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Abstract

Background: This paper proposes a method of implementing parallel gene prediction algorithms in MATLAB. The
proposed designs are based on either Goertzel’s algorithm or on FFTs and have been implemented using varying
amounts of parallelism on a central processing unit (CPU) and on a graphics processing unit (GPU).

Findings: Results show that an implementation using a straightforward approach can require over 4.5 h to process
15 million base pairs (bps) whereas a properly designed one could perform the same task in less than five minutes.
In the best case, a GPU implementation can yield these results in 57 s.

Conclusions: The present work shows how parallelism can be used in MATLAB for gene prediction in very large
DNA sequences to produce results that are over 270 times faster than a conventional approach. This is significant as
MATLAB is typically overlooked due to its apparent slow processing time even though it offers a convenient
environment for bioinformatics. From a practical standpoint, this work proposes two strategies for accelerating
genome data processing which rely on different parallelization mechanisms. Using a CPU, the work shows that
direct access to the MEX function increases execution speed and that the PARFOR construct should be used in
order to take full advantage of the parallelizable Goertzel implementation. When the target is a GPU, the work
shows that data needs to be segmented into manageable sizes within the GFOR construct before processing in
order to minimize execution time.
Findings
Background
Since the early beginnings of the human genome project,
numerous research groups have developed computerized
approaches to studying human genetics [1,2]. In order to
deal with the high volume of accumulated biological data,
geneticists and molecular biologists require faster algo-
rithms. This is important as the amount of data in gene
research roughly doubles every six months whereas com-
puter processing speeds improve at a much lower rate.
Thus, speed increases due to hardware improvement alone
cannot keep up with the amount of data to process, and
therefore, optimization of the existing tools is required.
In bioinformatics, one of the main interests is studying

deoxyribonucleic acid (DNA) sequences, which are of
fundamental importance in understanding all living spe-
cies. DNA molecules are at the base of hereditary
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information and are composed of four types of nucleo-
tides: adenine (A), thymine (T), guanine (G) and cyto-
sine (C). Certain segments of the DNA strand contain
the necessary information for protein synthesis and
these are called genes. Genes include two sub-sections
called coding regions (exons) and non-coding regions
(introns). As of the time of publication, it is estimated
that several thousands of all human genes have yet to be
discovered [3].
In general, bioinformatics applications need to process

massive quantities of data.
In the near future, it is the authors’ belief that certain

applications will require the processing of a large number
of complete genomes. This can occur, for instance, in the
case of comparative analyses of individual genomes over
an entire population. To facilitate this process and to en-
courage geneticists to use this promising computerized
venue, it is necessary to develop tools with the following
characteristics [4]:

� Easy to install locally;
� ability to train and test the programs independently;
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� availability of the source code;
� fast processing speeds;
� freedom from excessive licensing restrictions.

The process of discovering genes has traditionally been
done in genetics laboratories and is often seen as being
long and expensive. Since the beginning of the 21st cen-
tury, a digitized version of the complete human genome
has been made publicly-accessible. It has since been specu-
lated that part of gene discovery could be done digitally
using computer algorithms. This task is called gene predic-
tion and involves analyzing a DNA sequence and identify-
ing regions that code for protein. While gene prediction is
of great interest, the amount of data that needs to be pro-
cessed is very large at around 6 billion bps and the
required mathematical operations are time consuming. It
is therefore important to find techniques that are access-
ible to geneticists that can process very large amounts of
data within a short time frame.
Over the last three decades, digital signal processing

(DSP) techniques have been developed for the identifica-
tion of protein coding regions, both in humans and in
others species [5,6]. Fickett [7] was the first to propose
the use of an autocorrelation function (ACF) to identify
the periodicity within the exons of a genomic sequence.
Over the years, other methods have been proposed in-
cluding frequency analysis using the Fast Fourier Trans-
form (FFT), the autoregressive model and the hidden
Markov model [2,4].
The purpose of this work is to offer geneticists and

molecular biologists the tools for the prediction or iden-
tification of new genes using existing complementary
strategies. The objectives of this research are to render
this approach fast, reliable, accurate and easy to use, thus
requiring little training. Furthermore our approach can
work with several types of genomes such as humans,
plants or other various organisms.
This work focuses on predicting genes using frequency

analysis with FFTs and with an equivalent technique
known as Goertzel’s algorithm [8]. These methods have a
proven detection rate that can surpass 80% [9], and the
results in [10] further demonstrate the reliability of this
method. Specifically, this work’s objective is to develop
parallel computing techniques that allow for gene predic-
tion algorithms to run at a higher speed on conventional
desktop computers. While there are several existing solu-
tions in the literature [11-13] that yield good results, they
are often limited to small sequences of a few thousand bps.
We believe that the performances of these previously
proposed solutions are not yet adequate since linked
markers are often separated by millions of bps [14].
This work specifically targets large sequences and makes
sure the processing time remains low in order to apply
these techniques in actual day to day genetics research.
These results are then validated against a specific gene for
which the information is well-known. More importantly,
the designs proposed herein are implemented using
MATLAB rather than developing custom software and/or
hardware solutions such as FPGAs or ASICs. The reason
is that gene prediction tools often do not match the
researcher’s needs. Tailoring existing software/hardware
solutions for a specific requirement often involves modify-
ing the design which demands a certain level of expertise.
We have witnessed first-hand how time consuming the
process of tapping FPGA power [15] can be in this sce-
nario, but most importantly, how inflexible it becomes
when the needs of the application change. Since MATLAB
is a multi-platform tool with a relatively simple yet power-
ful programming language that does not require compil-
ation, the difficulties encountered with a custom software/
hardware approach are mitigated.

Frequency analysis in gene prediction
One of the crucial steps in gene prediction is the identifi-
cation of coding regions. It has been well-established that
these coding regions have repeating nucleotide sequences
that exhibit a periodicity of three [16-18]. To detect this
periodicity, and thus to identify coding regions, the typical
approach is to perform frequency analysis using the
Discrete Fourier Transform (DFT). Since the straightfor-
ward implementation of the DFT is not computationally
efficient, the FFT is often preferred. The FFT has been ex-
tensively covered in literature, and its optimization has
been thoroughly explored [13,17,19,20]. A gene prediction
algorithm based on the FFT can therefore yield good
results.
The FFT is an operation that takes S samples of a time-

domain or a space-domain signal and outputs the ampli-
tude and the phase information for a series of S frequencies.
While all this information may be required in many applica-
tions, only the amplitude of one frequency needs to be con-
sidered in gene prediction. This frequency of interest, which
corresponds to a periodicity of three in the nucleotide
sequence, is equal to a third of the sampling frequency
(fs/3). The remaining phase and amplitude information pro-
vided by the FFT are discarded. Thus, for applications that
only require a small number of frequencies, such as gene
prediction, the use of the FFT is not optimal. A more effi-
cient approach is to use the Goertzel algorithm which is
given by:

y n½ � ¼ x n½ � þ 2 cos 2πfnð Þy n� 1½ � � y n� 2½ � ð1Þ
In (1), x is the input, y is the output and n is the sample

number. Since gene prediction relies on the detection of a
periodicity of three in the sequence, the normalized
frequency fn can be replaced by 1/3. In that case, the coeffi-
cient of the y[n-1] term becomes −1 and the equation can
be rewritten as:
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y n½ � ¼ x n½ � � y n� 1½ � � y n� 2½ � ð2Þ

In this form, the Goertzel algorithm no longer requires
multiplications or fractional terms. This allows for a faster

and more efficient implementation. It should be noted,
however, that MATLAB uses double precision arithmetic
when performing certain functions, including the Goertzel
algorithm. While the full benefits of having such a simple
algorithm are not always apparent, preliminary tests have
shown a 28% increase in speed.
After processing N elements using equation (2), the

final result is obtained with the following equation,
where PX is the power at frequency fs/3 of nucleotide X :

PX ¼ y2N þ y2N þ yN � yN�1 ð3Þ

This process is done for all values of X (A, T, G and C)
and the results are added together to provide the final
output.

General implementation
A block diagram of the gene prediction algorithm is shown
in Figure 1. It shows that the first step in gene prediction
is to separate the DNA sequence into four different vectors
containing numerical values. This conversion is what
allows for the use of DSP in DNA analysis. While numer-
ous techniques can be used to perform this conversion
[21], the one used in this work was proposed by Voss [22].
The approach consists of converting the DNA sequence
into four binary vectors, each corresponding to a type of
nucleotide. These vectors will contain ‘1’ at a given pos-
ition if the corresponding nucleotide is of that type. If not,
GENE
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Figure 1 Block diagram of the system.
that vector position will be ‘0’. An example of such conver-
sion is shown in Figure 2.
In gene prediction, frequency analysis is performed on

a small window at a time. Within this window, an FFT
or Goertzel’s algorithm is executed in an attempt to de-
tect a periodicity of three. Once this is completed, the
window is shifted by one nucleotide before frequency
analysis is performed again. This process continues until
the whole DNA sequence has been analyzed. At that
point, the results from all four vectors are combined to
generate the final output. Figure 3 illustrates this process
by showing how an output figure is generated. In such a
figure, an area with larger amplitudes indicates a higher
probability of containing a coding region.
The choice of window size affects the quality of the

results. It has been shown that long window sizes re-
move specificity from the analysis which makes it more
difficult to determine the boundary between an intron
and an exon. On the other hand, windows that are too
small tend to yield noisy results. Mahmood et al. [23]
suggest that a size of 351 bps would provide a good bal-
ance between noise and specificity; [10] and [19] also
demonstrate why 351 is a solid choice.

Design
There are several ways of implementing frequency ana-
lysis in MATLAB. They are categorized according to the
nature of the algorithm used to perform the frequency
analysis and the processing device used to do so. These
are described in the following subsections.

Single core implementation
In a typical MATLAB working environment, executed
instructions will normally run on a single core. In such
an environment, gene prediction can be implemented
using any of the following implementations.

Goertzel
The most straightforward approach to implementing the
Goertzel algorithm is to use the built-in function (goertzel)
provided by MATLAB. The function is stored in an .m file
(goertzel.m) which contains validation commands as well
as a call to a highly-optimized pre-compiled function
called goertzelMEX.
SEQUENCE: A T C T G G A
( ) 1 0 0 0 0 0 1
( ) 0 0 1 0 0 0 0
( ) 0 0 0 0 1 1 0
( ) 0 1 0 1 0 0 0

Figure 2 DNA sequence converted into its binary counterparts.
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Figure 3 Illustration of the sliding window approach.
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By profiling the goertzel.m function, it was discovered
that a large amount of time is spent performing validation
commands instead of the Goertzel algorithm itself. In an
effort to improve processing time, it is possible to bypass
the validation commands and execute the goertzelMEX
function directly. To do so, the data sent to the goertzel-
MEX function need to be formatted properly since the val-
idation process is no longer performed. Given the correct
data format, the results produced are the same as with the
goertzel.m file while the execution time is significantly
reduced.
While the goertzel.m and goertzelMEX functions have

been provided with MATLAB, the algorithm can be greatly
simplified when used in gene prediction. In such case, it is
possible to implement the algorithm directly using equa-
tions (2) and (3) which is expected to yield better results.

FFT
In addition to the Goertzel algorithm, MATLAB also
provides an FFT function (fft). Since the hardware imple-
mentation and optimization of the FFT have been the
topic of many papers, it is expected that a parallelized
implementation would yield good results.

Multi-core implementation
In recent years, it has become common for personal
computers to be equipped with multiple cores that can
often handle a higher number of threads. In order to
make use of these cores, it is possible to instruct
MATLAB to use more than one processor when the al-
gorithm is adapted for such parallelism.
In a typical gene prediction algorithm, frequency ana-

lysis is sequentially performed on a window of data be-
fore moving to the next one. Since each window is
independent, frequency analysis can be performed on
many windows in parallel, if the resources are available.
MATLAB allows for these processes to run in parallel on
different threads/cores using the PARFOR construct.
PARFOR can be used with any of the previously men-
tioned implementations.

GPU implementation
Many modern computers are equipped with graphics
cards that contain one or more GPU. Each GPU contains
a large number of streaming processors which can be
used for parallel processing. While these cards have his-
torically been developed for video processing, they can
now be used to accelerate calculations in MATLAB. To
access the processing power of these cards within
MATLAB, several toolboxes are available including
AccelerEyes’ JACKET and the parallel toolbox from
MATLAB R2011b. Prior versions of MATLAB provided
basic GPU functions, but were too limited to be of
interest. For instance, it was not possible to index an
array stored in GPU memory. It should be noted that all
these technologies call upon NVIDIA’s CUDA technol-
ogy [25] and are not available on Open Computing lan-
gage (OpenCL)-only cards.

Matlab R2011b
MATLAB’s parallel toolbox offers several commands that
allow for algorithms to be executed on a GPU. Unfortu-
nately, there are no commands that are equivalent to
PARFOR that can execute multiple FOR loops in parallel
on the GPU. While the command arrayfun does offer
similar functionality, it removes some of the flexibility
needed for this particular algorithm given our need for
processing a sliding window within an array. This
method was therefore not considered further.

JACKET
JACKET is a commercial package that allows MATLAB
algorithms to execute parts of their code on GPU. One
of the main advantages of using JACKET is the provided
GPU counterpart to the PARFOR construct (GFOR). It
is therefore a simple task to adapt the MATLAB code to
make use of the GPU.
JACKET offers two methods to accelerate the current

gene prediction scheme in MATLAB. The first method
is to access the FFT function that is implemented on the
GPU. The second method, which can be used in con-
junction with the first one, is to parallelize the loops
using the GFOR command. GFOR, similarly to the PAR-
FOR command, helps to parallelize the operations by
distributing them over GPU streaming processors. While
this construct does have some limitations (found in
JACKET’s documentation), they are not prohibitive for
the current algorithm.
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GPU implementation analysis
To make use of the GPU, the chosen DNA sequence must
first be split into DNA blocks. These DNA blocks are then
sent in sequence to the GPU for processing. When the
DNA block is on the GPU, it is broken down further into
DNA fragments in order to be processed by separate paral-
lel GFOR instances. This process is illustrated in Figure 4.
The difficulty encountered in this implementation revolves
around finding the optimal number of GFORs to run in
parallel for a given sequence. While a large number of
GFORs may improve parallelism, it also consumes the pro-
cessing resources on the GPU. When the resources are
depleted, JACKET’s maintenance algorithm is called to
rectify the situation. This process slows down the execu-
tion of the algorithm and should be avoided when possible.
The goal is therefore to maximize the number of GFORs
without depleting the available resources.
Through preliminary tests, it was found that the FFT im-

plementation on the GPU performs much better than any
of the GPU Goertzel implementations (Goertzel using the
CPU, on the other hand, is fast and is easier to implement).
This is expected as FFTs are algorithms that can be paralle-
lized in a straightforward manner whereas the Goertzel al-
gorithm is a recursive one and therefore, does not lend
itself easily to parallelization. The GPU implementations
will thus only focus on the FFT. Processing times when
using Goertzel on a GPU will nonetheless be provided for
the purpose of comparison.
A GPU card only has a limited number of parallel pro-

cessors (PUTOTAL). Knowing that the GPU FFT function
requires these resources, the maximum number of GFOR
loops (NGFOR1) is given by:
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Figure 4 Procedure for breaking down large DNA sequences
for processing on GPU.
NGFOR1≤
PUTOTAL

4� PUFFT þ PUMISCð Þ ð4Þ

The equation states that four GPU implementations of
the FFT need to be present during each GFOR loop to

account for each of the nucleotide arrays. The imple-
mentation requires PUFFT processing units for the FFT
itself and requires extra processing units (PUMISC) for
miscellaneous operations such as the power of two and
the summing of the power spectra.
As previously stated, this equation needs to be

respected so that the number of processing units does
not exceed the available resources. Otherwise, JACKET
will reallocate the GPU resources which slows down the
execution of the algorithm.
In addition to the processing unit limitation, the imple-

mentation also needs to consider the memory con-
straints. Since every iteration requires a certain amount
of GPU memory, the total amount of GPU RAM avail-
able also limits the maximum number of GFORs. This
constraint can be summarized as follows:

NGFOR2≤
MEMTOTAL

4� MEMFFT þMEMMISCð Þ þMEMSETUP

ð5Þ
This equation is similar to equation (4) with the excep-

tion that it also includes a MEMSETUP term which
accounts for the memory required to manage each differ-
ent GFOR in order to combine them at the end. The
maximum number of GFORs is given by the minimum
between NGFOR1 and NGFOR2:

NGFOR ¼ min NGFOR1;NGFOR2ð Þ ð6Þ
In the specific case of the chosen test system, NGFOR1

was smaller than NGFOR2 which means that all parallel
resources can be used before the GPU memory is filled.
GPU memory is an important issue to consider because
of the communication overhead it involves. Sending data
to and from the GPU is slow when compared to the
GPU processing time. In order to minimize these data
transfers, it is efficient to divide the DNA sequence into
large blocks before sending them to the GPU, albeit with
some caveats which will later be discussed. It is import-
ant, however, to not surpass a predefined limit, since lar-
ger blocks will produce out of memory errors while the
GPU computes. Fortunately, the test GPU used in this
work has 1 GB of RAM which is sufficient to store the
optimal DNA block size.
To determine the optimal DNA fragment size, an ex-

tensive series of tests have been performed. DNA blocks
of different sizes were sent to the GPU and were pro-
cessed by implementations using different quantities of
GFORs. The results of these tests are shown in Figure 5.
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Figure 5 Processing time for a sequence of 15 million bps with varying DNA block size and DNA fragment size.

Table 1 data on HFE2 gene on chromosome 1

Exons Total length of
coding region (bps)

Transcript variant a 1,2,3b,4 2234

Transcript variant b 1,3b,4 2048

Transcript variant c 1, 3a,4 1525

Transcript variant d 1,4 1488
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It is worth noting that, in this figure, the number of
GFORs is not shown explicitly. Instead, the DNA frag-
ment size processed by the GFOR instances is shown.
The number of parallel GFORs can be deduced from the
fragment size as it is proportional to it. The results
shown in Figure 5 also include all data transfers between
CPU and GPU memory. In an effort to make the com-
parisons fair, the processing times have been normalized
for a large global sequence of 15 million bps. This is an
estimated maximum sequence size over which a gene
prediction algorithm needs to be executed in order to
find a candidate gene between two genetic markers. The
basis for this estimation can be found in [14] where the
two markers were separated by 4 centiMorgan (cM)
which roughly corresponds to 4 million bps. From
Figure 5, it can be determined that using DNA fragment
sizes between 20,000 and 40,000 bps yields the lowest
processing times. A smaller DNA fragment size would
not fully benefit from all the available parallel processing
power and therefore, perform poorly. This can be shown
in Figure 5, where the processing time increases as the
fragment size drops to 5,000 bps.

Results
To evaluate the processing time of the different gene
prediction implementations, tests were performed on
DNA segments retrieved from the NCBI library
(GRCh37.2). For the purpose of this work, the HFE2
(hemochromatosis type 2 in the human genome) gene
[Accession number EMBL:AY372521] was chosen and
large DNA segments containing this gene were extracted
from the database. The HFE2 gene has four different var-
iants each having a slightly different set of exons. These
different exons are presented in Table 1. The human
genome used for this test contains all the different exons
whose beginning and ending positions are shown in
Table 2.
From this table, it can be seen that, since exons 3a and

3b overlap each other, the gene prediction process should
be able to identify a total of four distinct coding regions in
the gene: exon 1, exon 2, exon 3a/3b and exon 4.
The goal of this test is to determine whether each im-

plementation can detect coding regions in the HFE2
gene and to evaluate their processing time. This process
is repeated for DNA sequences of different sizes in order
to determine how each algorithm performs with varying
amounts of data.



Table 2 HFE2 exon positions on chromosome 1

Exon 1 Exon 2 Exon 3a Exon3b Exon 4

Start 145,413,191 145,414,693 145,415,278 145,415,278 145,416,313

End 145,413,427 145,414,879 145,415,315 145,415,838 145,417,545

Length 236 186 37 560 1232

Lengths are in bps.
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For each of these cases, the measured processing time
also includes data transfer time. One of the advantages
of including data transfer time is that the tests reflect
what the user is actually experiencing. In addition, it
allows for processing times of larger sequences to be
extrapolated linearly. It should be reiterated that these
tests are not meant to quantify the reliability of the
chosen approach; this type of study has already been
well-documented and has shown that frequency analysis
is reliable [9,10].

Availability and requirements
For this paper, an IntelW Core™ i7-2600 K processor (8 MB
cache, 3.40 GHz, 8 threads) was used with 8 GB of RAM.
The graphics card used was a GeForce GTX 560 1 GB
GDDR5 with 336 CUDA cores. It is important to note
that, while some may think that the availability of 336
CUDA cores could improve the execution speed by a fac-
tor of 336 times compared to a CPU implementation, it is
not the case. This is due to the fact that CUDA cores and
CPU cores serve different purposes and therefore, are
architecturally different. Details concerning CUDA cores
can be found in Nvidia’s documentation [24].

Coding region detection
In the first part of the test, it is important to verify that
the coding region detection aspect of each implementa-
tion is functional. To do so, it is possible to plot the data
of the frequency analyses and compare them with the
known structure of the gene [14,25]. MATLAB results
show that all implementations proposed in this work
produce the same outcome (Figure 6). Each peak in this
figure represents a probable coding region and, by com-
paring the results to the gene structure presented in
Tables 1 and 2, it can be shown that the approach is suc-
cessful at identifying coding regions.

Processing time
Using the test setup described previously, ten different
implementations of the gene prediction algorithm have
been evaluated using seven different DNA segment sizes.
The results of the test are presented in Table 3.
While the most significant results are shown in that

table, many other tests had to be run to ensure that no
critical points were missed.
The first implementation considered is the goertzel.m
approach where the goertzel function was executed. It was
found that, when parallelism was not used, the processing
time became excessive and required over 4.5 h to process
15 million bps. That option was therefore not considered
further. For an implementation using eight threads, run-
ning goertzel.m for a sequence of 1 million bps takes 162 s
on the test machine. For sequences larger than 5 million
bps, it was deemed unnecessary to evaluate the perform-
ance as the processing speed was already too low. When
the DNA sequences take too much time to process, the
table indicates that it is too large to consider (TLTC).
The solution using the GoertzelMEX function was

implemented using one, two, four and eight threads. This
is done so as to show the performance gained when CPU
cores are added. Row 5 of Table 3 shows a nearly 18x
improvement over using goertzel.m when processing a 1
million bps sequence with the same eight threads. Rows 3
and 4 show that, even with two or four threads, it is already
possible to obtain better results than with goertzel.m using
eight threads.
A custom Goertzel algorithm was also tested running

on eight threads. Its processing time is presented on the
sixth row of Table 3. It shows that, when only the CPU
is considered, this approach provides the best results.
The gene prediction algorithm was also implemented

with MATLAB’s FFT function and the processing times
are presented in Row 9 of Table 3. The results show that
the FFT’s processing time is much larger than with the
Goertzel implementations. This confirms the fact that
the Goertzel algorithm is more efficient than the FFT
when the targeted number of frequencies is small.
The two remaining implementations use the FFT func-

tion on the GPU. It should be noted that when using the
GPU, the FFT is faster than Goertzel and thus the latter
is not discussed in greater detail. Nonetheless, results
from running Goertzel on the GPU are shown on Row
10 in Table 3. For the first implementation of the FFT,
the entire sequence was loaded onto the GPU before
processing (Row 7). In the other implementation, the se-
quence was broken down into smaller blocks of 1 million
bps and processed sequentially (Row 8).
It is worth noting that Rows 7 and 8 represent the same

operation up to the size of 1 million bps. After that point,
the results remain almost identical: sending 15 times a se-
quence of 1 million bps is only one second faster than
sending a large 15 million bps sequence. Our tests have
shown that breaking down a large sequence into sizes
smaller than 1 million bps results in performance losses
whereas sizes larger than 15 million bps yields out of
memory errors. According to our results, GPU implemen-
tations using the proposed test setup should divide DNA
sequences into blocks of 1 to 15 million bps for optimal
results.
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Discussion
The tests performed in the previous section show that the
choice of algorithm and of implementation plays an import-
ant role in the feasibility of gene prediction in MATLAB.
Using a straightforward goertzel.m approach with a single
thread would not have been possible within a reasonable
Table 3 Runtime for varying sequence lengths

Function Loop type Processing 5,000 50

1 goertzel.m PARFOR CPU 8 T 1.06 8

2 goertzelMEX FOR CPU 0.18 1

3 goertzelMEX PARFOR CPU 2 T 0.19 0

4 goertzelMEX PARFOR CPU 4 T 0.18 0

5 goertzelMEX PARFOR CPU 8 T 0.25 0

6 Custom Goertzel PARFOR CPU 8 T 0.25 0

7 JACKET’s FFT (full sequences) GFOR GPU 0.03 0

8 JACKET’s FFT (1 M blocks) GFOR GPU 0.03 0

9 Matlab’s FFT PARFOR CPU 8 T 0.29 0

10 Custom Goerztel on GPU GFOR GPU 0.22 0
time frame. Even with eight threads enabled, the extrapo-
lated processing time for 15 million bps would be close to
41 min. When GoertzelMEX and a custom Goertzel algo-
rithm were used, the processing time was reduced to close
to 90 s. Finally, with the GPU, the processing time could be
reduced to 57 s. These results show that acceleration via a
Time (s) for the following sequence sizes:

,000 200,000 500,000 1,000,000 5,000,000 15,000,000

.29 32.91 82.16 161.89 805.44 TLTC

.78 7.11 17.84 35.65 178.30 535.21

.99 3.86 9.58 19.20 100.39 287.35

.60 2.36 5.81 11.41 56.27 164.84

.53 1.95 4.75 9.52 47.49 164.57

.37 1.18 2.83 5.56 27.63 87.47

.22 0.78 1.90 3.78 18.82 57.68

.22 0.78 1.90 3.78 18.90 56.70

.42 1.46 3.51 6.95 34.12 109.15

.79 2.82 7.15 14.09 71.01 213.31
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CUDA-enabled graphics card yields the best performance
when the sequence to be analyzed is large enough to justify
the overhead, yet small enough not to deplete available
resources. For a relatively simple yet efficient implementa-
tion, a custom Goertzel algorithm using MATLAB’s CPU
parallelization (Row 6) can provide results that are about
36% slower than with a GPU (Row 8).
While the absolute difference in processing time may

seem inconsequential, it should be noted that frequency
analysis is often combined with other techniques to make
gene prediction more robust. In addition, to improve on
the reliability of the approach, it is sometimes relevant to
perform frequency analysis for different window sizes. In
those cases, the benefits of using a GPU can be justified.
Otherwise, a well-designed MATLAB algorithm running
on CPU would provide satisfactory results.
The approach proposed in this paper can deal with a

large amount of data in a reasonable time while being ac-
curate and reliable given the proven track record ([9,10])
of the algorithm. It also remains easy to use for research-
ers who are not experts in the field of bioinformatics.
Building upon this foundation, the next step is to use
these methods to accurately identify new genes involved
in monogenic and complex diseases.

Conclusions
In this paper, we presented a number of ways of imple-
menting gene prediction using MATLAB. The different
implementations were described and evaluated to test for
processing time. We have shown that this approach
allows for the processing of very large sequences (15
million bps was used) in a reasonable time. This renders
the processing of the entire human genome and other
organisms very feasible on a conventional desktop ma-
chine. It is the authors’ belief that this type of demon-
stration has never been published before.
In addition, each implementation was also evaluated for

shorter DNA sequences to help analyze how the proces-
sing time evolves with different sequence lengths. Results
show that, with common desktop computers, it is possible
to perform gene prediction on sequences of 15 million bps
quite rapidly. Using MATLAB’s FFT, an eight-core parallel
implementation was able to complete the operation in less
than five minutes whereas a GPU-accelerated version did
it in approximately one minute. Using a CPU, the work
shows that direct access to the MEX function increases
execution speed and that the PARFOR construct should
be used in order to take full advantage of the parallelizable
Goertzel implementation. When the target is a GPU, the
work shows that data need to be segmented into manage-
able sizes within the GFOR construct before processing in
order to minimize execution time.
The fact that these results can be achieved within the

MATLAB environment without calling upon custom
hardware/software solutions means that researchers
already familiar with MATLAB can readily use this tech-
nique without requiring additional IT resources. The
source code provided with this paper can be run locally
for accurate results at fast processing speeds (Additional
file 1, Additional file 2). This can help make gene predic-
tion tools more accessible to geneticists and can help
speed the discovery of new genes.
Additional files

Additional file 1: Example code for using JACKET_seq_FFT.m

Additional file 2: Frequency analysis on a sequence using JACKET's
FFT.
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