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Abstract

choice system-paced NIRS-BCI.

Background: Near-infrared spectroscopy (NIRS) is an optical imaging technology that has recently been
investigated for use in a safe, non-invasive brain-computer interface (BCl) for individuals with severe motor
impairments. To date, most NIRS-BCI studies have attempted to discriminate two mental states (e.g, a mental task
and rest), which could potentially lead to a two-choice BCl system. In this study, we attempted to automatically
differentiate three mental states - specifically, intentional activity due to 1) a mental arithmetic (MA) task and 2) a
mental singing (MS) task, and 3) an unconstrained, "no-control (NC)” state - to investigate the feasibility of a three-

Results: Deploying a dual-wavelength frequency domain near-infrared spectrometer, we interrogated nine sites
around the frontopolar locations while 7 able-bodied adults performed mental arithmetic and mental singing to
answer multiple-choice questions within a system-paced paradigm. With a linear classifier trained on a ten-
dimensional feature set, an overall classification accuracy of 56.2% was achieved for the MA vs. MS vs. NC

classification problem and all individual participant accuracies significantly exceeded chance (i.e, 33%). However, as
anticipated based on results of previous work, the three-class discrimination was unsuccessful for three participants
due to the ineffectiveness of the mental singing task. Excluding these three participants increases the accuracy rate
to 62.5%. Even without training, three of the remaining four participants achieved accuracies approaching 70%, the
value often cited as being necessary for effective BCI communication.

Conclusions: These results are encouraging and demonstrate the potential of a three-state system-paced NIRS-BCl

with two intentional control states corresponding to mental arithmetic and mental singing.

Background

Many individuals with severe and multiple motor disabil-
ities cannot communicate through the conventional ave-
nues of speech and gesture. Many such individuals may
also lack sufficient motor control to operate common
movement-based access devices (e.g.,mechanical switches,
eye-trackers) [1]. Brain-computer interface (BCI) technolo-
gies are controlled through brain activity alone, and may
provide these individuals with an alternative, movement-
free means of access [2]. Near-infrared spectroscopy
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(NIRS) is an optical imaging technology that has been
recently investigated as a safe, non-invasive brain response
measurement technology for potential use in BCI applica-
tions [3-6]. NIRS can be used to assess functional activity
in the cerebral cortex via measurement of the haemody-
namic response (see [7] for description of fundamental
principles). NIRS offers a number of advantages for BCI
applications compared to the more frequently studied
electroencephalography (EEG), such as insensitivity to
electrophysiological artefacts (e.g., EMG, EOG) and, when
monitoring regions not covered by hair (e.g. prefrontal
cortex), much faster and easier sensor placement (e.g., no
need for electrode gel [8]). Note that NIRS optode place-
ment in areas covered by hair is much more difficult, and
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may take considerably longer to achieve adequate signal-
to-noise ratio.

Generally, a user controls a BCI output by consciously
eliciting distinct, reproducible patterns of activation in a
particular brain region. This is usually done by performing
different mental tasks, such as motor imagery [3,4], mental
arithmetic [5,6,9-12], mental singing [5,6] and verbal tasks
[10,11]. The system then detects and interprets these pat-
terns of activity, and produces the appropriate command
signal to control a connected external device (e.g., compu-
ter cursor) in the way the user intended.

For the most part, previous research has investigated the
development of NIRS-BCIs operating under synchronous
control paradigms. Under synchronous control, the system
evaluates the user’s brain activity for control (i.e., is vigi-
lant) only during certain periods defined by the system,
and users must exert intentional control over their brain
activity (i.e., generate what we refer to as an “intentional
control (IC) state”) during each and every one of these
“system-vigilant” periods. Though functional, the need for
such frequent mental state control is mentally demanding
for the user. An attractive alternative to the synchronous
control paradigm is “system-paced” control, a paradigm
proposed by Mason et al. [13], in which users are required
to intentionally control their brain activity only during the
system-vigilant periods in which they actually wish to
affect the BCI output, and can remain in a more natural,
“no-control (NC)” state at all other times. This paradigm
can be considered an intermediate step between synchro-
nous control and the “ideal” asynchronous, or self-paced,
paradigm. See [14] for a full discussion of the different
BCI control paradigms and their implications for NIRS-
BCL

In a previous study, we investigated the feasibility of a
system-paced NIRS-BCI with one IC state corresponding
to the performance of either mental arithmetic (MA) or
mental singing (MS) [14]. These tasks were chosen as
they had both been previously shown to elicit activation
in the prefrontal cortex [5,6,9,10,12,15-19]. The precise
conditions that induce prefrontal activation during men-
tal arithmetic are not well understood [20], but could be
associated with working memory [21,22], mental stress
[23,24], or other general cognitive operations that are
instrumental, but not specific, to mental arithmetic
[21,25]. Music is known to elicit [26,27] intense emo-
tional responses that activate brain regions believed to be
associated with emotional behaviors, including the pre-
frontal cortex [28] and specifically, the orbitofrontal and
frontopolar areas [29,30]. We found that both mental
arithmetic and music imagery could be automatically dis-
tinguished from the NC state with average accuracies of
71.9% and 63.1%, respectively, across participants.
Though the overall classification result achieved for the
MS vs. NC classification problem was lower than that
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achieved for MA vs. NC, it is important to note that large
inter-participant variation was observed for the former
task. High accuracies for the MS vs. NC problem, close
to or even exceeding the corresponding MA vs. NC
results, were achieved for three of seven participants (>
70%). For one other participant, maximum accuracy
achieved for MS vs. NC (63%) was lower than for MA vs.
NC, but still significantly above chance. The results for
the remaining three participants, however, were all below
chance for the MS vs. NC problem. We believe that the
greater inter-participant variability was due to the more
subjective nature of the mental singing task, in which
participants mentally rehearsed self-selected musical
pieces and were instructed to try to feel the emotion eli-
cited by the song (it has been suggested that incorporat-
ing this self-monitoring element in an emotional
induction task can result in an increase in the prefrontal
hemodynamic response as compared to more passive
emotional tasks [31]). Some individuals may have been
able to do this more consistently/effectively than others.
It is possible that, if given neurofeedback of their
response, even those participants for whom mental sing-
ing was ineffective in this study could learn to evoke a
detectable response. Collectively, these results are
encouraging, and demonstrate the potential of a system-
paced NIRS-BCI with one IC state corresponding to
either mental arithmetic or mental singing, but suggest
that mental singing may not represent a suitable IC state
for all users.

In the present study, we wish to expand on our pre-
vious results and investigate the feasibility of a system-
paced NIRS-BCI with two IC states corresponding to
mental arithmetic and mental singing. This is desirable
because increasing the number of states recognized by
the system increases the functionality/information trans-
fer rate of the BCI. For example, a system-paced BCI
with one IC state recognizes two different states (i.e., one
IC state and the NC state) and thus allows for a two-
choice system (e.g., IC = “yes’ and NC = “no”). The addi-
tion of a second IC state increases the number of recog-
nized states to three (i.e., the two IC states and the NC
state). This in turn allows for a three-choice system (e.g.,
IC, = “yes”, IC, = “no” and NC = “choosing not to
respond”). By increasing the number of recognized states,
one increases the number of distinct messages the user
can convey.

This is the first NIRS-BCI study to attempt single-trial
classification of more than two intentionally- and autono-
mously-generated mental states (i.e., not dependent on
external prompting, and thus suitable for active BCI con-
trol). More specifically, this is the first attempt at distin-
guishing two IC states corresponding to two different
cognitive tasks - mental arithmetic and mental singing -
and an explicit NC state. We expect to achieve promising
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classification results in the cases for which both MA and
MS are individually distinguishable from the NC state
[14].

Methods

Participants

Seven able-bodied adults (two male, mean age = 25.7 +
3.1 years) were recruited from the students and staff at
Holland Bloorview Kids Rehabilitation Hospital (Tor-
onto, Canada). Individuals were excluded from partici-
pation if they had any condition that could adversely
affect either the measurements or their ability to follow
the experimental protocol. Ethical approval was obtained
from Holland Bloorview Kids Rehabilitation Hospital
and the University of Toronto. All participants provided
signed consent.

Instrumentation

Signals were acquired using a multichannel frequency-
domain NIRS instrument (Imagent Functional Brain
Imaging System from ISS Inc., Champaign, IL). Ten NIR
sources and three photomultiplier tube detectors were
secured against the participant’s forehead using a flex-
ible headband, as shown in Figure 1. The ten sources
were grouped into five pairs, each containing one 690
nm and one 830 nm source, so that each location could
be probed by the two wavelengths concurrently. The
headband was placed on the participant’s forehead such
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that the bottom row of optodes sat just above the eye-
brows, and the center column of optodes was in line
with the nose. Nine locations within a 27 cm? trapezoi-
dal area were probed, as shown in Figure 1. In the given
configuration, we considered only signals arising from
source-detector pairs (henceforth referred to as “chan-
nels”) with a separation of 3 cm, which is generally
accepted to be the ideal source-detector separation for
measuring cortical haemodynamics [32]. This yielded a
total of 18 channels (i.e., 3 detectors x 3 source-pairs
per detector x 2 wavelengths per source-pair). Data
were sampled at 31.25 Hz.

Positioning the headband to achieve adequate cou-
pling of the optodes to a participant’s forehead generally
took approximately 5-10 min.

Intentional control states - mental arithmetic and music
imagery
For the mental singing task, participants silently
rehearsed self-selected musical pieces that they felt
would elicit within them a strong, positive emotional
response. They were instructed to make an effort to feel
the emotion of the song, rather than just passively recite
the lyrics or tune.

For the mental arithmetic task, participants performed
a sequence of simple mathematical calculations begin-
ning with the subtraction of a small number (between
four and thirteen) from a three digit number, and

Figure 1 Source-detector configuration. Source-detector configuration. Each open circle represents a source-pair comprising one 690 nm and
one 830 nm source fibre, while each solid circle represents a detector. Only the source-pair/detector combinations with a separation of 3 cm
were considered. “X" denotes a point of interrogation. “*” denotes the approximate FP1 and FP2 positions of the International 10-20 System.
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continued throughout the task interval with successive
subtractions of the small number from the result of the
previous subtraction (e.g., 753-13 = 740, 740-13 = 727,
727-13 = 714, etc.). The calculation the participant was
to perform during a given system-vigilant period was
displayed on the screen. A different calculation was
given for each system-vigilant period of a given session.

Experimental protocol

Each participant completed three experimental sessions
which were conducted on different days. During each
session, participants performed a total of 32 trials. In
each trial participants were visually presented with a
question and three possible responses. The three choices
were highlighted in sequence for periods of 20 s each.
These 20 s periods constituted the system-vigilant peri-
ods of the system-paced paradigm, and were separated by
12 s intervals (to allow hemodynamics to return to the
no-control/baseline state after activation). The timing of
an example trial is shown in Figure 2. Within a given ses-
sion, no question was repeated. The same 32 questions
were used in the three different sessions, but the order
was randomized for each.

Participants were instructed to answer the questions by
eliciting the indicated IC state (i.e., MA or MS) through-
out the intervals in which their desired response(s) were
highlighted. There was not necessarily a single correct
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answer; there could be one, two, three or no correct
answers. During the intervals in which they did not wish
to make a selection, participants were not required to
control their mental activity in any particular way, but
rather were told to allow natural thought patterns to
occur without restriction. This represented the “no-con-
trol” state. To ensure that the data during the system-vig-
ilant periods could be properly labeled as MA, MS or NC,
we included only questions with obvious answers (see
example in Figure 2) and participants were asked to
explicitly verify their selection(s) at the end of each trial.
NIRS data were not recorded during this verification per-
iod. The protocol was designed such that 72 MA, 72 MS,
and 144 NC periods were recorded across the three
sessions.

Note that this multiple choice question paradigm is not
the ideal application for a system-paced NIRS-BCI with
two IC states (i.e., a three-state system). This protocol was
designed primarily to facilitate investigation of a system-
paced BCI with one IC state (i.e., a two-state system) [14],
thus the selected application reflects this. A more suitable
application for a three-state system would be one in which
the participant could select one of three (rather than one
of two) different options during each system-vigilant per-
iod; for example, yes/no questions with the possible
choices of “yes”, “no” and “choosing not to respond”.
However, since the objective in this work is simply to

Which of these
animals can walk?

% W
W

Which of these
animals can walk?

20 sec

would enter the IC state during intervals 2) and 3) -

Figure 2 Example trial stimulus sequence and timing. Example trial stimulus sequence and timing diagram. In this example, the participant
to select responses A and B - and would remain in the NC state at all other times. The task
cue at the bottom of the display indicates that this is a mental arithmetic trial. Note that at the end of each trial, when participants were asked

to explicitly verify which answer(s) they selected, they also gave a rating, on a scale of 1
during the trial. These data were used for verification purposes only and were not used in the quantitative analysis.

Which of these
animals can walk?

Which of these
animals can walk?

20 sec

-5, of how engaged they felt they were in the task
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determine if the three mental states can be automatically
differentiated from one another on a single-trial basis, the
use of these data is justified.

NIRS data pre-processing

For each trial, each of the 18 signals (i.e., 2 wavelengths
at 9 interrogation locations) was first normalized by its
own mean and standard deviation in order to account
for inter-trial differences in sensor coupling due to
removal of the headband between and (at the partici-
pant’s request) within sessions. The signals were also
linearly detrended to mitigate any effects of instrumen-
tation-related drift. The 20 s system-vigilant periods, of
which there were three per trial, were then extracted
and grouped into MA, MS and NC samples.

The raw normalised light intensity signals for each
system-vigilant period were low-pass filtered in order to
mitigate physiological noise due, primarily, to respiration
(0.2-0.3 Hz) [33], cardiac activity (0.8-1.2 Hz) and the
Mayer wave (approximately 0.1 Hz) [34]. A 3rd-order
Chebyshev type II filter was designed with cut-off fre-
quency at 0.1 Hz, stop frequency at 0.5 Hz, pass-band
loss of no more than 6 dB, and at least 50 dB of
attenuation in the stop-band.

Feature extraction

Consistent with what we know about the hemodynamic
response, we expected to see a change in the amplitude
of the light intensity signals after the commencement of
the mental task, as the concentrations of oxygenated and
deoxygenated haemoglobin change (a result of the hae-
modynamic response) and in turn alter the absorption
properties of the cortical tissue [35]. We found in an ear-
lier study that the slope of the linear regression line fit to
the signal within the system-vigilant period was effective
for discriminating the intentional control states individu-
ally from the no-control state [14]. This result corrobo-
rated the findings of other studies which had success
classifying mental activity from a controlled rest state
using similar amplitude-based features [4,5,36].

As in the earlier study, to capture the unique temporal
response for each individual (there could be intersubject
variability in time for hemodynamic response to peak,
number of peaks, etc.), as well as any temporal differ-
ences between the activities, we considered as features
the slope of the regression line fit to the signal over mul-
tiple time windows within the 20 s response period. Each
time interval was defined by a start time and an end time,
where start times ranged from 0 to 15 s, and end times
ranged from 5 to 20 s, both in 5 s increments. All possi-
ble combinations of start and end times, where the latter
exceeded the former, were considered as valid time inter-
vals for feature calculation. In total, ten different time
windows were considered. Thus the resultant feature

Page 5 of 10

pool consisted of 180 candidate features comprising the
slope of the regression line fit to each of the 18 channels
over each of the 10 time windows.

Feature selection and classification

In this study, the classification problem of interest is
mental arithmetic vs. mental singing vs. the no-control
state. A linear discriminant analysis (LDA) classifier was
trained on optimal feature subsets selected using a stan-
dard genetic algorithm (GA). Such random search algo-
rithms can allow for the evaluation of a search space
more efficiently than most other heuristic search meth-
ods [37]. The GA parameter values used are listed in
Table 1. Feature selection was based on the wrapper
method - that is, candidate feature subsets were evalu-
ated for their predictive performance using the learning
algorithm of interest [38]. To reduce search time, and to
avoid the “curse of dimensionality” (i.e., to maintain an
adequate ratio of training sample size to feature subset
dimensionality), we explicitly prescribed the subset
dimensionality of interest. Based on preliminary ana-
lyses, we chose to consider feature subsets with dim = 8§,
9, 10, 11 and 12.

The classification strategy used in this study is depicted
in Figure 3. A six-fold cross-validation was used to esti-
mate the classification accuracy. For each fold of this
external cross-validation, five independent runs of the
genetic algorithm were performed on the training data.
Within the genetic algorithm, LDA served as the fitness
function, and the mean probability of error, as estimated
by the training set, was selected as the fitness value. Of
the five feature sets selected over the five runs of the GA,
the set yielding the lowest mean probability of error was
used with the training set to train the classifier in the
given fold of the external cross-validation. Classification
accuracy was then determined for the test set (note that
for each fold of the cross-validation, the test set was not
involved in either the feature selection or the training of

Table 1 GA parameters

Parameter Value
Population Size 250
Search space dimensionality 180
Elite count 1

Parent selection roulette- wheel

Crossover function scattered
Crossover rate 0.7
Mutation function Uniform
Mutation rate 0.2

Max generations 30
Fitness function LDA

Fitness value mean probability of error
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Figure 3 Classification procedure. Classification procedure. This procedure was performed on a per-participant basis for each feature subset
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the classifier). A total of five runs of the six-fold cross-
validation was performed. Thirty accuracy measures were
thus obtained, from which a mean classification accuracy
was calculated. Note that adjusted accuracies were used,
rather than the standard accuracy measure, to account
for bias due to the imbalanced classes (recall there were
144 NC, 72 MA, and 72 MS samples). For a two-class
problem, adjusted accuracy (AA) is calculated as [39]

sensitivity + specificity
- 2

Writing this in general terms for a k-class problem gives

Z]k:l (PG)
k

where PC; is the percentage of correctly classified
samples from class j. This expression was used to calcu-
late the adjusted accuracies for the MA vs. MS vs. NC
classification problem.

To confirm the validity of our classification accuracy
estimates, we repeated the classification procedure
described above with randomized class labels. If our
classification algorithm was properly configured, these
results should be at approximately chance level (i.e.,
33% for a three-class problem).

Results
An LDA classifier trained on a 10-dimensional feature
set allowed for the most accurate classification of MA

vs. MS vs. NC across participants, yielding an average
accuracy of 56.2%. The overall average classification
accuracy, as well as all individual participant accura-
cies, significantly exceeded chance at o = 0.01 (note
that the upper confidence limit of chance for a three-
class problem, n = 288 trials and o = 0.01 is 40.4%
[40]). However, as expected, for three participants
(P2, P3 and P4) MS was classified near chance levels,
and thus even though the overall accuracy exceeds
chance, the MA vs. MS vs. NC classification cannot
be considered successful for these participants. Across
the four candidate participants (i.e., those participants
for whom MA and MS were previously found to be
individually differentiable from NC, specifically P1,
P5, P6 and P7), an average accuracy of 62.5% was
achieved. Further, each of the three classes (i.e., MA,
MS and NC) were classified well in excess of chance
for all four participants. Figure 4 shows, for one of
these participants (P7), the average hemodynamic
response for each class over the 20 s system-vigilant
period at each of the nine interrogation locations.
Note the distinct differences in the response among
the three tasks.

Table 2 reports the results for the MA vs. MS vs. NC
classification problem (LDA, dim = 10). Along with the
overall classification accuracies, it includes the per-class
classification accuracies, and the overall classification
accuracies for the same data but with randomized class
labels. As expected, these values are all approximately
33%.
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Figure 4 Example hemodynamic signals for mental arithmetic, music imagery and no-control. Normalized light intensity versus time plots
showing the hemodynamic response for mental arithmetic (red), music imagery (blue) and no-control (black) over the 20 s system-vigilant
period. Only the signals from the 830 nm sources are shown. For each task, the signals shown are the average over all samples for one of the
participants for whom the three-class classification was successful (P7). Dashed lines indicate standard error.
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Discussion

The results achieved for the four candidate participants
are very encouraging. Accuracies for three of these parti-
cipants approached 70%, the level cited by some as being
necessary for effective BCI communication [41]. With
training/practice, these individuals could potentially meet
and exceed this level [42]. A three-state system offers a
significant increase in functionality/information transfer
rate over a two-state system. The findings support the
potential of a three-state system-paced NIRS-BCI with
intentional control states corresponding to mental

arithmetic and mental singing. For three other partici-
pants, however, mental singing was ineffective, which
suggests that a three-state system based on this task may
not be suitable for all users.

A potential source of inter-participant variation in the
reported classification accuracies is the inter-individual
difference in scalp-cortex distance over the sinus frontalis.
Specifically, as sinus volume increases, NIR light traverses
a decreasing volume of grey matter, resulting in dimin-
ished sensitivity of the measurement to cortical activity
[43].

Table 2 MA vs. MS vs. NC classification results: LDA trained on 10-dimensional feature set

Participant Number

Proper Labels

Randomized Labels

AdjustedAccuracy1 (%)

NC correct (%)

MA correct (%)  MS correct (%)  Adjusted Accuracy (%)

1 64.5 + 6.9 65.6 64.3 63.6 327 £ 8.1

2’ 490+ 78 554 556 36.1 33167

3’ 465 + 80 48.1 54.2 37.2 318+ 67

4’ 479 +£55 517 54.7 374 327 +52

5 63.6 + 6.5 60.0 69.1 61.6 334+ 65

6 55.0 = 6.0 54.5 63.0 47.5 324 £56

7 66.8 + 5.8 67.6 714 61.3 334 £60

Mean (all participants): 562 + 87 504 540 43.1 328 £0.58
Mean (Participants P1,P5-P7)° 62.5 £ 5.1 61.9 67.0 58.5 33.0 £ 0.54

'The overall average classification accuracy, as well as all individual classification accuracies, are significantly greater than chance (a. = 0.01)

2As expected for this participant, classification of MS is very near chance level.
3Participants for whom both MA vs NC and MS vs NC could be classified with accuracy significantly exceeding chance [16]. These participants were considered
candidates for the MA vs MS vs NC classification problem.
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To the best of our knowledge, only two other NIRS-
BCI studies have attempted single-trial classification of
greater than two mental states [44,45]. However, these
studies focused on passive BCI applications [46] (specifi-
cally, for enhancing human-computer interaction in gam-
ing systems) and used complex tasks that depend on
external cues/stimuli and are therefore unsuitable for an
active BCI in which the user should be able to autono-
mously and spontaneously perform the task (note that
though we used visual cues in the MA task in order to
keep the experiment controlled, the cues would not be
necessary in a practical system; the user could easily
select the initial calculation to perform independently).
Specifically, they classified rest and two different diffi-
culty levels of externally-cued spatial tasks (76.7% accu-
racy) [45] or computer game play (54% accuracy) [44].
The higher accuracies reported in [45] as compared to
our results could be attributed to the following two dif-
ferences in the studies: 1) the spatial task used in [45]
was more complex than either the mental arithmetic or
mental singing task, and could have resulted in greater
activation that was more clearly distinguishable from
rest; and 2) in our study we differentiated the two tasks
and a no-control state, where the participant’s brain
activity was unconstrained. In the spatial task study, they
distinguished tasks of different difficulties from a “con-
trolled rest” exercise, though they do not explicitly define
this rest state. It is possible that brain activity was con-
strained during this period, allowing for greater discri-
minability compared to the diverse no-control state used
in our study. Also, the spatial task study does not report
per-class classification rates, thus it is not clear if all
three classes were classified successfully.

Conclusions

This is the first NIRS study to explicitly investigate the
automatic discrimination of three intentionally- and
autonomously-generated mental states suitable for active
BCI control. Specifically, we classified intentional activity
due to the performance of two different cognitive tasks -
mental arithmetic and mental singing - and the no-con-
trol state, where the user’s mental activity is uncon-
strained. With a ten-dimensional feature set and a linear
classifier, an overall classification accuracy of 62.5% was
achieved across four candidate participants for the MA
vs. MS vs. NC classification problem. All participants
attained accuracies well in excess of chance, three of
which approached 70%, the level cited by some as being
necessary for effective communication [41]. Overall,
these results are encouraging and demonstrate the
potential of a three-state system-paced NIRS-BCI with
two IC states corresponding to mental arithmetic and
mental singing.
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Endnotes

*The term “no-control” state refers to the natural state
existing when the user is not consciously modulating
his/her brain activity for the purpose of controlling the
BCI output, e.g. during periods of thinking, composing,
monitoring or daydreaming [13,47,48].

PThe upper confidence limit around the theoretical
chance level of p = 50% for a two-class problem, given
n = 144 trials and o = 0.01, is 60.6% [40]; thus any clas-
sification accuracy above this value can be said to be
significantly greater than chance at a confidence level of
99%.

“During each session, four different questions
appeared for each of the eight possible combinations of
the three choices (i.e., neither A, B nor C; A only; B
only; C only; A and B; A and C; etc.). One set of the
eight possible response combinations yields 12 IC and
12 NC periods. Therefore, (4 sets of eight possible
response combinations) x (12 IC periods and 12 NC
periods) x (3 sessions) = 144 IC periods and 144 NC
periods. The 144 IC periods were split evenly between
MA and MS, yielding 72 MA and 72 MS periods.
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