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Abstract

gene encoding a glutathione-S-transferase.

Background: Non-target-site based resistance to herbicides is a major threat to the chemical control of
agronomically noxious weeds. This adaptive trait is endowed by differences in the expression of a number of
genes in plants that are resistant or sensitive to herbicides. Quantification of the expression of such genes requires
normalising gPCR data using reference genes with stable expression in the system studied as internal standards.
The aim of this study was to validate reference genes in Alopecurus myosuroides, a grass (Poaceae) weed of
economic and agronomic importance with no genomic resources.

Results: The stability of 11 candidate reference genes was assessed in plants resistant or sensitive to herbicides

subjected or not to herbicide stress using the complementary statistical methods implemented by NormFinder,

BestKeeper and geNorm. Ubiquitin, beta-tubulin and glyceraldehyde-3-phosphate dehydrogenase were identified
as the best reference genes. The reference gene set accuracy was confirmed by analysing the expression of the

gene encoding acetyl-coenzyme A carboxylase, a major herbicide target enzyme, and of an herbicide-induced

Conclusions: This is the first study describing a set of reference genes (ubiquitin, beta-tubulin and glyceraldehyde-
3-phosphate dehydrogenase) with a stable expression under herbicide stress in grasses. These genes are also
candidate reference genes of choice for studies seeking to identify stress-responsive genes in grasses.

Background

Differences in gene expression are at the root of plant
adaptive response to the environment. Analysing gene
expression patterns requires tools enabling sensitive,
precise, and reproducible quantification of specific
mRNAs. Quantitative real-time polymerase chain reac-
tion (qPCR) is currently the technique of choice for this
purpose [1]. However, technical and sample variations
usually render absolute quantification of gene expression
unreliable. Thus, a normalisation strategy using one, or
preferably several, reference gene(s) is generally imple-
mented in qPCR studies [1-4]. A reference gene must
be constitutively and constantly expressed in all experi-
mental conditions and samples studied [5,6]. Compared
to animals, relatively few studies so far had described
validated sets of reference genes in plants [7], and most
of them considered species with sequenced genomes (i.
e., crop or model species). Exceptions are the grass
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species Lolium sp. (e.g. [8,9]) and Brachiaria brizantha
[10].

Alopecurus myosuroides (black-grass, Poaceae) is a
grass weed of major economic importance in winter
crops in Europe that is removed from crops by herbicide
applications. Resistance to herbicides has evolved in
numerous A. myosuroides field populations [11]. Resis-
tance is mostly endowed by a range of mechanisms
decreasing the amount of herbicide molecules reaching
their target (non target-site-based resistance [11-13]).
This type of resistance is a major threat to crop protec-
tion, because it can confer unpredictable resistance to
herbicides with different modes of action [12]. As it is
considered to be endowed by differential regulation of
many stress-responsive genes between resistant and sen-
sitive plants [14,15], transcriptomics-based approaches
should identify genes involved. Designing a reliable
qPCR assay is a prerequisite to adequately validating the
gene expression data. Here, we describe the validation
of a set of three reference genes in A. myosuroides, a
non-model species with no genomic resources. These
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genes can reliably be used for qPCR normalisation of
gene expression data in plants resistant or sensitive to
herbicides before and up to at least 6 hours after herbi-
cide application.

Methods

Plant material

All plants used were grown from seeds in a climatic
chamber (22°C/18°C day/night; 14-h photoperiod at 450
umol m™? s™). Individual plants with a dozen tillers each
were split into ten individual tillers, and every tiller was
grown for 3 days in an individual pot before being used
for spraying experiments [13]. All tillers from a given
plant are clones, i.e., genetically identical plants at the
same growth stage (3-4 leaves). To identify genes with
stable expression among phenotypes (resistant versus
sensitive to herbicides) and among experimental condi-
tions (herbicide-treated versus untreated), a time-course
experiment was subsequently conducted. Two clones
per plant (= one sample) were collected at each of three
different times (before, 2.5 hours and 6 hours after her-
bicide application) encompassing the most crucial per-
iod after herbicide application when expression of non-
target-site-based resistance genes enables resistant plants
to survive herbicide exposure [14,15]. The basal part of
the clones (approximately 10 cm high and 100 mg fresh
weight tissue) was cut just above the ground, immedi-
ately frozen in liquid nitrogen and stored at -80°C until
RNA extraction. The basal section contains the meriste-
matic tissues, where most of the activity of chloroplastic
acetyl coenzyme A carboxylase (ACCase; EC 6.1.4.2),
the target enzyme of the herbicide used, is located [14].
Two additional clones per plant were used to character-
ise the phenotype (i.e. resistant or sensitive). The last
two clones were sprayed with water ("untreated con-
trol”). The herbicide fenoxaprop, a broadly used ACCase
inhibitor, was applied using a custom-built, single-nozzle
(nozzle 110-04; Albuz, France) sprayer delivering herbi-
cide in 300 L ha™! water at 400 kPa, at a speed of 6.6
km h™' [13]. Clones from sensitive plants from a refer-
ence population [16] were used as a control for herbi-
cide application efficacy. All clones were grown, sprayed
and collected at the same time and in the same condi-
tions. Plant survival was assessed one month after herbi-
cide application. Dead and surviving plants were
classified as sensitive and resistant, respectively.

RNA extraction, quantification and quality assessment

Total RNA from every sample was extracted and DNA
contamination removed using the RNeasy plant mini kit
(Qiagen, Hilden, Germany) following the manufacturer’s
instructions. Nucleic acid concentration of each sample
was measured twice at 260 nm using a NanoDropND-
1,000 spectrophotometer (LABTECH, Luton, UK).
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Measurement was repeated if the two measures differed
by more than 3%. Total RNA quality was assessed using
the Asg0/Asge and Asgo/As30 absorption ratios. Only
RNA samples with Ayg9/Asg0 and Asgo/Aszp ratios
between 1.8 and 2.2 and between 2 and 2.2, respectively,
were subsequently used. Total RNA integrity was
checked by electrophoresis on 0.8% (w/v) agarose gels
under denaturing conditions. Finally, RNA quality and
genomic DNA (gDNA) contamination were assessed by
capillary electrophoresis on an Experion labchip electro-
phoresis system (Bio-Rad, Hercules, USA). No gDNA
contamination was detected. Each step from total RNA
extraction to gDNA contamination assessment was per-
formed at the same time for all samples.

Total RNA was extracted from 3 sensitive and 7 resis-
tant plants at each of three time-course points (before,
2.5 and 6 hours after herbicide application), yielding
thirty RNA samples. Following quality assessment, 19 of
these samples were used for qPCR experiments (Table 1).

cDNA synthesis

c¢DNA synthesis was performed in duplicate for every
RNA sample that passed the quality controls. Reverse-
transcription (RT) reactions were performed simulta-
neously for all samples. cDNA was synthesized from 5 pg
of total RNA using the two-step RT-PCR protocol of the
Masterscript RT-PCR System (5 PRIME, Hamburg, Ger-
many). Both the oligo(dT),s primer (0.5 pg) and the ran-
dom primers (50 ng) were used with 1 pL reverse-
transcriptase in a 20 pL-reaction volume following the
manufacturer’s instructions. The two-step protocol
reduces unwanted primer dimer formation [17], which
must be avoided when using SYBR Green as the qPCR
quantification dye. Reactions were immediately stored at
-20°C until further use. To detect gDNA contamination,
all cDNA samples and a sample of A. myosuroides gDNA
were simultaneously used in PCRs to amplify a fragment
of ACCase [genbank: AM408429] using intron-spanning
primers ACVII8 (5- AGGACACGCAGAGGAACCTCT

Table 1 RNA samples used for assessment of the stability
of the candidate reference genes

Plant phenotype Herbicide application Total
BEFORE treatment  AFTER treatment
+2.5H +6H
SENSITIVE 1 2 2 5
RESISTANT 4 5 5 14
Total 5 7 7 19

Samples were assigned to five subsets according to plant phenotype or to the
time after herbicide application. Subsets containing samples collected at the
same time (BEFORE, + 2.5H or + 6H) enabled to assess gene stability between
phenotypes (i.e. phenotype effect). Subsets containing samples from plants
with a same phenotype (SENSITIVE or RESISTANT) enabled to assess the effect
of the time after herbicide application on gene stability.
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TTCATTTAC) and ACVII8R (5'- CAACTCTCCAGC
TACCACTGGCAGG). Amplicon sizes (340 bp for cDNA
and 426 bp for gDNA) were compared on 2.5% (w/v) agar-
ose gels. No gDNA contamination was detected.

Primer design
Eleven genes commonly reported as stable reference
genes in grasses and/or in studies investigating plant
response to stress were selected. They are involved in
biosynthesis pathways [glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), sucrose phosphate synthase
(SPS) and ribulose biphosphate carboxylase (RUBISCO)],
cytoskeletal structure [beta-tubulin (7UB) and actin
(ACT)], protein metabolism [elongation factor 1o (EFI),
ubiquitin ({/BQ) and cyclophilin (CYC)], and ribosomal
structure [nucleus-encoded 18S rRNA (18S) and 25S
rRNA (25S), and mitochondrial-DNA-encoded 26S
rRNA (265)].

Hardly any genomic data is available for A. myosur-
oides. Primers for reference genes (Table 2) were

Page 3 of 10

therefore designed based on conserved regions in the
homologous genes in other grasses (rice, barley, wheat,
maize, Lolium sp. and Brachypodium distachyon; Addi-
tional file 1: Table S1). Primers were designed using Pri-
mer3 [18], using a primer length = 23 + 3 bp, melting
temperature (Tm) = 60°C + 3°C, a guanine-cytosine
content around 50%, and an expected amplicon size of
150 to 250 bp. To detect gDNA contamination, the pri-
mers targeting TUB or GAPDH were designed to
amplify an intron-containing amplicon. Primers were
synthesized by MWG Biotech (Germany, Ebersberg).

PCR

Specific amplification from ¢cDNA and gDNA was
checked by PCR followed by electrophoresis on 2% (w/
v) agarose gels, and the annealing temperature opti-
mised where necessary. PCR mixes were as described
[16]. Amplicons were sequenced to confirm amplifica-
tion of the targeted gene in A. myosuroides (accession
numbers are in Table 2).

Table 2 Candidate reference genes tested and primer sequences

Reference gene' Primer sequences (5-3')% Amplicon Tm Manual PCR Regression Average
(accession number) lenght (bp)  (°C) threshold® effiz:oi/:)ncy coefficient (R>)  Cq value
(@7 F: AGCTTTGAAGTTGGCAGTAG
R: GATCGCGTATTCATGGACTTTAG Discarded (aspecific amplification)
SPS F: CATTGCAAGAACTATTTGTCACG
R: GCAGAGATCAAATGGTTCAAATC
ACT F: TGTGCTTGACTCTGGTGATG 220 58
R: TTCATAATCAAGGGCAACGTAAGC Discarded (aspecific amplification)
RUBISCO F: CATTATCAAGAAGGGCAAGATGTG 169 60
R: TGTTGTACATCCCTGGAAGTTG
GAPDH F: GTATTGTTGAGGGACTGATGACC 182 57 0.047 92 0.999 23.31
(IN599100) R: AGTAAGCTTGCCATTGAACTCAG
TUB F: TACTGTGGTTGAGCCATACAATG 162 60 0.069 98 0.993 23.87
(IN599101) R: GCAGAGATCAAATGGTTCAAATC
EFT F: CAAGTACTACTGCACCGTCATTG 199 57 0.025 89 0.984 25.10
(IN599095) R: GATCATCTGCTTCACTCCAAGAG
uBQ F: GCAAGAAGAAGACCTACACCAAG 225 60 0.054 100 0.991 19.00
(IN599096) R: CCTTCTGGTTGTAGACGTAGGTG
185 F: GTCCAGACATAGGAAGGATTGAC 245 63 0.052 106 0.995 15.08
(JN599097) R: GAACATCTAAGGGCATCACAGAC
25S F: GCATGAATGGATTAACGAGATTC 165 63 0.098 95 0.998 17.00
(IN599099) R: GGCTCCCACTTATCCTACAC
26S F: GATAGCGTACAAGTACCGTGAGG 238 63 0.102 94 0.993 2045
(IN599098) R: GTTTCGGGTCAAATAGGAAGAAC

'CYC cyclophilin, SPS sucrose phosphate synthase, ACT actin, RUBISCO ribulose biphosphate carboxylase, GAPDH glyceraldehyde-3-phosphate dehydrogenase, TUB
beta-tubulin, EF1 elongation factor 1a, UBQ ubiquitin, 785 18S ribosomal RNA (nuclear gene), 255 25S ribosomal RNA (nuclear gene), 26S 26S ribosomal RNA

(mitochondrial gene)
2F: forward primer and R: reverse primer

3The threshold for fluorescence detection was set using the logarithmic amplification plot so that it is above the background fluorescence, below the linear
region and at the beginning of the region of exponential amplification (i.e. the linear portion of the plot)
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QPCR

qPCR was performed in fast optical 0.1 ml, 96-well reac-
tion plates (MicroAmp™, Applied Biosystems, Cheshire,
UK) using the ABI PRISM 7,900 HT Sequence Detec-
tion System (Applied Biosystems, Foster City, USA).
The reaction volume (20 pl) contained 2 pl of a cDNA
RT mix diluted 125-fold, 10 pl of ABsolute QPCR SYBR
Green ROX mix (ThermoScientific, Epsom, UK) and 0.5
UM of each gene-specific primer. Polymerase activation
(95°C for 15 min) was followed by 40 quantification
cycles [95°C for 15 s, Tm (Table 2) for 30s and 72°C for
30s]. After 40 cycles, a melting-curve analysis (68°C to
95°C, one fluorescence read every 0.3°C) was performed
to check the specificity of the amplifications. Amplicon
sizes were checked on 3% (w/v) agarose gels. PCRs with
each primer pair were also performed on three samples
lacking cDNA template (negative controls).

To assess the amplification efficiency of each candi-
date gene, identical volumes of all cDNA samples (2 RT
reactions per RNA sample) were pooled. The pool was
diluted and used to generate five-point standard curves
based on a five-fold dilution series (1:5-1:3125). This
was performed in duplicate. Each duplicate series was
amplified in two independent qPCR runs. Amplification
efficiency (E) was computed as: E = 10CY® -1 [19],
where a is the slope of the linear regression model (y =
a log(x) + b) fitted over log-transformed data of the
input cDNA concentration (y) plotted against quantifi-
cation cycle (Cq) values (x). The four E-values obtained
from the dilution series were averaged for each primer
pair. E-values for different target genes were considered
comparable when included in the range of 100 + 10%
(standard curve slope of -3. 3 + 0.33) [20].

To assess gene stability, all cDNA samples that passed
quality assessment were diluted 125-fold. For each gene,
every diluted sample was amplified twice in two inde-
pendent qPCR runs. As two independent RTs were per-
formed per RNA sample, this yielded four technical
replicates per RNA sample.

Data were analysed using SDS 2.3 (Applied Biosys-
tems, Foster City, USA). To generate a baseline-sub-
tracted plot of the logarithmic increase in fluorescence
signal (DRn) against cycle number, baseline data were
collected between qPCR cycles 3 and 15, so that the
amplification curve growth begins at a cycle number
greater than the stop baseline cycle. The threshold for
fluorescence detection was set using the logarithmic
amplification plot so that it is above the background
fluorescence, below the linear region and at the begin-
ning of the region of exponential amplification.

Data analysis
To evaluate the stability of candidate reference genes
expressed as Cq values, we used BestKeeper [21],
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geNorm v. 3.5 [4] and NormFinder [22]. NormFinder
and geNorm require the transformation of Cq values by
the 2244 method [20], using the lowest Cq as a cali-
brator. BestKeeper first computes the variation in Cq
values and its standard deviation (SD) for each gene.
Genes with SD > 1 are considered unstable [21]. The
remaining genes are ranked based on pairwise correla-
tions between the Cq values of each gene and the geo-
metric mean of the Cq values of all genes (BestKeeper
Index). Candidate genes showing the strongest correla-
tion with the BestKeeper Index are considered the most
suitable [21]. NormFinder ranks the candidate genes
after their Stability Values (SV) based on the variations
of their respective transformed-Cq values within and
among groups [22]. Reference genes with the lowest SVs
are top ranked, and considered the most suitable refer-
ence genes. NormFinder subsequently computes the SV
of the combination of the two most stable genes. geN-
orm computes all possible average pairwise variation
between the candidate gene transformed-Cq values, and
provides a measure of the expression stability (M) of
each gene. An M value below 1.5 identifies stable refer-
ence genes [4]. geNorm then performs stepwise exclu-
sion of the gene with the highest M-value (least stably
expressed gene) and recalculates M values for the
remaining genes. This iterative process enables to rank
candidate genes based on their stability of expression.
As a single reference gene may not allow adequate nor-
malisation, geNorm computes the optimal number of
reference genes required for accurate normalisation by
calculating pairwise variations V,,,,,; between consecu-
tively ranked normalisation factors NF, and NF,,;,
where n and n+1 are the number of genes considered,
and NF; are the geometric means of the i best candidate
reference gene transformed Cq values. A pairwise varia-
tion of 0.15 is suggested as a cut-off value below which
the inclusion of an additional reference gene is not
required for reliable normalisation [4].

Application: Expression level of ACCase and GSTL in A
Myosuroides

UBQ, GADPH and TUB were used to normalise the
expression data of two genes. Expression data were gen-
erated using all cDNA samples that passed quality
assessment. ACCase that encodes the target of the her-
bicide used in this study is expected to be stably
expressed in herbicide-resistant compared to herbicide-
sensitive plants [14,23]. GSTL that encodes a lambda-
class glutathione-S-transferase had been shown to be
up-regulated in herbicide-resistant plants compared to
sensitive plants [24]. Amplification of a 175 bp fragment
of ACCase [genbank: AM408429] was performed using
primers ACVII 27 (5'-CACAAGATGCAGCTAGAT
AGTGGCG) and ACVII34R (5-TTCCAACAGTTCG
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TCCAGTAACGAATG) with a Tm of 60°C. Amplification
of a 156 bp fragment of a GSTL [genbank: FN394979,
EN394980, FN394981] was performed using primers
VGSTL-3 (5-GGTTCAGATATACTATTCTCACC) and
VGSTL-3R (5-CTTGAGATGCCTCTTGGCAAC) with a
Tm of 60°C. qPCR results were analysed using REST 2009
ver. 2.0.13 [25] that compares the expression level of a tar-
get gene in a ‘sample’ group using a ‘control’ group as a
reference, taking into account the respective amplification
efficiencies of each reference gene and target gene com-
puted as described in the ‘qPCR’ section. Gene expression
data analysed consisted into average Cq values computed
for two replicates (two independent qPCR runs, each per-
formed from one of two independent RT reactions). REST
2009 implements the 2“4 method to the transformation
of Cq values [20]. ACCase and GSTL expression was com-
pared in sensitive plants (‘control’) and in resistant plants
(’sample’) before, 2.5 hours and 6 hours after herbicide
application, using a pairwise fixed reallocation randomisa-
tion test (2,000 iterations).

Results

Specificity and efficiency of amplification

PCRs using primers targeting CYC and SPS were aspeci-
fic, and melting curve profiles revealed primer dimer
formation or aspecific amplification for primers target-
ing ACT or RUBISCO (Additional file 2: Figure S1A and
B). Other sets of primers designed and tested for these
four genes did not increase the specificity of amplifica-
tion (not shown). These four genes were thus not
further considered (Table 2).

The single-peak melting curves obtained for the seven
remaining candidate genes confirmed the absence of pri-
mer dimers or non-specific products (Additional file 2:
Figure S1 C-I). The no-template controls (NTCs) yielded
Cq values comprised between 31 and 35 cycles. The cor-
responding melting curves showed a small peak located
before the position of the amplicon peak observed in the
template samples. As no amplicon peak was detected in
the NTCs, the positive Cq values observed were attribu-
ted to primer dimer formation, and were ignored. Speci-
fic amplification of the expected amplicons was
confirmed by agarose gel electrophoresis (Figure 1).
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qPCR efficiency and correlation coefficients computed
from the five-fold dilution series are given in Table 2.
The amplification efficiency of EFI (89%) was just below
the 90% cut-off value. As amplification was specific for
EF1, it was included in the subsequent analyses. All six
remaining genes fulfilled our criteria for specific and
effective amplification (Table 2).

Stability of candidate reference genes

For every gene, qPCR data consisting into the mean Cq
value computed from four technical replicates was gen-
erated from each of the 19 RNA samples that passed
quality control (Table 1). The technical replicates con-
sisted into two independent qPCR runs performed on
each of two independent RT reactions per RNA sample.
Expression data was subdivided in five subsets according
to the phenotype or to the time after herbicide applica-
tion (Table 1).

BestKeeper analyses

Gene stability was assessed considering all samples as a
single set where all possible combinations of the tested
effects (time after herbicide application and phenotype)
were present. All genes except EFI were found suitable
for normalisation (SD < 1, Table 3; Additional file 1:
Table S2). Among the remaining 6 genes, the highest r
values were observed for TUB, 26S, GAPDH and UBQ.
TUB was ranked the second most stable gene because
of its SD value (1.07). 26S that had the lowest SD value
and the second highest r value was ranked the most
stable gene (Table 3; Additional file 1: Table S2).

Norm Finder analyses

To assess the effect of the plant phenotype and of the
time after herbicide application on gene stability, we
analysed three different data sets comprising all samples
1- without subset assignment; 2- with every sample
assigned to one of the subsets BEFORE, + 2.5H or + 6H
and 3- with every sample assigned to one of the two
subsets SENSITIVE or RESISTANT. 26S, TUB, GAPDH
and UBQ were the most stable genes overall and consid-
ering the time after herbicide application (Table 3). 268,
TUB, GAPDH and EFI were the most stable genes
between sensitive and resistant plants (i.e. phenotype
effect) (Table 3).

M 1

300

200
150

100

2 3 4 5 6 7T M

Figure 1 Agarose gel (3%) electrophoresis showing amplicon size for seven candidate reference genes. These genes all passed the
specificity and efficiency assessment steps. 1, TUB; 2, EF1; 3, GAPDH; 4, UBQ; 5, 25S; 6, 26S; 7, 18S. M, DNA ladder (the size of the DNA ladder
fragments is given on the left in base pairs).
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Table 3 Ranking of the candidate reference genes according to their stability value using BestKeeper and NormFinder

BestKeeper NormFinder
Reference genes® All samples All samples Herbicide effect Phenotype effect
BEFORE/+2.5H+6H SENSITIVE/RESISTANT
sp® r€ Ranking order syd Ranking order sV Ranking order sV Ranking order

265 046 0.80% 1 0.335 1 0.148 1 0.132 1
TUB 1.07 0.88* 2 0488 2 0.204 4 0.156 2
GAPDH 0.93 0.70* 3 0494 3 0.188 3 0.242 4
UBQ 0.81 0.67 4 0.515 4 0.175 2 0.254 5
255 0.50 0.53 5 0.669 5 0.258 5 0.279 6
185 0.96 042 6 1.039 7 0.378 7 0.370 7
EF1 145 0.85* 7 0.813 6 0332 6 0.231 3

“The three reference genes selected are in bold

bStandard deviation of Cq values. SD values higher than the cut-off value (1.00) are underlined

“Pearson coefficient of correlation
dStability value
*: associated p value <0.001

When the samples were not assigned to a subset or
assigned to subsets SENSITIVE or RESISTANT, the
combination of the two most stable genes was 26S and
TUB (Table 3). This combination had a SV value
(0.092) lower than that of the most stable gene (26S, SV
= 0.132; Table 3). When the samples were assigned to
the subsets BEFORE, + 2.5H and + 6 H, the most stable
combination of two genes was 26S and UBQ, with a SV
value (0.119) lower than that of the most stable gene
(26S, SV = 0.148; Table 3).

Overall, 26S, TUB, UBQ and GAPDH were identified
as the most stable genes.
geNorm analyses
The subsets BEFORE and SENSITIVE (five replicates
per subset, Table 1) did not contain enough biological
replicates to allow reliable analysis. Thus, we first used
the whole data set to assess gene stability when the two
effects (i.e. plant phenotype and time after herbicide
application) are combined. We subsequently analysed
each of the subsets + 2.5H and + 6H independently to
assess phenotype effect, and the subset RESISTANT to
assess the effect of time after herbicide application.

In all analyses, all genes showed M values below the
default cutoff value (1.5) (Figure 2). Overall, UBQ, TUB
and GAPDH were the three most stable genes, /BQ and
TUB being the most stable among all samples and
between contrasted phenotypes, and UBQ and GAPDH
being the most stable when considering the effect of the
time after herbicide application (Figure 2).

The optimal number of reference genes required for
accurate normalisation was computed. All values
obtained for the pairwise variation between consecu-
tive normalisation factors (V;; values, Figure 3) were
higher than the proposed 0.15 cutoff threshold [4]. As
recommended in this case [4], we considered the

change in the V;;; values when including additional
reference genes, and we used the lowest V;;; value to
determine the number of reference genes adequate for
normalisation. Regarding the phenotype effect
(assessed from subsets + 2.5 H and + 6H; Figure 3),
the inclusion of the third most stably expressed gene
yielded the lowest variation of the normalisation factor
(Va,3), indicating that using three genes (UBQ, TUB
and GAPDH) was adequate for normalisation. Overall
(TOTAL subset) and when considering the effect of
the time after herbicide application (assessed from sub-
set RESISTANT; Figure 3), the inclusion of the fourth
most stably expressed gene yielded the lowest variation
of the normalisation factor (V3,4), indicating that using
four genes (UBQ, TUB, GAPDH and EFI) was ade-
quate for normalisation.

Expression level of ACCase and GSTL in A. Myosuroides

The expression of ACCase and GSTL was normalised
using UBQ, TUB and GAPDH, and compared in herbi-
cide-resistant or sensitive plants overall and in each of
the subsets BEFORE, +2.5H, +6H and AFTER (Table 1).
ACCuase showed an average Cq value of 25.88 (PCR effi-
ciency = 105%; R* = 0.997; manual threshold = 0.235).
No significant differences in the expression of ACCase
were observed between resistant and sensitive plants for
all conditions tested (Figure 4a). GSTL showed an aver-
age Cq value of 30.11 (PCR efficiency = 109%; R* =
0.980; manual threshold = 0.249). GSTL was found to
be 4.3-fold up-regulated in resistant plants compared to
sensitive ones when considering all samples (Figure 4b).
GSTL was 5.4-fold and 5.3-fold up-regulated when con-
sidering the two subsets + 6H and AFTER (+2.5H and
+6H), respectively (Figure 4b). No significant differences
in the expression of GSTL were observed when
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M TOTAL M +2.5H
1.6] 1.6]
T T TR g
1.2 1.2
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18S 258 26S EF1 GAPDH UBQ 18S 258 265 EF1 GAPDH UBQ
TUB TUB

€ Least stable genes Most stable genes =

RESISTANT

€ Least stable genes Most stable genes =

268

258

€ Least stable genes Most stable genes =

EF1 GAPDH UBQ 18S 258 265 EF1
TUB

Figure 2 Average expression stability values (M) of seven candidate reference genes computed using geNorm. Ranking was performed
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comparing resistant and sensitive plants before and 2.5
hours after treatment (Figure 4b).

Discussion

The aim of this study was to identify suitable reference
genes for the normalisation of gene expression data in
A. myosuroides plants with contrasted phenotypes (sen-
sitive or resistant) that had been submitted or not to
herbicide stress. As no single method is generally
accepted to test for the stability of candidate reference
genes, we used the algorithms implemented by three dif-
ferent programs.

BestKeeper is a useful first approach generating
descriptive statistics and coefficients of correlation. geN-
orm is considered one of the best methods to determine
the most stable genes in plant studies (e.g. [7,26,27]).
geNorm also indicates the optimal number of genes
required for normalisation in a given experimental data-
set [4]. However, it has a tendency to assign close ranks
to co-regulated genes, which expression ratios show less
pairwise variation than those of independently regulated
genes [4]. Therefore, we also used NormFinder [22] that
ranks candidate reference genes according to the varia-
tion of their expression within and among experimental

modalities, and is less sensitive to possible bias arising
from co-regulation [2].

The results yielded by the three programs were very
similar (Table 3, Figure 2), and indicated that the most
stable genes in our system were UBQ, TUB and
GAPDH, which were always ranked among the four
most stable genes. geNorm indicated that four genes
would be most adequate for normalisation, also includ-
ing EF1. However, because EFI was ranked among the
two least stable genes by the two other programs, we
did not include it in the reference gene set. Further-
more, in most cases, using the three ‘best’ reference
genes is a valid normalisation strategy [4].

26S was top-ranked by NormFinder and BestKeeper,
but ranked fifth by geNorm (Figure 2). This could be
explained by the sensitivity of geNorm to the co-regula-
tion of the genes tested. It is indeed reasonable to con-
sider that 26S, a ribosomal RNA gene, may be co-
regulated with 18S and 258, ribosomal RNA genes that
were consistently ranked among the least stable genes
(Table 3). The high abundance of ribosomal RNAs com-
pared with mRNAs makes it difficult to accurately sub-
tract the baseline value in qPCR data analysis [4].
Furthermore, ribosomal RNA seems less affected than
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Figure 3 Determination of the optimal number of reference genes for accurate normalisation. geNorm calculates pairwise variations
(Vi/n+1) between consecutively ranked normalisation factors NF,, and NF,.; (NF; is the geometric mean of the expression values for
the i first-ranked candidate reference genes). Each pairwise variation value is compared to the cutoff value (0.15, horizontal dotted line). For
example, V3 corresponds to the pairwise variation between the normalisation factors of the two first-ranked (2) and the three first-ranked (3)

+ 2.5 H subset + 6H subset

mRNA by partial degradation, which may introduce bias
in normalisation [28]. Considering all these points, and
because UBQ, TUB and GAPDH used together enabled
reliable normalisation (Figure 4a-b), we did not include
26S in the reference gene set. The combination of UBQ,
TUB and GAPDH was thus selected to normalise gene
expression data in herbicide resistance studies in A.
myosuroides.

To check the accuracy of this set of reference genes,
we investigated the expression profiles of two genes of
interest in resistant and sensitive plants. Differential reg-
ulation of ACCase had never been shown to confer
resistance to ACCase inhibitors [14,23]. Thus, ACCase
is expected to have a similar expression level in plants
sensitive or resistant to the ACCase inhibitor fenoxa-
prop, which was observed (Figure 4a). In contrast, GSTL
was expected to be up-regulated after herbicide applica-
tion in resistant plants compared to sensitive ones [24],
which was observed considering all samples. The
expression level of GSTL was not significantly different
between resistant and sensitive plants before and 2.5
hours after treatment, but was up-regulated in resistant
plants six hours after treatment (Figure 4b). This sug-
gests an herbicide-induced up-regulation of GSTL in
resistant plants compared to sensitive plants, which is

consistent with a previous study [24]. These results thus
confirm that UBQ, TUB and GAPDH can reliably be
used as a set of reference genes to normalise qPCR data
in studies on herbicide action in A. myosuroides.

Herbicides are an abiotic stress. Previous works identi-
fied reference genes with stable expression under differ-
ent abiotic or biotic stresses in a range of plant species.
UBQ had been shown to be stable under abiotic stresses
in grasses [8,26]. UBQ was also stable in the broadleaf
Arabidopsis thaliana under herbicide stress [29]. TUB
was among the most stable genes reported in several
cereal (grasses) species under different stresses [30].
GAPDH showed a stable expression during stress in
grasses [30-32], although some stresses induced a high
variability in its expression in wheat [33].

EF1 and 18S were among the least stably expressed
genes in our study. They are among the most commonly
used reference genes in plant studies, with a stable
expression reported in grasses under different stresses in
several studies (e.g. [8,26,31,32]). However, other studies
reported an unstable expression of these genes in
grasses under biotic stress (e.g., [30,32]). This was also
observed for herbicide stress in our work (Table 3). Our
results and the literature thus clearly confirm the need
for a thorough validation of the stability of expression of
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Figure 4 Relative expression levels of ACCase (a) and GSTL (b)
in resistant versus sensitive plants. UBQ, TUB and GADPH were
used for normalisation. Each measurement consists of two
repetitions. BEFORE, before herbicide application; +2.5H and +6H,
2.5 and 6 h after herbicide application, respectively; AFTER, after
herbicide application (2.5H and +6H); TOTAL, all samples. p values
for differences in gene expression are given in brackets.

candidate reference genes in the system considered prior
to any gene expression study.

Conclusions

This is the first study describing a set of reference genes
in a non-model grass plant species that is also a weed of
economic and agronomic importance. To the best of
our knowledge, this is also the first study conducted on
a non-model plant species demonstrating the stability of
expression of a set of reference genes under herbicide
stress and in contrasted herbicide-related phenotypes
(sensitive and resistant).
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In grass weeds, herbicide resistance is mostly endowed
by non-target-site-based mechanisms [11,12,23], an
adaptive trait under polygenic control endowed by con-
stitutive and/or induced differential expression of
numerous genes in resistant versus sensitive plants [15].
Hardly any such genes have been identified so far in a
weed species [14,23]. The reference gene set validated
for A. myosuroides will be of immense help to identify
genes involved in non-target-site-based resistance. Given
that the expression of these reference genes seems stable
in grasses, they are clearly candidate reference genes of
choice for studies seeking to identify herbicide-respon-
sive genes in other grasses with no associated genomic
resources (i.e., most grass weeds), and also very likely to
identify stress-responsive genes in this taxon.
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