Laskar et al. BMC Research Notes 2012, 5:256
http://www.biomedcentral.com/1756-0500/5/256

BMC
Research Notes

Modeling and structural analysis of PA clan

serine proteases

Aparna Laskar', Euan J Rodger?, Aniruddha Chatterjee>* and Chhabinath Mandal’

Abstract

modeling techniques.

potential patterns between species.

Background: Serine proteases account for over a third of all known proteolytic enzymes; they are involved in a
variety of physiological processes and are classified into clans sharing structural homology. The PA clan of
endopeptidases is the most abundant and over two thirds of this clan is comprised of the S1 family of serine
proteases, which bear the archetypal trypsin fold and have a catalytic triad in the order Histidine, Aspartate, Serine.
These proteases have been studied in depth and many three dimensional structures have been experimentally
determined. However, these structures mostly consist of bacterial and animal proteases, with a small number of
plant and fungal proteases and as yet no structures have been determined for protozoa or archaea. The core
structure and active site geometry of these proteases is of interest for many applications. This study investigated
the structural properties of different S1 family serine proteases from a diverse range of taxa using molecular

Results: Our predicted models from protozoa, archaea, fungi and plants were combined with the experimentally
determined structures of 16 ST family members and used for analysis of the catalytic core. Amino acid sequences
were submitted to SWISS-MODEL for homology-based structure prediction or the LOOPP server for threading-based
structure prediction. Predicted models were refined using INSIGHT Il and SCRWL and validated against experimental
structures. Investigation of secondary structures and electrostatic surface potential was performed using MOLMOL.
The structural geometry of the catalytic core shows clear deviations between taxa, but the relative positions of the
catalytic triad residues were conserved. Some highly conserved residues potentially contributing to the stability of
the structural core were identified. Evolutionary divergence was also exhibited by large variation in secondary
structure features outside the core, differences in overall amino acid distribution, and unique surface electrostatic

Conclusions: Encompassing a wide range of taxa, our structural analysis provides an evolutionary perspective on
S1 family serine proteases. Focusing on the common core containing the catalytic site of the enzyme, this analysis
is beneficial for future molecular modeling strategies and structural analysis of serine protease models.
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Background

Serine proteases represent over a third of all known pro-
teolytic enzymes and are implicit in a wide range of
physiological processes including digestion, immunity,
blood clotting, fibrinolysis, reproduction and protein
folding [1]. The proteolytic mechanism of these pro-
teases involves nucleophilic attack of the carbonyl atom
of the substrate peptide bond by a catalytic serine (Ser)
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residue in the active site of the enzyme. In addition to
the nucleophilic Ser residue, this reaction is dependent
on two other amino acids in the catalytic site, Histidine
(His) and an Aspartate (Asp) that together form what is
referred to as the catalytic triad (or a dyad in some
cases) [2]. The presence of this catalytic triad in at least
four distinct protein folds indicates evolutionary success
in four different contexts [3].

The MEROPS classification system (http://merops.san-
ger.ac.uk/) has grouped proteases into clans that typic-
ally have structural homology and/or the same linear
order of catalytic triad residues [4]. Of all serine
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proteases, the PA clan of endopeptidases is the most
abundant and has been studied the most in-depth. Al-
though most members of this clan utilize a nucleophilic
Ser residue (S sub-clan), there are several viral PA pro-
teases that alternatively use a nucleophilic cysteine (Cys)
residue (C sub-clan) [5]. However, this study focuses
solely on the PA clan serine proteases and more specific-
ally members of the S1 family that bear the archetypal
trypsin fold. Although extensively distributed in nature,
clan PA proteases are highly represented in eukaryotes —
vertebrates in particular have a vast array of proteases
that are involved in a variety of extracellular processes
[6]. Most clan PA proteases have trypsin-like substrate
specificity, cleaving the polypeptide substrate on the
carboxyl side of an arginine (Arg) or lysine (Lys) amino
acid [7]. Nucleophilic attack by the Ser195 (standard
chymotrypsin numbering) hydroxyl group on the car-
bonyl of the peptide substrate initiates the proteolytic
mechanism. This reaction is catalyzed by the His57 act-
ing as a general base, which itself is supported by a
hydrogen bond to Aspl02. The resulting tetrahedral
intermediate is stabilized by Gly193 and Ser195, which
contribute to a positively charged pocket known as the
oxyanion hole. This tetrahedral intermediate breaks
down to an acylenzyme intermediate, followed by the
formation of a second tetrahedral intermediate. With
the protonation of Ser195 by His57, the second tetrahe-
dral intermediate breaks down and the carboxyl
terminus of the substrate is released [2].

The S1 proteases are comprised of 2 [B-barrels that
align asymmetrically in a classical Greek key formation,
bringing the catalytic residues together at their interface.
The His57 and Aspl02 reside in the N-terminal -barrel
with the nucleophilic Ser195 and oxyanion hole gener-
ated by the C-terminal p-barrel [8]. Many of the trypsin-
like proteases are produced as an inactive zymogen pre-
cursor protein [9]. Cleavage of the proprotein precursor
from the N terminus and subsequent conformational
change of the tertiary structure is required for enzyme
activation. In the case of trypsin, this regulatory mode of
activation prevents autodegradation of the pancreas
where it is produced, but allows efficient activity in the
small intestine where it is activated by enteropeptidase
and further trypsin molecules are activated by auto-
catalysis [10]. In blood coagulation and complement ac-
tivation, serine protease zymogens are sequentially
activated in a cascade pathway, which eventually gener-
ates effector molecules by limited proteolysis. High spe-
cificity of their catalytic domains, interactions among the
regulatory regions, and efficient removal of active serine
proteases by irreversible protease inhibitors ensure local,
transient reactions to physiological or pathological cues
[11,12]. The S1 proteases have numerous functions in-
cluding intestinal digestion (eg. trypsins, chymotrypsins,
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elastases), blood coagulation (eg. thrombin, coagulation
factors), immunity (eg. complement factors, tryptases in
secretory granules of mast cells, granzymes of cytotoxic
cells) and homeostatic regulation (eg. kallikreins) [1].
This study investigates the structural properties of dif-
ferent S1 family serine proteases from a diverse range of
taxa using molecular modeling techniques. Although the
catalytic core geometry shows evolutionary divergence
between taxa, the relative positions of the catalytic triad
residues were conserved, as were other highly conserved
residues that possibly provide stabilization. There was
also large variation in secondary structure features out-
side the core, the overall amino acid distribution, and
surface electrostatic potential patterns between species.

Methods

Structural data for 3 bacterial, 1 fungal, and 12 animal
PA clan serine protease structures (Table 1) were
obtained from the Protein Data Bank (PDB, http://www.
resb.org/pdb). Our in-house modeling software package
MODELYN [13] was developed to perform customized

Table 1 Experimental structures and predicted structures
of PA serine proteases across different taxa

Species Structure MEROPS ID
Bacteria
Achromobacter lyticus PBD: TARC-A MER000277
Staphylococcus aureus PBD: 1QY6-A MER000264
Streptomyces griseus PBD: 1SGC-A MER000251
Protozoa
Plasmodium falciparum PMDB: PM0075793 MER024901
Archaea
Pyrococcus furiosus PMDB: PM0075794 MERO17398
Fungi
Fusarium oxysporum PBD: 1TRY-A MER000073
Neurospora crassa PMDB: PM0075795 MER028331
Plantae
Arabidopsis thaliana PMDB: PM0075796 MERO16541
Animalia
Bos taurus PBD: 1EKB-B MER000207
PBD: 1JRS-A MER000024
Eisenia fetida PBD: TM9OU-A MER011050
Homo sapiens PBD: 15GI-B MER000188
PBD: 1AOL-A MER000136
PBD: 1ABJ-H MER000188
PBD: 2ANY-A MER000203
Mus musculus PBD: TAO5-A MER000103
Rattus rattus PBD: 1DPO-A MERO00030
Salmo salar PBD: 1BIT-A MER0O00035
Solenopsis invicta PBD: TEQ9-A MER027244
Trimeresurus stejnejer PBD: 1BQY-A MER002805
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molecular editing and in silico structural analysis. It has
a set of powerful menus for batch processing commands
leading to automated implementation of complicated
tasks, including complete model building based on se-
quence homology and batch processing of replacement
mutations. ANALYN [13] is an ancillary protein se-
quence analysis program that assists MODELYN by ana-
lyzing homologous sequences and formulating the
strategy for model building. In addition to the experi-
mental structures, amino acid sequences of PA serine
proteases (Table 1) for 1 protozoan (Plasmodium falcip-
arum), 1 archaeon (Pyrococcus furiosus), 1 fungus (Neu-
rospora crassa) and 1 plant (Arabidopsis thaliana) were
obtained from the MEROPS protease database (http://
merops.sanger.ac.uk) in FASTA format [4]. Sequences
were initially submitted to SWISS-MODEL for hom-
ology-based structure prediction [14]. If this analysis was
unsuccessful (due to less than 35% sequence similarity
with known experimental structures), these sequences
were submitted to the LOOPP server [15] for threading
based structure prediction as previously described [16].
This analysis reported a ranked list of possible structure
predictions for each of the protease sequences, including
match scores, sequence identity (%) and the extent of se-
quence coverage (%). Predicted structures were super-
posed with respect to a selected set of Ca atoms and a
suitable starting scaffold was determined. Root mean
square deviation (RMSD) values helped to identify the
common segments, corresponding to the structurally
conserved regions. The starting structures were refined
using the DISCOVER and ANALYSIS modules within
the software package Insight II [17] through energy
minimization and molecular dynamics. The side chains
were regenerated using SCRWL [18] and the overall
structure was energy minimized. The SCWRL software
package is used for prediction of protein side-chains of a
fixed backbone, using graph theory to solve the com-
binatorial problem. PROCHECK was used to check the
distribution of ¢-y dihedral angles and identify Rama-
chandran outliers [19]. The CHARMm module within
InsightIl was used to apply dihedral constraints in these
segments. MOLPROBITY [20] and MODELYN were
used to validate the structural models against experi-
mental structure data. MOLPROBITY provides all-atom
contact analysis and gives quantitative information on
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the steric interactions (H-bond and van der Waals
contacts) at the interfaces between components. This
program is widely used for quality validation of three-
dimensional (3D) protein structures by measuring devia-
tions of bond lengths, bond angles from standard values,
overall atom clashscores and rotamer outliers. MODE-
LYN was used to analyze other structural parameters, in-
cluding the distance between Ca atoms of the catalytic
triad. Verify3D [21], ProSA [22] and ERRAT [23] were
also used to further assess the quality of the protease
models. Verify3D analyzes the compatibility of the
model against its own amino acid sequence. The Veri-
ty3D score (the sum of scores for individual residues
using a 21-residue sliding window) is normalized to the
length of the sequence: log,(Verify3D score/L?) [24].
ProSA calculates an overall quality score (Z score) of a
model in comparison to a range of characteristics
expected for native protein structures. ERRAT analyzes
the statistics of non-bonded interactions between differ-
ent atom types (9-residue sliding window) and provides
an overall quality factor that is expressed as the percent-
age of the protein for which the calculated error value
falls below the 95% threshold. The ribbon structure and
electrostatic potential surface of the structures were
determined by MOLMOL [25]. To determine sequence
conservation between species, CLUSTALW [26] was
used for multiple sequence alignment. For each se-
quence, PEPSTATS [27] was used to determine the
molar percentage of each amino acid physico-chemical
class.

Results and Discussion

Modeling of protease structures

The protozoan protease from P. falciparum was the only
sequence that had significant homology with proteases
of known experimental structure for successful structure
prediction using SWISS-MODEL. The homology model
was essentially built on the structures 1L1J (a heat shock
protease from the hyperthermophilic bacterium Thermo-
toga maritime) and 2AS9 (a splC protease from the bac-
terium Staphylococcus aureus), with sequence identity
ranging from 29 to 38% (Table 2). Homology-based
structure prediction for the P. furiosus, N. crassa and A.
thaliana proteases was unsuccessful due to insufficient
sequence similarity with known experimental structures.

Table 2 SWISS MODEL homology results of Plasmodium falciparum PA serine protease target sequence with known

PDB structures

PDB ID Resolution A R-value Score (bits) Expect value AA identity (%)
1L1JB 2.80 0228 555 5x10° 38
1LTJA 2.80 0228 555 5x10° 38
2AS9B 1.70 0213 412 8x10° 29
2AS9A 1.70 0213 412 8x10° 29



http://merops.sanger.ac.uk
http://merops.sanger.ac.uk

Laskar et al. BMC Research Notes 2012, 5:256
http://www.biomedcentral.com/1756-0500/5/256

The sequences of these proteases were then submitted
to the LOOPP server for threading-based structure pre-
diction, which yielded a list of 5 different experimental
structures that matched to each of the sequences. The
best matched structures for each showed high confi-
dence scores ranging from 3.1 to 6.4 and sequence iden-
tity ranging from 24 to 44%, with best length coverage
between 92 and 95%. For P. furiosus (Table 3), the
matched structures were superposed with respect to a
selected set of Ca atoms (43% superposition), with the
structure 1GBI (an a-lytic protease from the proteobac-
terium Lysobacter enzymogenes) having the best score of
3.41 (RMSD values were between 0.357 and 0.563 A,
which helped to identify common segments correspond-
ing to structurally conserved regions). From these super-
posed structures, the variable loop regions were
identified on the starting scaffold derived from 1GBIL
For N. crassa (Table 3), structures were superposed with
respect to selected Ca atoms (39%) with the structure
1VCW (a degS protease from the bacterium Escherichia
coli) having the highest score of 3.08 (RMSD values be-
tween 0.439 and 0.724 A). For A. thaliana (Table 3),
structures were superposed with respect to selected Ca
atoms (48%), with the structure 1L1] having the best
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score of 6.4 (RMSD values were between 0.392 and
0.537 A). Structural refinement using Insight II and
SCRWL is provided in detail as additional information,
including the refined energy status for each structural
model (see Additional file 1: Table S1, Table S2, Table S3
and Table S4). PROCHECK was used to measure the
overall backbone conformations of the predicted struc-
tures and identify Ramachandran outliers. The
CHARMmM module of Insight II was used to apply dihe-
dral constraints in these segments (Table 4; see
Additional file 1: Figure S1, Figure S2, Figure S3 and
Figure S4). The general structural parameters of the
refined model, such as deviations of bond lengths, bond
angles from standard values, overall atom clashscores
(overlaps >0.4 A) and rotamer outliers (first two ¥
angles >20° from its nearest associated rotamer) were
compared to experimental structure data using MOL-
PROBITY and MODELYN. This analysis indicated that
the general structural parameters of experimental and
predicted structures were comparable (Table 5). Further
validation using Verify3D and ProSA gave good scores for
overall model quality (Table 5). However, the ERRAT valid-
ation of the P. falciparum and N. crassa protease models
indicated regions where the calculated errors were higher

Table 3 LOOPP server results for secondary structure matches of Pyrococcus furiosus, Neurospora crassa and
Arabidopsis thaliana PA serine protease target sequence with known PDB structures

PDB ID Secondary structure Score Sequence identity (%) Length (%)
Helical structure (%) Extended (%) Loops /Other (%)
P. furiosus
Target 2.70 31.76 65.54 - - -
1GBI 0.00 5241 47.59 3410 27.14 94.59
15SX 0.00 55.84 44.16 3.39%4 27.14 94.59
1GBM 0.00 55.17 44.83 3357 27.14 94.59
1BOQ 0.00 5241 47.59 3.343 27.14 94.59
1GBD 0.00 5517 44.83 3.292 27.14 94.59
N. crassa
Target 0.65 40.00 59.35 - - -
1VCW 2.60 33.77 63.64 3.078 23.87 93.55
1L 1.94 31.07 66.99 2.863 2839 96.13
1TEO 2.74 3219 65.07 2.742 24.66 87.74
1507 0.00 3351 66.49 2.535 22.73 93.55
150T 263 33.55 63.82 251 24.50 90.97
A. thaliana
Target 0.00 38.60 61.40 - - -
1L 2.34 32.71 64.95 6423 4444 9240
1VCM 3.03 35.76 61.21 6.247 42.69 9240
1TEO 3.03 3333 63.64 6.134 4211 9240
1Y8T 503 39.11 55.87 5.739 4444 91.81
1507 0.51 34.52 64.97 5315 42.69 92.40
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Table 4 Backbone refinement of the modeled PA proteases from Plasmodium falciparum, Pyrococcus furiosus,

Neurospora crassa and Arabidopsis thaliana

Structural model

-y distribution in the regions of Ramachandran’s plot

Number of residues (percentage)

Most favoured Additional allowed Generously allowed Disallowed
P. falciparum
Before backbone refinement 89(76.1%) 21(17.9%) 4(3.4%) 3(2.6%)
After backbone refinement 84(71.9%) 33(28.2%) 0 (0.0%) 0 (0.0%)
P. furiosus
Before backbone refinement 62(56.9%) 40(36.7%) 1(0.9%) 6(5.5%)
After backbone refinement 84(71.8%) 33(28.2%) 0 (0.0%) 0 (0.0%)
N. crassa
Before backbone refinement 65(52.0%) 50(40.4%) 4(3.4%) 3(2.6%)
After backbone refinement 69(55.5%) 56(44.8%) 0 (0.0%) 0 (0.0%)
A. thaliana
Before backbone refinement 82(60.7%) 45(32.6%) 7(4.4%) 3(2.2%)
After backbone refinement 86(63.7%) 49(36.3%) 0 (0.0%) 0 (0.0%)

than expected, which decreased the overall quality score of
these models (Table 5). In both cases, the low quality
regions in the P. falciparum (Leu377-Asp387) and N. crassa
(Ala168-Arg178) models were possibly due to steric clashes
created by Phe379 (P. falciparum), Argl73 (N. crassa) and
others. Significantly, these regions were not within close
proximity (< 6 A) of the catalytic site.

Catalytic Core Geometry

Superposition of the P. falciparum, P. furiosus, N. crassa
and A. thaliana PA proteases on the representative 1SGI
protease structure found that 13 to 20% of the Ca atoms
superposed with a RMSD below 2A (Table 6). In compari-
son, the animal proteases had 41 to 46% of the Ca atoms
superposed with a RMSD below 0.8A and the bacterial

Table 5 Structural validation of the modeled PA proteases from Plasmodium falciparum, Pyrococcus furiosus,

Neurospora crassa and Arabidopsis thaliana

Structural model

All atom clashscore

Rotamer outliers (%) RMSD of bond RMSD of bond

(No/1000 atoms) Length (A) angle (Degree)
X-ray structure (1L1J) 433 749 0.029 2.74
Homology model of P. falciparum protease 1.86 5.26 0.030 3.14
X-ray structure (1GBI) 10.14 3.53 0.019 3.25
Threading model of P. furiosus protease 15.00 263 0.019 321
X-ray structure (1VCW) 323 458 0.024 391
Threading model of N. crassa protease 538 847 0.020 337
X-ray structure (1L1J) 433 749 0.029 2.74
Threading model of A. thaliana protease 11.50 879 0018 331
Average Verify3D-1D Normalized 3D Profile ProSA ERRAT
score score (Iogz(VerifyBD/Lz) Z-score quality Factor (%)
X-ray structure (1L1J) 0.46 -10.95 -843 794
Homology model of P. falciparum protease 022 -9.28 -3.24 61.8
X-ray structure (1GBI) 048 -8.93 -6.73 816
Threading model of P. furiosus protease 0.19 -9.52 -3.27 712
X-ray structure (1VCW) 0.38 -12.80 -7.73 80.6
Threading model of N. crassa protease 0.24 -9.32 -3.81 526
X-ray structure (1L1J) 0.46 -10.95 -843 794
Threading model of A. thaliana protease 0.27 -9.33 -4.75 876
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Table 6 Structural parameters of experimentally determined and predicted 3D structures of PA serine proteases

ID Taxa Species Superposed of AA % RMSD A Distances between the catalytic triad A

1ARC-A Bacteria Allyticus 106 0932 6.4 8.2 9.7
1QY6-A Bacteria S. aureus 16.2 0.753 7.1 84 9.9
1SGC-A Bacteria S. griseus 19.3 0.744 6.2 8.5 98
1TRY-A Fungi F. oxysporum 416 0493 6.2 84 10.1
1EKB-B Animalia B. taurus 413 0.744 6.4 8.0 9.3
1JRS-A Animalia B. taurus 453 0.642 6.5 84 103
TM9U-A Animalia E. fetida 419 0.768 6.5 8.5 102
15GI-B Animalia H. sapiens 100 0.000 6.4 84 10.3
1AOL-A Animalia H. sapiens 423 0.552 6.4 83 10.3
1ABJ-H Animalia H. sapiens 100 0424 6.6 8.1 93
2ANY-A Animalia H. sapiens 424 0.541 6.3 8.3 9.8
1AO5-A Animalia M. musculus 441 0.552 6.6 8.2 9.7
1DPO-A Animalia R. rattus 455 0.652 6.3 76 9.8
1BIT-A Animalia S. salar 464 0610 6.3 9.9 99
1EQ9-A Animalia S. invicta 446 0.593 6.3 8.1 10.1
1BQY-A Animalia T. stejnejer 415 0.645 64 83 9.7

Mean + SD of the Ca distances between the triad residues 6.4+0.01 84+0.03 9.8+0.02
PM0075793 Protozoa P. falciparum 15.0 1.003 6.2 84 99
PM0075794 Archaea P. furiosus 225 0.756 6.5 83 9.7
PM0075795 Fungi N. crassa 13.0 1311 6.4 94 10.8
PM0075796 Plantae A. thaliana 164 1.761 6.7 9.6 10.1
Mean + SD of the Ca distances between the triad residues 6.5+0.06 8.9+0.19 10.1+£0.14

proteases of this clan had 10 to 19% of the Ca atoms
superposed with a RMSD below 1A. The superposed
structures have a common core structure with large vari-
ation in loops outside the core (Figure 1). The Ca atom
distances of Asp to His, His to Ser and Asp to Ser aver-
aged over the experimentally determined structures were
64 + 0.01, 84 + 003 and 9.8 + 0.02 A, respectively
(Table 6). The small standard deviations (SDs) indicated
that the structural environment around the catalytic triad
was highly conserved. Averaged over the predicted struc-
tures, the Ca atom distances between the catalytic triad
residues were 6.5 + 0.06, 8.9 + 0.19 and 10.1 + 0.14 A re-
spectively, in good agreement with the values averaged
over the experimental structures. Multiple sequence align-
ment (Figure 2) confirmed sequence conservation of the
catalytic triad residues at His57, Aspl02, and Ser195
(chymotrypsin numbering). Other highly conserved amino
acids have been described, including Thr54, Ala56 and
Ser214, which stabilize the catalytic triad through a net-
work of additional H-bonds [1]. These residues were
highly conserved showing the occupancy percentage of
76%, 71% and 71%, respectively, among the sequences
analyzed. In conjunction with the catalytic Ser195, the
Gly193 residue (which was conserved in 81% of the

sequences analyzed) is known to generate a positively
charged pocket within the active site known as the oxyan-
ion hole. Through intramolecular electrostatic interac-
tions, Aspl94 (71% conservation) is known to stabilize
both the oxyanion hole and the substrate binding site [1].
In addition, other highly conserved amino acids such as
Ala55 (81%), Cys58 (71%), Gly196 (100%), Gly197 (86%),
and Pro198 (90%) were in close proximity to the catalytic
residues.As confirmed in other serine proteases [28,29],
such residues may confer stabilization of the catalytic site
via a hydrogen-bonding interaction or via a disulfide bond
in the case of the Cys residue (see Additional file 1: Figure
S5, Tables S5 and Table S6). This analysis incorporates an
evolutionarily diverse range of PA serine proteases and it
indicates that although the core structures deviated consid-
erably during evolution, the relative positions of the cata-
lytic triad Cor atoms maintained very close relative distances
and were stabilized by other highly conserved residues.

Structural analysis

The S1 family of PA proteases is typically comprised of 2
B-barrels that align asymmetrically in a classical Greek key
formation, bringing the catalytic residues together at their
interface [8]. Figure 3 is a representative X-ray structure of
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Figure 1 Superposed structures of X-ray and modeled
structures of the selected proteases of the PA clan. Structures of
the protozoan (Plasmodium falciparum, magenta), archaeon
(Pyrococcus furiosus, cyan), fungus (Neurospora crassa, purple) and plant
(Arabidopsis thaliana, fuchsia pink) PA proteases were superposed with
the human x-ray structure (1SGIl, Homo sapiens, orange). The catalytic
triad residues (His, Asp, Ser) are shown in ball and stick models.

a S1 family bacterial protease (1SGC, protease A from
Streptomyces griseus), comprising 13 [-sheets and 4 o-
helices. The protease model from P. falciparum had 9 f3-
sheets, with His328 situated in a turn, Asp359 in a coil
and Ser438 in a turn (Figure 3C). The surface electrostatic
potentials around the catalytic site were similar to those of
the 1SGC X-ray structure, showing mostly electroneutral
regions with some patches of electronegative potential
(Figure 3D). In comparison with the other species analyzed
(see Table S7), the P. falciparum protease had a higher pro-
portion (> SD of the mean) of polar residues (55%, molar
percentage) and less (< SD of the mean) smaller amino
acids (43%), which indicates it could favor a more hydro-
philic environment. According to UniProt annotation
(Q687H5), this protease is thought to be an ortholog of the
E. coli degP protease, which is possibly involved in protein
folding and is essential for growth at high temperatures [30].

The protease model from P. furiosus had 7 p-sheets
with His286 situated in a turn, Asp320 in a coil and
Ser389 in a turn (Figure 3E). The pattern of surface elec-
trostatic potential was very different from others ana-
lyzed, with the surface containing mostly electronegative
regions around the catalytic site (Figure 3F). In compari-
son with the other species analyzed (see Table S7), the P.
furiosus protease had a slightly higher proportion (> SD
of the mean) of aromatic residues (12%) and less (< SD
of the mean) smaller amino acids (45%). These distinct-
ive features, which have also been observed in another
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P. furiosus protease [16], may be associated with
increased stabilization and hyperthermophilic adapta-
tion. Closely packed aromatic interactions have been
proposed to increase the AG of unfolding, thereby in-
creasing thermal stability [31,32]. Further investigation
of these properties could be utilized for protein engin-
eering strategies.

The protease model from N. crassa had 6 B-sheets and
2 a-helical segments, with His120 situated in a short a-
helix and the Aspl51 and Ser234 residues in separate
coil regions (Figure 3G). The surface electrostatic poten-
tial pattern shows the catalytic Ser residue is in an elec-
troneutral zone whereas the His and Asp residues are in
a mostly electronegative region (Figure 3H). In general,
the N. crassa protease had a higher proportion (> SD of
the mean) of acidic residues (13%) compared to the
other species analyzed (see Table S7). This protease is an
ortholog of the S. cereviseae Nmalllp nuclear serine
protease, which mediates apoptosis and promotes sur-
vival under heat stress [33]. Mutational analysis of the
N. crassa protease would be useful to explore these fea-
tures in this highly studied model organism.

The A. thaliana PA protease model had 7 B-sheets and
1 a-helix, with His99 situated in the a-helix and Asp130
and Ser208 in separate turn structures (Figure 3I). The
electrostatic potentials around the His and Ser catalytic
residues were mostly electroneutral with the Asp residue
of the catalytic triad in a very electronegative region
(Figure 3]). The A. thaliana protease had a higher pro-
portion (> SD of the mean) of aromatic residues (14%)
compared to other species (see Table S7). According to
UniProt annotation (Q9C691), this protease is thought to
be an ortholog of degP6 and like the modeled protease
from P. falciparum it is potentially involved in protein
folding and promotes growth at high temperatures [30].
A. thaliana is a highly studied model organism and like
the N. crassa protease, mutational analysis of this prote-
ase would be useful to explore these features.

The pronounced differences in electrostatic surface
features between the protease catalytic sites possibly have
functional significance. In general, the catalytic sites were
mostly electroneutral with regions that were electrone-
gative. The P. falciparum, A. thaliana and N. crassa
proteases are orthologs of the oligomeric HtrA (or HtrA-
like) family of serine proteases, which have a critical role
in protein quality control [34,35]. Using a hold-and-cut
mechanism, the PDZ domain of most HrtA complexes
selectively binds small hydrophobic residues at the C-
terminus of a misfolded protein substrate, which is then
successively degraded in the proteolytic site [36]. It is not
surprising given the variety of functions in a wide range
of different organisms that most HrtA enzymes have
selective substrate specificity, although often for a number
of substrates [34,35]. The electronegative patches in the
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Figure 2 Multiple amino acid sequence alignment of PA serine proteases. CLUSTALW was used to align amino acid sequences of PA
serine proteases for which their structures were determined experimentally or predicted computationally (highlighted in yellow). Bovine
chymotrypsin B (CTRB, highlighted in magenta) is used as a standard reference for residue numbering. Only the regions showing the conserved
catalytic residues His (H), Asp (D) and Ser (S) are shown. Amino acid residues with 100% conservation (¥) between aligned sequences are

either highlighted in blue (catalytic residues) or red (other). Other residues showing high (:) conservation (highlighted in gray) or medium (.)

264

gewdgyg

J

catalytic sites of the modeled PA proteases could facilitate
this specificity by favoring positively charged C-terminal
amino acid side chains at specific sites within the binding
pocket. Likewise, the largely electronegative catalytic site
of the P. furiosus protease suggests it favors a positively
charged substrate. The largely electroneutral regions
possibly relax the stringency of the substrate binding,
allowing for a number of different protein substrates.

Further investigation of substrate specificity and other
properties contributing to it would be needed for func-
tional analysis of these proteases, particularly for the
P. falciparum protease as it could be a potential target for
rational anti-malarial drug design.

The following predicted structures are available in the
Protein Model Database (PMDB) (http://mi.caspur.it/
PMDB/):


http://mi.caspur.it/PMDB/
http://mi.caspur.it/PMDB/
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Figure 3 A representative X-ray PA protease structure from
Streptomyces griseus and modeled PA protease structures from
Plasmodium falciparum, Pyrococcus furiosus, Neurospora crassa
and Arabidopsis thaliana. Ribbon models of S. griseus, 15GC (A), P.
falciparum (C), P. furiosus (E), N. crassa (G) and A. thaliana (1) PA
protease structures show f3-sheets with an arrow directed to the C-
terminus (light blue), a-helices (red and yellow), turn/loops (gray),
and catalytic triad residue side chains (green sticks). Surface
electrostatic potential model of S. griseus, 1SGC (B), P. falciparum (D),
P. furiosus (F), N. crassa (H) and A. thaliana (J) PA protease structures
show electronegative (red), electropositive (blue) and electroneutral
(white) amino acid side chains. The estimated position of the

1. PA serine protease from Plasmodium falciparum
(PMDB ID: PM0075793)

2. PA serine protease from Pyrococcus furiosus (PMDB
ID: PM0075794)

oxyanion hole (OA) is also indicated.

3. PA serine protease from Neurospora crassa (PMDB
ID: PM0075795)

4. PA serine protease from Arabidopsis thaliana
(PMDB ID: PM0075796)

Conclusions

In conjunction with 16 experimentally determined 3D pro-
tein structures, our analysis of predicted structures from a
protozoan, an archaeaon, a plant and a fungus encompassed
an evolutionarily diverse range of PA clan proteases. The
structural geometry of the catalytic core clearly deviated
considerably during evolution, but the relative positions of
the catalytic triad residues were conserved and other highly
conserved residues possibly provide stabilization of the core.
Evolutionary divergence was also exhibited by large variation
in secondary structure features outside the core, differences
in overall amino acid distribution, and unique surface elec-
trostatic potential patterns between species. These features
are probably associated with environmental adaptation, sub-
cellular localization, and the diverse functions of the differ-
ent protease orthologs. Interestingly, each of the modeled
proteases appear to be orthologs of heat shock proteases
that are involved in protein folding and promote cell growth
at high temperatures. Indeed, some of the proteases’ features
are known to confer structural stability, such as a higher
proportion of aromatic residues [32] or negatively charged
residues around the catalytic site [37]. Further investigation
of these features would be useful for protein engineering
strategies and to elucidate their functional significance in
each of the modeled proteases.

Additional file

Additional file 1: Figure S1. Ramachandran plot of ¢-y dihedral
angles of a modeled PA serine protease structure from Plasmodium
falciparum before and after backbone refinement. PROCHECK was
used to check the distribution of @-{ dihedral angles and eliminate
Ramachandran outliers in the modeled protease structure (A, before; B,
after refinement). Residues whose ¢-{ pairs fell outside the most
favourable (red) and additional allowed (yellow) zones are annotated in
red. Figure S2. Ramachandran plot of ¢-y dihedral angles of a
modeled PA serine protease structure from Pyrococcus furiosus

before and after backbone refinement. PROCHECK was used to check the
J
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distribution of @-y dihedral angles and eliminate Ramachandran outliers
in the modeled protease structure (A, before; B, after refinement).
Residues whose -y pairs fell outside the most favourable (red) and
additional allowed (yellow) zones are annotated in red. Figure S3.
Ramachandran plot of ¢-y dihedral angles of a modeled PA serine
protease structure from Neurospora crassa before and after
backbone refinement. PROCHECK was used to check the distribution of
- dihedral angles and eliminate Ramachandran outliers in the modeled
protease structure (A, before; B, after refinement). Residues whose ¢-
pairs fell outside the most favourable (red) and additional allowed
(yellow) zones are annotated in red. Figure S4. Ramachandran plot of
@-y dihedral angles of a modeled PA serine protease structure
from Arabidopsis thaliana before and after backbone refinement.
PROCHECK was used to check the distribution of ¢- dihedral angles and
eliminate Ramachandran outliers in the modeled protease structure (A,
before; B, after refinement). Residues whose ¢-U pairs fell outside the
most favourable (red) and additional allowed (yellow) zones are
annotated in red. Figure S5. Predicted disulfide bond in Modeled PA
protease structure of Pyrococcus furiosus (PMDB ID: PM0075794).
The ribbon model shows secondary structures (3-sheets with arrow
directed to C-terminus, a-helices and turn/loops) in alternating colors and
cysteine residues Cys 267 (blue) and Cys287 (red) forming a predicted
disulfide bond (2.04 A). Table S1. Energy parameters of modeled PA
protease structure from Plasmodium falciparum. Table S2. Energy
parameters of modeled PA protease structure from Pyrococcus furiosus.
Table S3. Energy parameters of modeled PA protease structure from
Neurospora crassa. Table S4. Energy parameters of modeled PA protease
structure from Arabidopsis thaliana. Table S5. Predicted hydrogen bonds
in modeled PA protease structures. Table S6. Disulfide bonds in close
proximity to catalytic histidine residue of experimental structures and
modeled structures of PA serine proteases. Table S7. Relative
comparison of PA serine protease amino acid composition based on
physico-chemical properties.
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