also reduced endogenous p53 protein levels in U2OS
cells transfected with LMP1. However, this is in contrast
to Li L. and colleagues (2008) who showed that LMP1
induced accumulations of p53 protein [25]. In order to
determine the mechanism of reduction of p53 protein
levels by LMP1, we treated U2OS cells either with
DMSO (vehicle control) or PI3K inhibitor LY294002,
where the cells were either transfected or untransfected
with LMP1 construct. p53 protein levels were reduced
in the presence of LMP1 and were not rescued when
the cells were treated with LY294002. In CNE1-LMP1
stable cells transfected with p53 construct and then
treated with LY294002, the p53 protein levels were not
rescued in comparison with its counterpart CNE1-pBabe
stable cells transfected with p53 construct in the
absence of LMP1. We then examined the effects of
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titrated Dominant negative Akt (DN-Akt) on the levels
of p53 protein in the absence or presence of LMP1 in
U2OS cells. We found that increasing in the amounts of
DN-Akt did not restore the p53 protein levels to its
basal levels both in untransfected U2OS cells and U2OS
cells transfected with empty vector control. Taken
together these results indicate that the reduction of p53
protein levels by LMP1 does not involve the PI3K-Akt
pathway.
As p53 protein is ubiquitinated to target it for degra-

dation, we then asked if overexpression of the latent
membrane proteins affects the levels of ubiquitinated
p53. We found that increasing the dosage of LMP1
resulted in a gradual reduction of endogenous p53 pro-
tein levels whereas titration of LMP2A-HA showed no
reduction of endogenous p53 protein levels as compared
to its basal level. Interestingly, mono- and poly-ubiquiti-
nated p53 species were found in U2OS titrated with
LMP1 whereas only mono-ubiquitinated p53 species
were observed in U2OS cells irrespective of amount of
LMP2A-HA transfected. This is the first time in which
it was demonstrated that U2OS cells transfected with
titrated LMP1 showed a distinct pattern of ubiquitina-
tion from U2OS cells transfected with titrated LMP2A-
HA. This is in concordance with the findings that
mono-ubiquitination acts as a signal for p53 nuclear
export whereas poly-ubiquitinated p53 species are tar-
geted for 26S proteosome degradation [31].

Conclusions
We found that LMP1, but not LMP2A, decreased p53
protein levels. Overexpression of LMP1 resulted in
increased polyubiquitination of p53 suggesting that the
decreased p53 protein levels by LMP1 was due to
increased degradation of the protein. The reduction of
p53 protein levels was independent of the PI3K-Akt
pathway.
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