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Abstract

Background: Earlier we identified ten 100-300-bp long CTCF-binding DNA fragments selected earlier from a 1-Mb
human chromosome 19 region. Here the positive-negative selection technique was used to check the ability of
CTCF-binding human genomic fragments to block enhancer-promoter interaction when inserted into the genome.

Results: Ten CTCF-binding DNA fragments were inserted between the CMV enhancer and CMV minimal promoter
driving the herpes simplex virus thymidine kinase (HSV-tk) gene in a vector expressing also the neo" gene under a
separate promoter. The constructs were then integrated into the genome of CHO cells, and the cells resistant to
neomycin and ganciclovir (positive-negative selection) were picked up, and their DNAs were PCR analyzed to
confirm the presence of the fragments between the enhancer and promoter in both orientations.

Conclusions: We demonstrated that all sequences identified by their CTCF binding both in vitro and in vivo had
enhancer-blocking activity when inserted between the CMV minimal promoter and enhancer in stably transfected

CHO cells.

Background

Spatial, temporal and tissue specific gene expression in
mammals is largely determined by genomic cis-regulatory
elements, such as promoters, enhancers, silencers, and
insulators (for recent review, see [1,2]). A survey of about
1% of the human genome [3] indicated that the regulatory
elements were more abundant in the genome than the
genes they control and are mostly distal to the genes that
they regulate.

While the number and positions of enhancer elements
in the whole human genome can be determined with
some certainty through P300 binding [4], the number and
positions of most insulator elements are not known [2],
and methods of their identification in mammals are sparse.
Moreover, the definition of insulator is somewhat ambigu-
ous—this term designates elements with enhancer-blocking
or chromatin-bordering functions (reviewed in [5]) which
are not interrelated at least in some cases [6,7]. In addi-
tion, the term “insulator” is sometimes used to designate
the elements that bind the CTCF protein but have no pro-
ven enhancer-blocking or chromatin-bordering activity.
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Two basic approaches have been proposed to identify
many potential genomic insulators in one experiment.
One approach is based on the ChIP-on-chip or ChIP-seq
techniques with antibodies to known insulator-binding
proteins, like CTCF or CP190 [8-10]. This approach can
be used for the whole-genome analysis, but has a draw-
back that binding of a certain protein may be insufficient
for insulator activity, which may result in many false posi-
tives. Another approach is based on a functional enhan-
cer-blocking test in stably transfected cells [11,12] but is
applicable to only relatively short (several megabases)
genomic sequences.

It is well known that most mammalian insulators (with
some exceptions reported [13-15]) bind CTCF (for review,
see [16,17]). However, it was shown that CTCF has many
other genomic functions apart from insulator [17].

Earlier we developed a positive-negative selection
method allowing identification of insulators based on
their ability to prevent promoter activation by enhancer
when located between them [11]. We constructed a
pPNT/EmP plasmid [11,12] containing the neomycin-
resistance gene under control of the mouse phosphogly-
cerate kinase promoter (mPGK1) and the herpes simplex
virus thymidine kinase (HSV-tk) gene under control of
the CMV minimal promoter and CMV enhancer. HSV-tk
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catalyzes phosphorylation of ganciclovir to the monopho-
sphate [18,19] which is further converted into the tripho-
sphate by cellular enzymes and incorporated into
growing DNA chain causing termination of replication
and cell death [20,21].

The pPNT/EmP plasmid efficiently expresses the HSV-
tk gene. However, after insertion into pPNT/EmP of a
DNA fragment capable of blocking the interaction
between the CMV promoter and enhancer, the HSV-tk
expression in cells stably transfected with this plasmid
gets significantly reduced and the cells become resistant
to ganciclovir.

Using this principle, we developed a technique and used
it for identification and mapping of 18 enhancer-blocking
DNA elements within the FXYD5-COX7A1 region of
human chromosome 19. This region contains more than
40 characterized genes with different expression profiles,
and the data obtained allowed us to make conclusions on
the mutual arrangement of enhancer-blocking sequences
and genes and their possible functional interactions
[11,12].

In this work, we studied the relationship between
CTCEF binding and enhancer-blocking activity of 10
CTCE-binding genomic fragments identified earlier in
our laboratory [22]. Using a functional test described
above, we demonstrated that all fragments which bind
CTCEF both in vitro and in vivo were capable of blocking
activation of the CMV minimal promoter by the CMV
enhancer in stably transfected CHO cells.

Methods

Basic protocols

Growth and transformation of E. coli cells, preparation
of plasmid DNA, agarose gel electrophoresis, blot-hybri-
dization and other standard manipulations were per-
formed as described [23].

Constructs

Ten in vitro CTCF-binding DNA fragments cloned pre-
viously in pGEM-T (Promega) [22] were cut out with
Xho I and inserted in both orientations into pPNT/EmP
[11] using Sal I site located between the CMV enhancer
and minimal promoter.

A pPNT/mP plasmid containing the HSV-tk gene under
control of the CMV minimal promoter and conferring
resistance to neomycin and ganciclovir on transfected cells
[11] was used as one of positive controls. Another positive
control was a pPNT/E-sns-mP plasmid containing the sea
urchin Paracentrotus lividus sns insulator between enhan-
cer and promoter [24,25]. To prepare this construct, a pBS
KS + plasmid, kindly provided by R. Melfi and G. Spinelli
(University of Palermo, Italy), was cut with Hind III and
Sma 1, treated with Klenow enzyme to fill in the sticky
ends, and a ~300 bp fragment containing the sns insulator
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was isolated by agarose gel electrophoresis. The sns-con-
taining fragment was inserted in both orientations into
pPNT/EmP cut with Sal/ I and treated with Klenow
enzyme.

A negative control pPNT/E-A-mP plasmid was prepared
by insertion of a lambda phage fragment PCR-amplified
with Xho I site-containing primers ACTCGAGTCCGT-
GAGGTGAATGTG and ACTCGAGTAGTCGGCT-
CAACGTGG into Sall-digested pPNT/EmP.

The constructs obtained are shown in Figure 1. Prior
to electroporation, the constructs were linearized with
Eco47 111 (Fermentas).

To reveal possible silencer activity of CTCE-binding
fragments, the Sal I recognition site of the pPNT/EmP
plasmid was inactivated by Sal I digestion and filling in
the sticky ends with Klenow enzyme followed by self-liga-
tion. The plasmid was then cut with PspE I (SibEnzyme),
and double-stranded adapter (a hybrid of GTCAC-
CAATTGTCGACGGATCC and GTGACGGATCCGTC-
GACAATTG) containing a Sal I site (underlined) was
inserted 3’ to the HSV-tk gene. The resulting plasmid
(pPNT/EmPS, Figure 1) was used for insertion into the
novel Sal I site of CTCF-binding fragments ## 3, 7 and 8.
Prior to electroporation, the constructs were linearized
with Ssp I (Fermentas).

Cell culture and transfection

CHO-K1 cells (CCL-61, Chinese hamster ovary cells) were
grown under conditions recommended by ATCC. Electro-
poration was performed using a Gene Pulser Xcell
(BioRad) system as described previously [11], the trans-
fected cells were inoculated into 5 ml of growth medium
and incubated for 48 hours. The medium was then
replaced with fresh culture medium supplemented with
500 ug/ml of G418 (Geneticin, Gibco-BRL), and the cells
were cultured for 2 weeks in the presence of this antibio-
tic. An aliquot of the cell suspension was taken for geno-
mic DNA isolation, and residual cells were cultured for
2 more weeks after addition of 4 or 10 uM of GANC
(Sigma). The G418 and GANC resistant cells were then
collected, and genomic DNA isolated using a Wizard
Genomic DNA Purification Kit (Promega).

PCR

The first stage of nested PCR was performed using a 20 ng
genomic DNA template and primers matching the 5" and
3 flanks of the insertion site (Sal I). Structures of the pri-
mers are presented in Table 1. Primers P1L and P1R were
used for pPNT/EmP based constructs and primers P2L
and P2R - for pPNT/EmPS based constructs. The first
stage product was diluted 4-fold and 1 ul thereof was used
as a template for the second stage, where each individual
internal primer was used in combination with either P1L
or P1R in order to determine both the presence and
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Figure 1 Plasmid constructions used in this work. mPGK-1-mouse phosphoglycerate kinase | promoter; Neo®-E. coli neomycin
phosphotransferase gene; HSV-tk-herpes simplex virus thymidine kinase gene. Broken arrows indicate direction of transcription. For detailed
description, see the text.

orientation of the CTCF-binding fragments in the selected
DNA (see Table 2). PCR was performed for 20-25 cycles
at the first stage and 25-35 cycles at the second stage
using the following profile: 94°/30 s; 60°/30 s; 72°/50 s.

Real-time quantitative PCR (qPCR) was performed using
an MX3000P cycler (Stratagene) and gPCRmix-HS SYBR
(Evrogen) in a 25 ul reaction volume for 40 cycles with the
following profile: 95°C for 30 s, 65°C for 20 s, and 72°C for
30 s. The following primer pairs were used: GGCGTGGA-
TAGCGGTTTGACT and GGCACTGTCCTCAGCGT
CTCTC to reveal the pPNT/E-CTCF7-mP construct,
GGCGTGGATAGCGGTTTGACT and ACGGATGGT-
GATGCCGAGAAC to reveal the pPNT/E-A-mP con-
struct, and ACTACGGCATCTCTGCCCCTTC and
GGCACTGTCCTCAGCGTCTCTC to reveal the pPNT/
EmPS-CTCEF7 construct.

The relative DNA content was calculated according to
the formula:

Cc=1 / (2E)Np N

where C is the relative DNA content, E-efficiency of
the primer pair, and N is the number of PCR cycles
required to detect the target on templates isolated after
Neo selection (N,,) or after Neo and ganciclovir selec-
tion (Nj).

The DNA contents of different constructs were nor-
malized to that of pPNT/E-CTCF7-mP.

Results

The following constructs were prepared from the pPNT/
EmP plasmid (see Figure 1): (i) a pPNT/mP plasmid lack-
ing the CMV enhancer; (ii) a pPNT/E-sns-mP plasmid,
where the sns (silencing nucleoprotein structure) insula-
tor from the sea urchin Paracentrotus lividus [24,25] was
cloned in both orientations between the CMV enhancer
and promoter. The sns insulator was kindly provided by
G. Spinelli and R. Melfi (University of Palermo, Italy); (iii)
a pPNT/E-A-mP plasmid in which, instead of the sns
insulator, a fragment of phage lambda DNA was placed
between the CMV enhancer and promoter. In addition,
the pPNT/EmPS control plasmid was prepared that
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Table 1 Sequences of PCR primers

Fragment ID Primer ID Sequence
1 L GTTTGTGACCTGTGCCCTTT
1R GAGGCCCCGACTCTTAACTC
2 2L AGGTCCCTTCTCTCCCTGCT
3 3L AATGATATTCCTCACGGCACT
4 4L GCTCTGGGAAGAAACCACAG
4R GCAGGAGCAAGGTGAGATG
5 5L GCTTTCTGACCCGCCTTT
6 6L ATAGAGAAGCAGGGGGTGTG
6R TGCTGTTCCGTAATAACTTGCT
7 7L CACTAATGAGAGACGCTGAGGA
7R GCTTCTGGAGGGTGTTTCTG
8 8L CACTTTCTCCCACACTTCCA
8R CACCGTCCTCTGCCAACT
9 9R AAGGCACTGGCATCCTGTCT
10 10L GTACAGCCCTGGAGCAAGGAC
sns snsL ACTCGCAAACCTCAACACCT
snsk CAAAACTGGAATGGGGAAGA
Plasmid PIL GGATTTCCAAGTCTCCAGGGGAT
primers P1R ACCTCCCACCGTACACGCCT
Plasmid P2L CCGGACGAACTAAACCTGAC
primers P2R TGTAGGTACTCTGTTCTCACCCTTC

allows to insert potential enhancer-blocker outside of the
promoter-enhancer region thus making it possible to
detect silencer activity of DNA fragments.

CHO cells were electroporated with these constructs
followed by incubation for 48 h, addition of G418 and
then positive selection for 12-14 days. In these condi-
tions, non-electroporated control cells died within 7
days.
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Once the selection was complete, an aliquot was taken
from each selected sample for genomic DNA isolation,
and the remaining cells were subjected to negative selec-
tion by addition of 4 or 10 micromoles of ganciclovir. At
both ganciclovir concentrations, complete cell death was
observed in samples transfected with the pPNT/EmP and
pPNT/E-A-mP plasmids, whereas in samples transfected
with pPNT/mP and pPNT/E-sns-mP a significant portion
of cells were resistant to the ganciclovir treatment. The
partial cell death in these samples can be due to the activa-
tion of the HSV-tk promoter by endogenous cellular
enhancers.

After the positive-negative selection, genomic DNA
was isolated from the pPNT/E-sns-mP transfected cells
and used to determine the presence and orientation of
the sns insulator inserts by PCR amplification (Figure 2).
The primer pairs for amplification of the sns insulator in
both orientations and their sequences are presented in
Tables 1 and 2. As seen from Figure 2, the PCR produced
DNA fragments of the expected lengths, which means
that the HSV-tk expression in the transfected cells was
suppressed or significantly reduced, and that the sns ele-
ment in CHO cells was active as enhancer blocker in
both orientations.

Therefore, the control experiments confirmed that the
system developed could be used for selection of enhan-
cer-blocking sequences.

Enhancer-blocking activity of the CTCF-binding DNA
fragments

To check the enhancer-blocking ability of ten CTCE-
binding human genomic fragments identified earlier in
our laboratory [22], we cloned them into pPNT/EmP
between the cytomegalovirus enhancer and promoter.
Since enhancer-blocking activity of some insulators was

Table 2 Primer pairs for identification of CTCF-binding sequences in direct and reverse orientation

Fragment ID Combination of primers*
Direct orientation Reverse orientation
PPNT/EmP pPNT/EmPS PPNT/EmP PPNT/EmPS
1 P1R, 1L (522) P1R, 1R (286)
2 PR, 2L (268) P1L, 2L (290)
3 P1R, 3L (233) P2R, 1L (319 P1L, 3L (255)
4 P1R, 4L (346) P1R, 4R (317)
5 P1R, 5L (307) P1L, 5L (329)
6 PR, 6L (447) P1R, 6R (320)
7 P1R, 7L (292) P2R, 7L (378) P1R, 7R (305)
8 P1R, 8L (341) P1R, 8R (330) P2R, 8L (416)
9 P1L, 9R (267) P1R, 9R (245)
10 P1R, 10L(557) P1L, 10L (579)
sns P1R, snsL (354) P1R, snsR (368)

*Expected PCR product lengths (bp) are indicated in parentheses
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Figure 2 PCR products obtained using a genomic DNA template from transfected CHO cells after positive (G418) and positive-
negative (Ganciclovir) selection and primers specific to the sns insulator in direct (+) or reverse (-) orientation relative to the CMV

Ganciclovir

shown to be orientation-dependent [26], 20 plasmids
containing the 10 fragments in different orientations rela-
tive to the promoter were prepared. For transfection, all
20 plasmids were linearized and pooled in equal
amounts. The same amount of pPNT/E-sns-mP, contain-
ing the sns insulator in both orientations, was added to
the pool as an internal control.

In this work we used the CHO cell line successfully
employed earlier for selection of enhancer-blocking
sequences [11,12]. These cells are advantageous for the
selection because they are highly sensitive to ganciclovir
and can be efficiently transfected by electroporation.
Moreover, it was shown that insulators from the genome
of one species can maintain their activity in the cells of
other species. In particular, the 5’-HS4 chicken beta-glo-
bin insulator is active in human K562 cells [27], and the
sea urchin sns insulator can block enhancer-promoter
interactions in human osteosarcoma cells U2-OS and
human lung adenocarcinoma cells H1299 [24]. It was
also shown that human CTCEF can bind to corresponding
sites in the mouse genome [28].

CHO cells were transfected with the plasmid pool by
electroporation using conditions established previously to
provide integration of a single plasmid copy into the cell
genome [29], and then subjected to positive-negative
selection as described above. The survived cells were
used to isolate genomic DNA.

The genomic DNA was used as a template for nested
PCR. At the first stage, the fragments located between
the CMV promoter and enhancer were amplified with
primers P1L and P1R (Figure 1). The PCR product con-
tained a mixture of selected CTCEF-binding fragments

flanked by short fragments of the pPNT/EmP DNA.
This mixture was used as a template for the second
PCR round with internal primers specific for each
CTCF-binding fragment and the control sns insulator
(Table 2). Each individual internal primer was used in
combination with either P1L or PIR in order to deter-
mine both the presence and orientation of the CTCEF-
binding fragments in the selected DNA. The results of
nested PCR are presented in Figure 3. As seen from Fig-
ure 3A,B (upper panels), all 10 CTCF-binding fragments
and the control sns insulator were present in the geno-
mic DNA after G418 selection suggesting that the corre-
sponding constructs were inserted into the cellular
genome. The same fragments were revealed also after
selection with 10 uM (Figure 3A,B, lower panels) or 4
uM ganciclovir (not shown). Therefore, it can be con-
cluded that all 10 fragments which bind CTCF in vitro
make the cells resistant to ganciclovir when placed
between enhancer and promoter.

It should be noted that, apart from insulators, other
regulatory elements, silencers, might also confer resis-
tance to ganciclovir. However, silencers are known to
suppress promoter activity irrespective of their position
relative to the promoter [30]. Therefore, in the constructs
used, silencers would suppress also the activity of the
neomycin phosphotransferase promoter, and the trans-
fected cells would not survive positive selection [11].
Nevertheless, we checked possible silencer activity of
three (## 3, 7 and 8) CTCF-binding fragments by cloning
them into the pPNT/EmPS plasmid 3’ to the minimal
promoter (Figure 1). The cells transfected with these
constructs died at the negative selection stage suggesting
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Figure 3 PCR products obtained using a genomic DNA template from transfected CHO cells after positive (G418) and positive-
negative (Ganciclovir) selection and primers specific to 10 CTCF-binding DNA fragments. A-"direct’, and B-"reverse” orientation of the
fragments relative to the CMV minimal promoter. M-DNA length marker (SibEnzyme).
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that the fragments analyzed did not suppress the CMV
promoter and hence did not possess silencer activity.
Thus, these fragments could block the enhancer action
only when placed between promoter and enhancer.

To quantitatively estimate the efficiency of the CTCF
binding sequences selection, we pooled together three
constructs, namely pPNT/EmP with the CTCEF7 frag-
ment inserted between the promoter and enhancer, and
two controls-pPNT/EmPS with the CTCF7 fragment
inserted outside the promoter-enhancer pair and
pPNTE-A-mP with the lambda phage fragment inserted
between the promoter and enhancer. This equimolar
mixture was subjected to positive-negative selection pro-
cedure described above. Genomic DNAs were then iso-
lated from Neo and ganciclovir resistant cells and used
as templates for real-time quantitative PCR. The results
are presented in Figure 4.

As seen from the figure, the relative DNA content
(measured as described in Methods) of the control con-
structs was 30-40 times lower than that of the CTCF
binding fragments. These data support high efficiency of
the selection procedure and open up the opportunity for
quantitative measurement of the enhancer-blocking
effects.

Discussion

It can be therefore concluded that all 10 fragments from
the FXYD5-COX7AI region that bind CTCF in vitro
make cells resistant to ganciclovir when inserted
between enhancer and promoter, i.e. have enhancer-
blocking (insulator) activity irrespective of their orienta-
tion relative to the promoter. In addition, the enhancer-
blocking activity of the sea urchin sns insulator is also
independent on its orientation, supporting previous
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Figure 4 Relative DNA content of three constructs: pPNT/E-CTCF7-mP that contains the CTCF7 fragment between the promoter and

to detect the target (for detail, see Methods).

enhancer, pPNT/EmpS-CTCF7 that contains the CTCF7 fragment outside the promoter-enhancer pair, and pPNT/E-I-mp-the control
construct with a lambda DNA fragment inserted between the promoter and enhancer in genomic DNA of CHO cells after positive-
negative selection. The relative content was estimated by real-time PCR based on the difference between the number of PCR cycles required

findings [31]. Whereas many consider insulators to be
orientation-dependent, there are multiple examples of
orientation-independent insulators [32-35].

Earlier we demonstrated [11] that 6 out of 8
sequences identified by their ability to block enhancer-
promoter interactions were capable of binding CTCF
both in vitro and in vivo. Here, we present the evidence
that all sequences under study identified by their CTCF
binding have an enhancer-blocking activity.

The CTCF binding and enhancer-blocking potential are
not necessarily interrelated, and at least enhancer-blocking
ability can exist without CTCF binding [13-15]. This
observation is in line with Drosophila data [36] showing
that different subclasses of insulators bind different pro-
teins, such as dCTCF, GATA, Su(Hw), or BEAF, and only
part of insulators bind dCTCF. On the other hand, the
large number of CTCF binding sites in the genome sug-
gests a wide CTCEF versatility far exceeding just insulator
function and including context-dependent promoter acti-
vation/repression, hormone-responsive silencing, genomic

imprinting, and long-range chromatin interactions
(reviewed in [17]).

Recent genome-wide studies on CTCF occupancy in
different cell types shed light on general characteristics
of CTCF binding sites distribution with respect to posi-
tions of genes in the genome (see references in Table 3).
Table 3 shows that that there are cell-type specific dif-
ferences in occupancy, but it is still unclear whether
they are functionally significant or merely due to differ-
ences in computational and experimental procedures
used [37]. Although cell-type specificity of CTCF occu-
pancy is in apparent contradiction with the conclusion
that most insulator elements are not specific to indivi-
dual cell types [2], it is in line with the observation that
occupancy of CTCEF sites is dependent on their DNA
methylation status (see [38] for review).

The negative-positive selection data on enhancer-
blocking sequences obtained in this study, together with
those reported by us previously [11,12], are summarized
in Table 3 along with the ChIP-chip and ChIP-seq data

Table 3 Summary of the number and location of human potential enhancer-blocking elements

Cells Potential insulators (CTCF binding and Intergenic Intronic or  Within + 2 kb from Technique used  Ref.
enhancer- blocking sites) exonic promoter

IMR90 human 13804 46% 34% 20% ChIP-chip [10]

fibroblasts

Resting human 28661 49% 36% 15% ChIP-Seq [9,39]

CD4+T-cells

Hela 19308 56% 37% 7% ChIP-Seq [9]

Jurkat 19572 55% 36% 9% ChIP-Seq [9]

Mouse embryonic 39609 N/D N/D N/D ChIP-Seq [40]

stem cells

HelLa/CHO 28 (84000/genome) 46% 36% 18% Positive- negative  [11,12]

selection

N/D-no data
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available to-date. While the distribution of potential
enhancer-blocking sequences among different genomic
regions examined by different techniques is very similar,
the number of the enhancer-blocking sites in the genome
calculated by extrapolation of the number within a 1000-
kb genomic region found by us is considerably higher
than genome-wide evaluations. It is difficult now to
ascertain the reason for this discrepancy. For instance,
negative-positive selection might detect additional
enhancer-blocking elements which do not bind CTCE.

Conclusions

We would like to note that although our data, as well as
data of other authors, provide more or less comprehen-
sive structural information; a great challenge is to trans-
late this information into the language of insulator
function. This challenge is to a large extent due to var-
ious mechanisms of action of different insulators and
cannot be resolved by a genome-wide approach. It
demands thorough analyses of candidate insulators to
reveal all components of the regulatory networks that
involve these regulatory elements. Proper techniques for
such analyses, as e.g. 3 C, 4 C and 5 C, are already
being intensively developed.

Acknowledgements

We are grateful to Victor Potapov and Nadejda Skaptsova for
oligonucleotide synthesis, R. Melfi and G. Spinelli (University of Palermo, Italy)
for providing the sns insulator, and to Boris Glotov for critical reading of the
manuscript. The work was supported by the Scientific School program
(project NSh 2395.2008.4), the Program of the Russian Academy of Sciences
on Molecular and Cellular Biology and by the Russian Foundation for Basic
Research (project 07-04-00709).

Authors’ contributions

SA, DD and EK designed and prepared the constructs, SA and DD
performed the transfection experiments. LN, SA and DD participate in data
interpretation; LN was responsible for writing of the manuscript. EDS
conceived and coordinate the study and participate in drafting of the
manuscript. Al authors read and approved the final text.

Competing interests
The authors declare that they have no competing interests.

Received: 21 December 2011 Accepted: 5 April 2012
Published: 5 April 2012

References

1. Heintzman ND, Ren B: The gateway to transcription: identifying,
characterizing and understanding promoters in the eukaryotic genome.
Cell Mol Life Sci 2007, 64:386-400.

2. Heintzman ND, Ren B: Finding distal regulatory elements in the human
genome. Curr Opin Genet Dev 2009, 19:541-549.

3. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR,
Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, et al-
Identification and analysis of functional elements in 1% of the human
genome by the ENCODE pilot project. Nature 2007, 447:799-816.

4. Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A, Plajzer-Frick |,
Shoukry M, Wright C, Chen F, et al: ChIP-seq accurately predicts tissue-
specific activity of enhancers. Nature 2009, 457.854-858.

5. Bushey AM, Dorman ER, Corces VG: Chromatin insulators: regulatory
mechanisms and epigenetic inheritance. Mol Cell 2008, 32:1-9.

20.
21.

22.

23.

24.

25.

26.

Page 8 of 9

Recillas-Targa F, Pikaart MJ, Burgess-Beusse B, Bell AC, Litt MD, West AG,
Gaszner M, Felsenfeld G: Position-effect protection and enhancer
blocking by the chicken beta-globin insulator are separable activities.
Proc Natl Acad Sci USA 2002, 99:6883-6888.

Singh V, Srivastava M: Enhancer blocking activity of the insulator at H19-
ICR is independent of chromatin barrier establishment. Mol Cell Biol 2008,
28:3767-3775.

Negre N, Brown CD, Shah PK, Kheradpour P, Morrison CA, Henikoff JG,
Feng X, Ahmad K, Russell S, White RA, et al: A comprehensive map of
insulator elements for the Drosophila genome. PLoS Genet 2010, 6:
e1000814.

Cuddapah S, Jothi R, Schones DE, Roh TY, Cui K, Zhao K: Global analysis of
the insulator binding protein CTCF in chromatin barrier regions reveals
demarcation of active and repressive domains. Genome Res 2009,
19:24-32.

Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD,

Zhang MQ, Lobanenkov W, Ren B: Analysis of the vertebrate insulator
protein CTCF-binding sites in the human genome. Cell 2007,
128:1231-1245.

Akopov SB, Ruda VM, Batrak W, Vetchinova AS, Chernov IP, Nikolaev LG,
Bode J, Sverdlov ED: Identification, genome mapping, and CTCF binding
of potential insulators within the FXYD5-COX7A1 locus of human
Chromosome 19q13.12. Mamm Genome 2006, 17:1042-1049.

Didych DA, Akopov SB, Snezhkov EV, Skaptsova NV, Nikolaev LG,

Sverdlov ED: Identification and mapping of ten new potential insulators
in the FXYD5-COX7A1 region of human chromosome 19q13.12.
Biochemistry (Mosc) 2009, 74:728-733.

Gomos-Klein J, Harrow F, Alarcon J, Ortiz BD: CTCF-independent, but not
CTCF-dependent, elements significantly contribute to TCR-alpha locus
control region activity. J Immunol 2007, 179:1088-1095.

Magdinier F, Yusufzai TM, Felsenfeld G: Both CTCF-dependent and
-independent insulators are found between the mouse T cell receptor
alpha and Dad1 genes. J Biol Chem 2004, 279:25381-25389.

Yao S, Osborne CS, Bharadwaj RR, Pasceri P, Sukonnik T, Pannell D, Recillas-
Targa F, West AG, Ellis J: Retrovirus silencer blocking by the cHS4
insulator is CTCF independent. Nucleic Acids Res 2003, 31:5317-5323.
Ohlsson R, Renkawitz R, Lobanenkov V: CTCF is a uniquely versatile
transcription regulator linked to epigenetics and disease. Trends Genet
2001, 17:520-527.

Nikolaev LG, Akopov SB, Didych DA, Sverdlov ED: Vertebrate protein CTCF
and its multiple roles in a large-scale regulation of genome activity. Curr
Genomics 2009, 10:294-302.

Martin JC, Dvorak CA, Smee DF, Matthews TR, Verheyden JP: 9-[(1,3-
Dihydroxy-2-propoxy)methyllguanine: a new potent and selective
antiherpes agent. J Med Chem 1983, 26:759-761.

Smee DF, Martin JC, Verheyden JP, Matthews TR: Anti-herpesvirus activity
of the acyclic nucleoside 9-(1,3-dihydroxy-2-propoxymethyl)guanine.
Antimicrob Agents Chemother 1983, 23:676-682.

Crumpacker CS: Ganciclovir. N Engl J Med 1996, 335:721-729.

Oliver S, Bubley G, Crumpacker C: Inhibition of HSV-transformed murine
cells by nucleoside analogs, 2'-NDG and 2"-nor-cGMP: mechanisms of
inhibition and reversal by exogenous nucleosides. Virology 1985,
145:84-93.

Vetchinova AS, Akopov SB, Chernov IP, Nikolaev LG, Sverdlov ED: Two-
dimensional electrophoretic mobility shift assay: identification and
mapping of transcription factor CTCF target sequences within an
FXYD5-COX7A1 region of human chromosome 19. Anal Biochem 2006,
354:85-93.

Sambrook J, Russell DW: Molecular Cloning A laboratory Manual. 3 edition.
Cold Spring Harbor: CSHL Press; 2001.

Di Simone P, Di Leonardo A, Costanzo G, Melfi R, Spinelli G: The sea urchin
sns insulator blocks CMV enhancer following integration in human cells.
Biochem Biophys Res Commun 2001, 284:987-992.

Melfi R, Palla F, Di Simone P, Alessandro C, Cali L, Anello L, Spinelli G:
Functional characterization of the enhancer blocking element of the sea
urchin early histone gene cluster reveals insulator properties and three
essential cis-acting sequences. J Mol Biol 2000, 304:753-763.

Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM: CTCF
mediates methylation-sensitive enhancer-blocking activity at the H19/
192 locus. Nature 2000, 405:486-489.


http://www.ncbi.nlm.nih.gov/pubmed/17171231?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17171231?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19854636?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19854636?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17571346?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17571346?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19212405?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19212405?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18851828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18851828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12011446?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12011446?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18378700?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18378700?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20084099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20084099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19056695?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19056695?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19056695?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17382889?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17382889?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17019650?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17019650?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17019650?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17617601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17617601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17617601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15082712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15082712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15082712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12954767?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12954767?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11525835?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11525835?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20119526?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20119526?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6302255?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6302255?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6302255?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6307132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6307132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8786764?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2990104?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2990104?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2990104?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16701069?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16701069?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16701069?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16701069?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11409892?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11409892?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11124024?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11124024?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11124024?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10839547?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10839547?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10839547?dopt=Abstract

Didych et al. BMIC Research Notes 2012, 5:178 Page 9 of 9
http://www.biomedcentral.com/1756-0500/5/178

27.  Chung JH, Whiteley M, Felsenfeld G: A 5" element of the chicken beta-
globin domain serves as an insulator in human erythroid cells and
protects against position effect in Drosophila. Cell 1993, 74:505-514.

28. Filippova GN, Fagerlie S, Klenova EM, Myers C, Dehner Y, Goodwin G,
Neiman PE, Collins SJ, Lobanenkov W: An exceptionally conserved
transcriptional repressor, CTCF, employs different combinations of zinc
fingers to bind diverged promoter sequences of avian and mammalian
c-myc oncogenes. Mol Cell Biol 1996, 16:2802-2813.

29. Baer A, Schubeler D, Bode J: Transcriptional properties of genomic
transgene integration sites marked by electroporation or retroviral
infection. Biochemistry 2000, 39:7041-7049.

30. Ogbourne S, Antalis TM: Transcriptional control and the role of silencers
in transcriptional regulation in eukaryotes. Biochem J 1998, 331(Pt 1):1-14.

31. Palla F, Melfi R, Anello L, Di Bernardo M, Spinelli G: Enhancer blocking
activity located near the 3’ end of the sea urchin early H2A histone
gene. Proc Natl Acad Sci USA 1997, 94:2272-2277.

32. Belozerov VE, Majumder P, Shen P, Cai HN: A novel boundary element
may facilitate independent gene regulation in the Antennapedia
complex of Drosophila. EMBO J 2003, 22:3113-3121.

33. Ishihara K, Sasaki H: An evolutionarily conserved putative insulator
element near the 3’ boundary of the imprinted Igf2/H19 domain. Hum
Mol Genet 2002, 11:1627-1636.

34, Yannaki E, Tubb J, Aker M, Stamatoyannopoulos G, Emery DW: Topological
constraints governing the use of the chicken HS4 chromatin insulator in
oncoretrovirus vectors. Mol Ther 2002, 5:589-598.

35. Zhou J, Barolo S, Szymanski P, Levine M: The Fab-7 element of the
bithorax complex attenuates enhancer-promoter interactions in the
Drosophila embryo. Genes Dev 1996, 10:3195-3201.

36.  Gurudatta BV, Corces VG: Chromatin insulators: lessons from the fly. Brief
Funct Genomic Proteomic 2009, 8:276-282.

37. Phillips JE, Corces VG: CTCF: master weaver of the genome. Cell 2009,
137:1194-1211.

38. Filippova GN: Genetics and epigenetics of the multifunctional protein
CTCF. Curr Top Dev Biol 2008, 80:337-360.

39. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G,
Chepelev |, Zhao K: High-resolution profiling of histone methylations in
the human genome. Cell 2007, 129:823-837.

40. Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL,

Zhang W, Jiang J, et al: Integration of external signaling pathways with
the core transcriptional network in embryonic stem cells. Cell 2008,
133:1106-1117.

doi:10.1186/1756-0500-5-178

Cite this article as: Didych et al. DNA fragments binding CTCF in vitro
and in vivo are capable of blocking enhancer activity. BMC Research
Notes 2012 5:178.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central



http://www.ncbi.nlm.nih.gov/pubmed/8348617?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8348617?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8348617?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8649389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8649389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8649389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8649389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10852701?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10852701?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10852701?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9512455?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9512455?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9122184?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9122184?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9122184?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12805225?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12805225?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12805225?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12075007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12075007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11991750?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11991750?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11991750?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8985187?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8985187?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8985187?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19752045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19563753?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17950379?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17950379?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17512414?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17512414?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18555785?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18555785?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Basic protocols
	Constructs
	Cell culture and transfection
	PCR

	Results
	Enhancer-blocking activity of the CTCF-binding DNA fragments

	Discussion
	Conclusions
	Acknowledgements
	Authors' contributions
	Competing interests
	References

