Wylie et al. BVIC Research Notes 2011, 4:555
http://www.biomedcentral.com/1756-0500/4/555

BMC
Research Notes

SHORT REPORT Open Access

A novel mean-centering method for normalizing
microRNA expression from high-throughput RT-
gPCR data

Dennis Wylie, Jeffrey Shelton, Ashish Choudhary and Alex T Adai-

Abstract

Background: Normalization is critical for accurate gene expression analysis. A significant challenge in the
quantitation of gene expression from biofluids samples is the inability to quantify RNA concentration prior to
analysis, underscoring the need for robust normalization tools for this sample type. In this investigation, we
evaluated various methods of normalization to determine the optimal approach for quantifying microRNA (miRNA)
expression from biofluids and tissue samples when using the TagMan® Megaplex™ high-throughput RT-qPCR
platform with low RNA inputs.

Findings: We compared seven normalization methods in the analysis of variation of miRNA expression from

biofluid and tissue samples. We developed a novel variant of the common mean-centering normalization strategy,
herein referred to as mean-centering restricted (MCR) normalization, which is adapted to the TagMan Megaplex RT-
gPCR platform, but is likely applicable to other high-throughput RT-gPCR-based platforms. Our results indicate that
MCR normalization performs comparable to or better than both standard mean-centering and other normalization

that closely track the mean of expressed miRNAs.

methods. We also propose an extension of this method to be used when migrating biomarker signatures from
Megaplex to singleplex RT-gPCR platforms, based on the identification of a small number of normalizer miRNAs

Conclusions: We developed the MCR method for normalizing miRNA expression from biofluids samples when
using the TagMan Megaplex RT-gPCR platform. Our results suggest that normalization based on the mean of all
fully observed (fully detected) miRNAs minimizes technical variance in normalized expression values, and that a
small number of normalizer miRNAs can be selected when migrating from Megaplex to singleplex assays. In our
study, we find that normalization methods that focus on a restricted set of miRNAs tend to perform better than
methods that focus on all miRNAs, including those with non-determined (missing) values. This methodology will
likely be most relevant for studies in which a significant number of miRNAs are not detected.

Background

MicroRNAs (miRNAs) are small, non-coding RNA
molecules that have key regulatory roles in mammalian
cells. Misregulation of miRNA expression has been
implicated in several diseases including cancers, result-
ing in a growing interest in identifying miRNA biomar-
kers with diagnostic value [1]. Extracellular circulating
miRNAs have been detected in serum, plasma, and
other body fluids (collectively referred to as biofluids) by
real-time quantitative RT-PCR (RT-qPCR), opening up
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the possibility for the use of these miRNAs as novel
clinical biomarkers [2,3].

TagMan Megaplex RT-qPCR technology enables the
simultaneous detection of 377 miRNAs from a single
reverse transcription reaction, greatly reducing the
amount of starting material and the number of RT reac-
tions required for quantitative gene expression analysis
[4]. Because singleplex RT-qPCR is considered to have
the highest standard of sensitivity and is a preferred for-
mat for clinical tests, it will be critical to develop analy-
tical tools to reconcile differences between the two
platforms, so that potential miRNA biomarkers can be
more accurately migrated to development.
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Normalization—the process of reducing technical error
or variation between samples—is critical for accurate
expression analysis. In studies with tissue samples, RNA
input is typically equalized between samples before ana-
lysis, removing variation due to RNA concentration dif-
ferences. One of the most significant challenges in
quantifying miRNA expression from biofluids is the fact
that the RNA concentration is typically below the limit
of quantitation by spectrophotometry, making it difficult
to measure and equalize RNA input levels before analy-
sis by RT-qPCR. Another challenge is the lack of stan-
dardized protocols for RNA purification from biofluids;
further increasing variability when comparing samples
that have undergone different procedures.

Normalization of singleplex miRNA RT-qPCR data
from solid tissue samples has been thoroughly evaluated
at Asuragen [5] and elsewhere [6-8]. However, our cur-
rent work is focused on the high-throughput analysis of
miRNA expression using the TagMan Megaplex RT-
qPCR platform. Thus, we propose MCR, a novel varia-
tion on the strategy of mean-centering, for normalizing
miRNA RT-qPCR data when using the TagMan Mega-
plex platform. We also propose CCR, a normalizer
selection strategy to enable migrating signatures from
Megaplex to singleplex RT-qPCR. This strategy aims to
identify normalizer miRNAs whose expression values
across samples most closely track the mean value of all
miRNAs.

Materials and methods

RNA isolation and RT-qPCR

All experimental work was performed at Asuragen by
Asuragen’s Pharmacogenomics Services Group using
internally developed and optimized protocols. Human
placenta and brain total RNA was obtained from
Ambion, part of Life Technologies. For these reference
RNAs, six different mass inputs (100 ng, 10 ng, 1 ng, 0.5
ng, 0.05 ng, and 0.005 ng) were used for reverse tran-
scription (RT). For the biofluid studies, blood samples
were collected from healthy donors after obtaining
informed consent, under institutional review board-
approved protocols. Sera was pooled, divided into ali-
quots, and stored at -80°C. Total RNA was isolated
from the serum and the RNA equivalents of serum
volumes of 300 pL, 200 uL, 100 pL, 50 pL, and 25 pL
were used for RT. TagMan Megaplex RT and preampli-
fication reactions were performed using equal volumes
of input RNA according to the manufacturer’s protocol,
and real-time PCR was run on the TagMan miRNA
Array Card A using the Applied Biosystems 7900HT
Real-Time PCR System. Data were processed and
exported with Applied Biosystems SDSv2.3 software,
and were subsequently analyzed using the R program-
ming language.
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Normalization

Additional file 1: Figure S1 and Additional file 1: Figure
S2 depict the pseudocode for the MCR and CCR algo-
rithms, respectively. Existing normalization methods
were implemented as described previously [6-11] or are
available through the appropriate R packages (limma for
MAD-scaling and quantile normalization, and epiR for
the estimate of the concordance correlation coefficient).
The geNorm and NormFinder algorithms were imple-
mented at Asuragen, and were run to choose normali-
zers considering only fully detected miRNAs (those with
Ct values less than 40). Normalizer selection using the
CCR algorithm was also restricted to fully detected miR-
NAs, though for this algorithm a Ct threshold of less
than 35 was required for a miRNA to be considered
detected in a given sample.

It should be noted that the presence of one or more
samples with significantly lower overall RNA content
can significantly reduce the size of the fully detected
miRNA set. This problem, particularly for normalizer-
based methods, is compounded by the increased noise
in Ct determination for probes detected only at very
high Ct values (35-40 Ct), which may render the mea-
surements for such probes unreliable. As a result, the
CCR algorithm provides an option to treat Ct values
above a user-specified threshold as non-detected. This
threshold may be adjusted upward in the presence of
RNA-depleted samples, to include miRNAs that are
detected strongly in most samples but weakly in samples
with depleted RNA content. Alternately, the maximum
Ct threshold of the CCR algorithm may be adjusted
downward when no such depleted samples are present,
thereby removing weakly detected miRNAs.

Results and discussion

We evaluated methods that were previously developed
for normalization of RT-qPCR messenger RNA (mRNA)
data. These methods include geNorm [6] and NormFin-
der [7], alongside the conceptually simpler mean-center-
ing (MC) method proposed by Mestdagh et al. [8]. We
also considered two other techniques developed for nor-
malization of mRNA microarray data: the median abso-
lute deviation (MAD) scaling algorithm (Scale) [9,10],
and quantile normalization [11]. Furthermore, we devel-
oped and investigated two additional strategies of nor-
malizing miRNA RT-qPCR data when using the
TagMan Megaplex platform. The first method extends
the advantages of mean-centering normalization [8] to
situations in which the mean itself may be unreliable, e.
g., in biofluid miRNA RT-qPCR samples for which a
substantial fraction of miRNA data values may be miss-
ing. This approach, which we refer to as mean-centering
restricted (MCR), is designed to track the mean of only
the miRNAs found present (100% detected) across all



Wylie et al. BVIC Research Notes 2011, 4:555
http://www.biomedcentral.com/1756-0500/4/555

samples (See Additional file 1: Figure S1 for pseudo-
code). As an extension of this method, we also devel-
oped a normalization strategy that will be applicable
when migrating from Megaplex (hundreds of miRNAs)
to singleplex (generally tens of miRNAs) RT-qPCR. This
strategy, herein referred to as concordance correlation
restricted (CCR) normalization, uses a concordance cor-
relation coefficient [12] to select miRNAs that are con-
cordant with the restricted mean expression value (See
Additional file 1: Figure S2 for pseudocode).

We used titration studies (Figure 1) to evaluate each
normalization method on Megaplex RT-qPCR data. In
each study, we calculated the standard deviations of nor-
malized expression levels of each miRNA associated
with each normalization method (Figure 2 and Addi-
tional file 1: Figure S3). We found the MCR method to
produce among the lowest mean estimates of standard
deviations compared to the other normalization meth-
ods. The normalizer-based methods (geNorm, NormFin-
der, and CCR), which subtract the mean expression
values of a given subset of miRNAs from all other miR-
NAs, also performed well by this metric; on the other
hand, MAD-scaling and quantile normalization joined
non-restricted mean-centering (MC) in showing rela-
tively poor performance with regard to minimization of
technical variance.

Next, we determined which normalization procedure
best captured the underlying biological differences (i.e.,
the tissue origin) between samples. We used variance
principal component analysis [13] to estimate the per-
cent variance explained by the biological (tissue) origin
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Figure 1 Distribution of Ct values of unnormalized RT-qPCR
data. The distribution of raw (unnormalized) Ct values are shown
for each titration series performed with brain, placenta, and serum
samples. The percent non-determined calls (Ct > 40) significantly
increased with the mean Ct value of the sample.
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Figure 2 Effect of normalization method on variation of miRNA
expression. Each point represents the mean standard deviation
from all miRNAs (All miRNAs; n = 377) or the restricted set of
miRNAs (Restricted miRNAs; n = 19) on the TagMan array, but
calculated separately across all samples within a given group
(Sample Origin). The restricted set of miRNAs is the core set of
miRNAs detected across all samples in all titrations. Note that all
data were normalized together, and this is most important for
methods that share information across samples. NormFinder was
parameterized to use the sample origin for grouping. GeNorm,
NormFinder, and CCR results are based on the selection of two

miRNAs as normalizers.

of the samples used in the titration studies (Figure 3).
The results suggest that MCR normalization and the
normalizer-based methods are better able to capture the
tissue origin of the samples compared to the other nor-
malization methods (MAD-scaling, quantile normaliza-
tion, and MC).

The CCR normalizers selected from the titration studies
were miR-222 and miR-320; the average value of these
two miRNAs had a concordance correlation coefficient
with the restricted sample means of 0.992 (95% CI: 0.978-
0.997), while individually the two had concordance corre-
lations of 0.986 (miR-222) and 0.971 (miR-320) with the
restricted sample mean (the median concordance correla-
tion for all miRNAs with the restricted sample mean was
0.504, while the median Pearson correlation was 0.851).
We specified the output of two normalizers from all three
normalizer algorithms (geNorm, NormFinder, and CCR)
applied to the titration study to facilitate algorithmic com-
parisons, but it is worth noting that the improvement in
concordance correlation from adding the second normali-
zer is relatively small - if we had used the convergence cri-
terion (See Materials and Methods) of our implementation
of CCR instead of specifying the normalizer count, only
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Figure 3 Variance explained by sample origin. Bars show the
percent variance explained by sample origin (tissue type) based on
weighting results from a univariate random effect model using the
eigenvalues from principal component analysis (PCA). We used the
first three principal components and their corresponding
eigenvalues for weighting (See reference [13] for more information).
In general, MCR normalization tends to reveal more of the
biological differences between samples, and shows nominal
improvement over other miRNA (gene)-specific normalization
methods.
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miR-222 would have been selected. This is likely attributa-
ble to the high level of correlation between the Ct mea-
surements of different miRNAs over a data set whose
variance is largely driven by overall input RNA amount.
While most data sets of interest will have considerably less
variation in input RNA compared to a titration study, we
have regularly seen CCR produce only 1 or 2 normalizer
candidates.

The results from both experimental approaches sug-
gest that the MCR normalization method performs
comparable to or better than the other methods accord-
ing to the standard deviation metric. Additionally, the
CCR method exhibits comparable performance to the
more established normalizer-based methods, geNorm
and NormFinder. The CCR method will be applicable
when assays are migrated from multiplex to singleplex
RT-qPCR platforms. We note that the algorithms with
strong performance (MCR, CCR, geNorm, and Norm-
Finder) have one major feature in common: all analyze
only fully detected miRNAs. However, NormFinder and
geNorm implement complex algorithms for identifying
normalizers. In contrast, the MCR and CCR algorithms
are conceptually simpler because they rely only on a
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mean estimate of miRNA expression; thus, they are
likely to be more practical to implement, especially for
larger datasets. For example, our implementation of
CCR ran more than 100 times faster than either Norm-
Finder or geNorm when applied to a randomly gener-
ated matrix of 500 pseudogenes (with no missing
values) and 20 pseudosamples (0.13 s for CCR, 29 s for
NormFinder, and 2700 s for geNorm) (data not shown).

Conclusion
There is a critical need for robust methods of normaliz-
ing miRNA expression data from biofluid samples and
other sample types with low RNA inputs. In general, we
observed that normalizing the data is beneficial com-
pared to the absence of normalization, and that array-
based normalization methods (Scale, MC, MCR, and
Quantile) tend to perform worse than miRNA (gene)-
specific normalization methods (CCR, GeNorm, and
NormFinder), with the exception of MCR. The MCR
method, based on the mean of all fully detected miR-
NAs, reduced the standard deviations across the titra-
tion samples, while also showing maximum separation
between true biologically different sample types using
variance principal component analysis. Our results sug-
gest that the conceptually simple MCR (and its cousin
implementation CCR) normalization strategy performs
comparable to or better than existing methods for nor-
malization of high-throughput RT-qPCR data. This
strategy is well suited for studies in which a significant
number of expression values are missing (non-deter-
mined), including studies with biofluids samples.
Normalizer-based methods require that at least one
miRNA is fully detected across all samples. In cases
where no miRNAs have 100% detection, removal of the
potential outlier sample(s) usually remedies the situation.
The optimal normalization strategy for any given study
can be exhausting to uncover, but MCR and CCR should
be among the first normalization methods to evaluate.
To enable MCR and CCR adoption, we have made the
source code freely available (See Additional file 2). In
general, we would recommend using any normalizer-
based method that relies on fully detected miRNAs.

Additional material

Additional file 1: Supplemental Figures. This document contains 3
supplemental figures referenced in the main text. The first two
supplemental figures are pseudocodes detailing the MCR and CCR
algorithms, while the third figure shows the overall distribution of
standard deviations after application of different normalization methods.
Additional file 2: R source code implementing MCR and CCR. This

file contains source code that implements the MCR and CCR algorithms.
A small example that demonstrates usage is also provided.
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List of abbreviations

CCR: concordance correlation restricted; MAD: median absolute deviation;
MC: mean-centering; MCR: mean-centering restricted; miRNA: microRNA;
PCA: principal component analysis; RT-qPCR: real-time quantitative RT-PCR.
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