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Abstract

inhibitory for hTDP2 activity.

Background: Topo-poisons can produce an enzyme-DNA complex linked by a 3"~ or 5-phosphotyrosyl covalent
bond. 3-phosphotyrosyl bonds can be repaired by tyrosyl DNA phosphodiesterase-1 (TDP1), an enzyme known for
years, but a complementary human enzyme 5-tyrosyl DNA phosphodiesterase (hTDP2) that cleaves 5'-
phosphotyrosyl bonds has been reported only recently. Although hTDP2 possesses both 3"~ and 5™~ tyrosyl DNA
phosphodiesterase activity, the role of Mg®" in its activity was not studied in sufficient details.

Results: In this study we showed that purified hTDP2 does not exhibit any 5-phosphotyrosyl phosphodiesterase
activity in the absence of Mg®*/Mn?*, and that neither Zn** or nor Ca®" can activate hTDP2. Mg*" also controls 3™
phosphotyrosyl activity of TDP2. In MCF-7 cell extracts and de-yolked zebrafish embryo extracts, Mg** controlled 5™
phosphotyrosy! activity. This study also showed that there is an optimal Mg®" concentration above which it is

Conclusion: These results altogether reveal the optimal Mg®* requirement in hTDP2 mediated reaction.

Introduction

The topoisomerase II (Topll) family is an important
class of topoisomerases whose activity consists of reac-
tion cycles of DNA binding, DNA cleavage, DNA strand
passage, and religation of the cleaved DNA. DNA clea-
vage involves formation of a reversible intermediate con-
sisting of an active site tyrosine residue that forms a
phosphotyrosyl linkage with DNA. One major difference
between topoisomerase I (TopI) and Topll is that ToplI
produces 5" DNA-protein crosslinks simultaneously in
both strands whereas Topl produces 3" DNA-protein
crosslinks in one strand [1-6]. Drugs targeting these
enzymes act by preventing the religation of DNA and
produces protein-DNA covalent complexes along with
single- and double strand breaks [7,8]. However, the
repair of TopII-DNA complexes is poorly understood.
Recently, a human 5’-tyrosine phosphodiesterase
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(hTDP2) has been identified for the excision of ToplI-
DNA adducts [9,10]. Previously, TDP2 was known as
TTRAP (TRAF and TNF receptor-associated protein), a
protein of unknown function and a putative member of
the Mg>*/Mn**-dependent phosphodiesterase superfam-
ily, with the DNA repair protein apurinic/apyrimidinic
(AP) endonuclease-1 (APE-1, also known as APEX1)
being its closest relative. hTDP2 possesses both 3’ phos-
photyrosyl and 5" phosphotyrosyl activity. Knockdown/
knockout of TDP2 in A549 and DT40 cells increased
sensitivity to the Topll targeting agent etoposide but
not to the Topl targeting agent camptothecin (CPT).
The 5’-tyrosyl DNA phosphodiesterase activity of
hTDP2 can enable the repair of Topll-induced double
strand breaks (DSBs) without the need for nuclease
activity, because it creates a “clean” DSB with 5-phos-
phate termini and a 3’-hydroxyl group. These “clean”
DSBs are religatable by DNA ligase, providing an oppor-
tunity for error free repair [9,10]. hTDP2 may thus pro-
vide an “error-free” mechanism for direct end-joining of
Topll-induced DSBs. This is different from currently

© 2011 Adhikari et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:sa354@georgetown.edu
http://creativecommons.org/licenses/by/2.0

Adhikari et al. BMC Research Notes 2012, 5:134
http://www.biomedcentral.com/1756-0500/5/134

established mechanisms for DSB repair, which involve
structure-specific nucleases [11].

In the present study, we demonstrate that absolutely
no product was formed in the hTDP2-mediated reaction
in the absence of Mg”*, even with a higher concentra-
tion of hTDP2 but there is an optimal Mg>* concentra-
tion above which it is inhibitory for hTDP2 activity.
Like many other Mg”*-dependent enzymes, hTDP2
showed similar activation by Mn>*.

Results

Purification of hTDP2

The hTDP2 was purified using the methods described in
“Materials and Methods.” The best fraction of hTDP2
protein was used, which is more than 95% pure electro-
phoretically (Figure 1). We obtained 7.5 mg total protein
from 2 liter E.coli. culture with a concentration of 27
HM.

Effect of Mg?* and other divalent ions on hTDP2 activity

The activity of purified TDP2 was measured in the pre-
sence of various (0-20 mM) MgCI2 concentrations using
5-sub (details in the “Methods” section) as the substrate
(Figure 2A, B), and it was observed that Mg>* is abso-
lutely required for product formation (0.5-1 mM is the
optima). Next, we tested the effect of other divalent
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Figure 1 Purification of hTDP2. SDS-PAGE of purified hTDP2
proteins after coomassie staining. The details of the purification are
described in “Materials and Methods".
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Figure 2 Modulation of product formation by Mg?* in hTDP2-
mediated 5’-phosphotyrosyl bond cleavage reaction. (A) hTDP2
(90 pM) was reacted with a 5-sub (40 nM) at 37°C for 7 min. The
details of the reaction conditions are described in “Materials and
Methods.” (B) Data obtained in Panel A and a separate set of
experiments using 45 pM TDP2 under similar reaction conditions as
in Panel A were plotted. “Pdt" represents respective formed product
in this and other figures in the paper.

metals on hTDP2 mediated enzymatic reaction. Like
many other Mg>* -dependent enzymes hTDP2 showed
activation in presence of Mn>* but with less efficiency
than Mg®*, whereas in the presence of Zn*"or Ca®"
there is no hTDP2 mediated activity (Figure 3A, B). So
it can be concluded that Mg**/Mn®*- mediated activity
is specific. For further investigation, we performed a
detailed study with Mg*", as it is more potent to activate
hTDP2 (Figures 2 and 3). Time kinetics experiments
with 1 mM Mg>* showed that hTDP2 has extremely
fast kinetics (Figure 4A) and that the product formation
is linear for the range of 0-7 minutes [R2 < 0.99]. In the
presence of excess EDTA, no product formation was
observed (Figure 4B). EGTA cannot prevent the product
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Figure 3 Effect of different divalent metals on hTDP2-mediated
5’-phosphotyrosyl bond cleavage reaction. (A) TDP2 (90 pM) was
reacted with 5-sub (40 nM) under conditions similar to those
described in Figure 2 with the exception of the addition of different
divalent metal ions. (B) Data obtained in Panel A was plotted. Data
represent mean values with standard error derived from three

independent experiments.
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Figure 4 Characterization the effect of Mg?* in hTDP2-
mediated 5’-phosphotyrosyl bond cleavage reaction. (A) Time
kinetics experiment was performed using 45 pM TDP2 and 20 nM
of the 5-sub substrate for 0-12 mins incubating at 37°C. (B) hTDP2
(9 nM) was reacted with 5-sub (50 nM) at 37°C for 7 min in the
absence/presence of EDTA and EGTA. (C) hTDP2 (90 pM) was
reacted with a 5-sub substrate (40 nM) at 37°C for 7 min in the
presence of different concentrations of DNA. Data represent mean
values with standard error derived from three independent
experiments.

formation by Mg>* (Figure 4B). EGTA, a specific chela-
tor for Ca®*, has a significantly higher affinity for Ca**
than for Mg”*, and thus the results are in accordance
with expectations. Based on the findings that EDTA, not
EGTA, can reverse the product formation, it appears
that the Mg -mediated product formation of TDP2 is
reversible and specific. Mg** has been shown to modu-
late the double-helix structure of DNA [12]. Mg2+ may
be modifying the DNA structure by direct binding and
thus modulating the binding (and activity) of hTDP2 to
the DNA substrate. We tested this possibility by adding
an increasing amount of double stranded undamaged
oligonucleotide without tyrosyl. Results showed that
unlike EDTA, DNA could not modulate hTDP2 activity
from Mg**-mediated product formation (Figure 4C). If
Mg** binds to DNA and thus modulates the activity by
changing DNA structure, then excess amount of addi-
tional double stranded DNA should compete with the
substrate DNA for Mg?* binding. This would prevent
Mg** from binding to the substrate and modulate pro-
duct formation, but this is not the case. Thus our results
imply DNA binding of Mg>* is not responsible for its
role in product formation in the TDP2 reaction. Then
we checked the effect of Mg®* and EDTA on 5'- tyrosyl
DNA phosphodiesterase activity in MCF-7 whole cell
extract and found absolutely no product formation in
the presence of excess EDTA; although without addi-
tional Mg** (0 mM Mg>* and 0 mM EDTA), cell
extracts showed some product formation, indicating the
presence of residual metal ions in the extract (Figure
5A, B). To evaluate whether or not this property is spe-
cies dependent, we used de-yolked zebrafish embryo
extract to determine the role of Mg>* in zebrafish 5'-
tyrosyl DNA phosphodiesterase activity and found no
product formation in the absence of Mg** (Figure 5C).
We consider that it is highly possible that TDP2 is
responsible for the activity shown by the cell extract and
the embryo extract, but it is possible that other
unknown proteins of similar type may also be present.
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Figure 5 Modulation of 5’-phosphotyrosyl bond cleavage by
Mg>* in MCF-7 whole cell extract and zebrafish embryo
extract. 1 ug of MCF7 whole cell extract was reacted with 5-sub (1
nM) for 10 minutes under conditions described in “Material &
Methods.” (A) Data obtained in Panel A was plotted (B) 2 ug and 4
ug of zebrafish embryo extract reacted with 5-sub (1 nM) (C) Data
represent mean values with standard error derived from three
independent experiments.

Since hTDP2 has 3’- tyrosyl DNA phosphodiesterase
activity, we also tested the Mg®*-dependency of
hTDP2’s excision activity for 3’- tyrosyl DNA substrates,
and a similar pattern was observed (Figure 6A, B).

Discussion

DNA topoisomerases carry out their reactions by gener-
ating transient covalent phosphotyrosine intermediates
with DNA. However, a variety of agents, including some
anti-cancer and anti-bacterial agents, are able to trap
topoisomerases while they are covalently bound to DNA
[1,2]. Trapping of topoisomerases leads to DNA damage
that includes strand breaks and protein covalently
bound to DNA. Strand breaks can be repaired by differ-
ent repair pathways, such as homologous recombination
and non-homologous end-joining. The removal of
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Figure 6 Modulation of product formation by Mg?* in hTDP2-
mediated 3’-phosphotyrosyl bond cleavage reaction. (A) TDP2
(180 nM) was reacted with 3-sub (1 nM) for 20 minutes under
conditions similar to those shown in Figure 1. (B) Data obtained in
Panel A was plotted. Data represent mean values with standard
error derived from three independent experiments.
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protein covalently bound to DNA is an interesting and
unusual challenge for cells.

Topoisomerase-mediated DNA damage can be
repaired by two major classes of enzymatic activities:
nucleases and some specific phosphodiesterases. The
first identified phosphodiesterase enzyme that could
carry out this reaction was tyrosyl DNA phosphodies-
terase 1 (TDP1). Mammalian TDP1 is specific for 3’-
phosphotyrosyl linked peptide and lacks the ability to
process 5’ phosphotyrosyl- linked peptides [13,14]. It
was anticipated that other mammalian enzymes might
process 5’ phosphotyrosyl “adducts”. Recently Ledesma
and colleagues have found a protein, TTRAP, which
has this property and named this enzyme TDP2 [9].
Along with its probable neuroprotective role and role
in carcinogenesis, hTDP2 may be a very important tar-
get for chemotherapy as it repairs the toxic adducts
produced by clinical chemotherapeutic agents like eto-
poside [10]. Before being identified, hTDP2 was a
putative member of the Mg>*/Mn**-dependent phos-
phodiesterase superfamily, with the DNA repair pro-
tein APE-1 being its closest relative. Magnesium is an
absolute requirement for endonucleolytic activity of
APE1 [15-19].

Mg?* affects repair enzymes in many different ways.
Depending on the condition, it can be inhibitory to an
enzyme like N-methylpurine DNA glycosylase (MPG)
[20]. Mg** has also been shown to stimulate the turn-
over of thymine DNA glycosylase (TDG) [21]. For base
discrimination, human endonuclease-III (hNTH1) also
depends strongly on Mg>* [22]. However, most impor-
tantly Mg®* acts as a cofactor for many enzymes
involved in oxidative phosphorylation, nucleic acid and
protein synthesis, and mitotic activity of normal cells.
Addionally, ToplI also requires Mg>* for its activity [23].

In this study we have shown that hTDP2 has robust 5’
phosphotyrosyl bond cleaving activity and that Mg>* is
essential for it. We show that hTDP2 has optimum
activity in a broad concentration range of Mg>* (0.25-2
mM), but at very high concentrations (10-20 mM) the
activity is inhibited (Figure 2). So, experiments of
hTDP2 activity containing 10-20 mM Mg>* underesti-
mate its enzyme efficiency [9,10]. Mg>*-mediated inhibi-
tion can be due to potential non-specific binding of
excess Mg>* to hTDP2. It is also possible that hTDP2,
like APE1, has two possible binding sites for Mg>*
[17,19]. One binding site may have more affinity
towards Mg”>* and may be important for activity.
Another binding site with weak Mg>* affinity is impor-
tant for inhibition of product formation. In that case,
Mg?* binding can regulate hTDP2 activity. Notably,
intranuclear Mg** concentration is highly variable, and
depending on conditions, may vary up to 75 mM. It is
reported that some tumor cells contain higher Mg**
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amount in the nucleus compared to normal cells
[24,25].

Alternatively, one can predict that along with the pro-
tein, Mg>* can bind to the DNA and change the DNA
conformation to the active (product forming) conforma-
tion. To rule out this possibility, we executed the experi-
ment with additional DNA of the same size and
sequence without the phosphotyrosyl residue and found
that it did not have any effect on the reaction (Figure
4C). Moreover, one can predict that, other than Mgz*,
the anion (Cl") may have an effect on hTDP2’s activity.
We used 50 mM KCl concentration in all our reactions
for this study. Thus, further addition of 1 mM MgCl2
should increase negligible CI" compared with the exist-
ing CI” ions. More importantly if the anion (CI") is cru-
cial for hTDP2 reaction, one could expect a similar
effect since all cationic metals used in this study have
the same anionic counterpart (Figure 3). However, our
results demonstrate that this not the case. On the other
hand, like many other Mg>**-dependent enzymes,
hTDP2 is active in the presence of Mn?*, whereas in the
presence of Zn**or Ca”* there is no hTDP2-mediated
activity, showing that this Mg**/Mn>*-mediated activity
is specific. Also, there is absolutely no product forma-
tion in the presence of EDTA, even under very high
substrate and protein concentrations (Figure 4B). The
fact that absolutely no product is formed strongly indi-
cates that the product formation is absolutely dependent
on Mg>*. This effect of Mg>* is similar in zebrafish
embryo extract and in MCF7 cell extract, indicating that
it is true across species.

Conclusion

We have demonstrated here that Mg** is essential for
the catalytic activity of hTDP2, but there is an optimal
Mg** concentration above which it is inhibitory for
hTDP2 activity. Thus, our results elucidate the optimal
concentration Mg>* requirement for hTDP2 activity.

Methods
Cloning and purification of recombinant human TDP2
(hTDP2)
An expression construct encoding hTDP2 was prepared
by ligating a PCR product containing the hTDP2 coding
sequence at Ndel and BamH] sites of the pET15b vec-
tor. PCR was carried out using a cDNA construct of
TDP2 bought from Open Biosystems (Huntsville, AL) as
the template and primers (5-CATATGGAGTTGG-
GAGTTGC-3" and: 5-GGATCCTTACAATATTA-
TATCTAAGTTGCACAGAAG-3.) The primers allowed
the introduction of Ndel and BamHI sites at 5" and 3’
ends, respectively.

The PCR products were then subcloned in TA cloning
vector, digested with Ndel and BamH]I, and subcloned
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into expression vector pET15b at Ndel/BamHI sites,
allowing us to express hTDP2 protein. The identity of
the construct was confirmed by DNA sequencing.
hTDP2 was overexpressed in E.coli BL21(DE3) cells and
purified to near electrophoretical homogeneity as fol-
lows. E. coli BL21(DE3) carrying the construct with
hTDP2 was grown in magnificent broth (MacConnell
Research, CA) at 37°C until the absorbance at 600 nm
reached 1. The culture was cooled to 25°C and, after the
addition of IPTG to 1 mM, was grown at 25°C for 16 h
prior to chilling to 0°C. All subsequent procedures were
carried out at 0°C. After the bacteria were harvested by
centrifugation, they were resuspended in Buffer A (40
mM Tris-HCI pH 7.5, 10% glycerol, 300 mM NacCl,
0.05% Tween -20, 1 mM DTT, 30 mM Imidazole.) The
cells were then lysed as described previously [26]. The
lysate was clarified by centrifugation at 27000 rpm
(rotar: Beckman Coulter, 50.2 Ti) for 30 min and the
supernatant was applied to a 1 ml Ni-NTA column,
which was pre-equilibrated with Buffer A. The column
was washed with 10-column volumes of Buffer A and
eluted with a gradient of 0-100% of Buffer B (Buffer A
plus 500 mM Imidazole) in Buffer A. The best fractions
containing hTDP2, tested by SDS-PAGE, were pooled
and dialyzed against storage Buffer C (25 mM Tris-Cl,
pH 7.5, 100 mM NaCl, 1 mM DTT, 10% glycerol). Pro-
tein concentration was measured by UV absorbance at
280 nm using an extinction coefficient of 43,150 (M
cm™). After confirming its identity by mass spectrome-
try, the protein was stored at -80°C in aliquots for future
use.

Oligonucleotide substrates preparation

3’ -phosphotyrosyl and 5’-phosphotyrosyl- containing
oligonucleotide (3-sub and 5-sub) was made as
described previously [27].

5’- and 3-' tyrosyl DNA phosphodiesterase activity assay
of hTDP2

The purified hTDP2 proteins were individually incu-
bated with labeled double stranded 5’-phosphotyrosyl
oligonucleotide substrate (5-sub) in the presence of dif-
ferent divalent metal ions/EDTA/EGTA for 7 min at 37°
C in an assay buffer (50 mM Tris-Cl, pH 7.5, 1 mM
DTT, 50 mM KCI and 100 pg/ml BSA) in a total
volume of 20 pl. For time kinetics experiments, 45 pM
of hTDP2 was incubated with 20 nM of substrate in the
presence of the assay buffer indicated previously with
addition of 1 mM MgCI2. The reaction was stopped by
inactivating the enzyme at 80°C for 5 min.

For the 3’- activity assay, 1 nM labeled double
stranded 3’-phosphotyrosyl oligonucleotide substrate (3-
sub) was incubated with hTDP2 protein (180 nM) in
the presence of different concentrations of MgCl2/
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EDTA for 20 min at 370 C in an assay buffer (50 mM
Tris-Cl, pH 7.5, 1 mM DTT, 50 mM KCl and 100 pg/
ml BSA) in a total volume of 20 pl.

The reaction mixture was then mixed with 20 pl load-
ing buffer containing 1x DNA dye (diluted from blue-
orange 6x loading dye; Promega, Madison, WI) and 45%
formamide and heated at 95°C for 5 min. The samples
were then resolved by sequencing gel electrophoresis
(Model S2, Life Technologies, Rockville, MD) at 50°C
containing 20% polyacrylamide and 7 M urea. Radioac-
tivity in the incised oligonucleotides was quantified by
exposing the gel to x-ray films and measuring the band
intensities using an imager (Chemigenius Bioimaging
System) with quantification software (Syngene Inc., San
Diego, CA).

5'- and 3-' tyrosyl DNA phosphodiesterase activity assay
in MCF-7 whole cell extract
Two 10 cm plates with 100% confluent MCE-7 cells
were harvested and resuspended in 1 ml buffer (40 mM
Tris-HCI, pH 7.5, 100 mM NaCl, 0.1% Tween-20, 1 mM
DTT, 10% glycerol, and 1 x protease inhibitor [Com-
plete EDTA-free protease inhibitor cocktail tablet,
Roche Diagnostics, IN]). They were sonicated (2 x 5 s)
on ice at full power using a Braun-Sonic U with a 10
minute gap between the two pulses. Then the whole cell
extract was centrifuged for 10 mins in 13000 rpm at 4°
C. The supernatant was collected and protein concen-
tration was measured by Biorad protein assay kit
(Biorad, CA). We used 1 pg of whole cell extract with 1
nM of 5-sub oligonucleotide in the presence of different
concentration of MgCI2 and EDTA for 10 min at 37°C
in an assay buffer (50 mM Tris-Cl, pH 7.5, 1 mM DTT,
50 mM KCI and 100 pg/ml BSA) in a total volume of
20 ul

The substrate and product were analyzed as described
in the previous section.

[Section2, ID = Sec12]

5’- and 3-" tyrosyl DNA phosphodiesterase activity assay
in deyolked zebrafish embryo extract
Zebrafish were raised, maintained, and crossed as
described [28]. All procedures were in accordance with
NIH guidelines on the care and use of animals and were
approved by the Georgetown University Institutional
Animal Care and Use Committee Protocol # 08-019.
Briefly, chorions were removed, in batches of 50
embryos, by limited digestion in 1 mg/ml pronase, fol-
lowed by three rinses in ice cold Ringer’s solution. The
embryos were then transferred to cold Ringer’s, contain-
ing 1 mM EDTA and 0.3 mM phenylmethylsulfonyl-
fluoride (PMSF), and deyolked by titrating through a
200 ul micropipette tip. The deyolked embryos were
rinsed in Ringer’s solution and stored at -70°C.
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Extracts were prepared from wild-type embryos at 24
hours post fertilization (hpf) following the protocol for
dechorionating and deyolking embryos [28].

Protein concentration was measured by Biorad protein
assay kit (Biorad, CA). We used 2-4 pg of embryo
extract with 1 nM of 5-sub oligo in the presence of dif-
ferent concentrations of MgCl, and EDTA for 15 min at
37°C in an assay buffer (50 mM Tris-Cl, pH 7.5, 1 mM
DTT, 50 mM KCI,, 15 nM nonspecific single-stranded
DNA and 100 pg/ml BSA) in a total volume of 20 ul.

The substrate and product were analyzed as described
in the previous section.
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