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Abstract

Background: Thalidomide is an anti-inflammatory and anti-angiogenic drug currently used for the treatment of
several diseases, including erythema nodosum leprosum, which occurs in patients with lepromatous leprosy. In this
research, we use DNA microarray analysis to identify the impact of thalidomide on gene expression responses in
human cells after lipopolysaccharide (LPS) stimulation. We employed a two-stage framework. Initially, we identified
1584 altered genes in response to LPS. Modulation of this set of genes was then analyzed in the LPS stimulated
cells treated with thalidomide.

Results: We identified 64 genes with altered expression induced by thalidomide using the rank product method. In
addition, the lists of up-regulated and down-regulated genes were investigated by means of bioinformatics
functional analysis, which allowed for the identification of biological processes affected by thalidomide.
Confirmatory analysis was done in five of the identified genes using real time PCR.

Conclusions: The results showed some genes that can further our understanding of the biological mechanisms in
the action of thalidomide. Of the five genes evaluated with real time PCR, three were down regulated and two
were up regulated confirming the initial results of the microarray analysis.

Keywords: Thalidomide, Microarray, Rank product, Inflammation model, Lipopolysaccharide
Background
Thalidomide, which was widely marketed as a safe seda-
tive and antiemetic for pregnant women between the
years 1958 and 1960, was implicated in the birth of
thousands of babies with congenital malformations in
the following years. In 1965, the drug changed its course
when it was showed to be effective in resolving symp-
toms associated with the inflammatory reaction of lep-
rosy known as erythema nodosum leprosum, or type II
reaction [1].
Currently, it is known that thalidomide is a drug

with immunomodulating, anti-inflammatory and anti-
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angiogenic properties and that it is the drug of choice
for the treatment of the type II leprosy reaction. Thal-
idomide is also used in some complications related to
AIDS (acquired immunodeficiency syndrome), multiple
myeloma, and chronic degenerative diseases, such as
systemic lupus erythematosus and graft-versus-host
disease [1-3]. Despite being approved for use in treat-
ing these diseases, and despite being used in experi-
mental treatments of dozens of other diseases, such as
heart failure and several types of solid tumors, the way
that thalidomide mediates its anti-angiogenic and anti-
inflammatory effects and the underlying molecular
mechanisms involved has not been fully understood
[4-6].
It has been demonstrated by several groups that thal-

idomide changes the levels of tumor necrosis factor
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(TNF), an important cytokine involved in many bio-
logical processes such as programmed cell death (apop-
tosis) and immune response [7-9]. It is also believed that
the many biological activities associated with thalidomide
can be explained largely by its effects on the activity of
nuclear factor kappa B (NF-κB) [10]. NF-κB is a tran-
scription factor involved in many physiological processes.
These processes include the regulation of genes related
to inflammation, such as cytokines TNF, IL6 and IL2 pro-
teins, the regulation of genes involved in apoptosis, such
as baculoviral IAP repeat containing 3 (BIRC3) and fam-
ily members’ Bcl-2, and in angiogenic factors, e.g., vascu-
lar endothelial growth factor (VEGF) [11].
The lipopolysaccharide (LPS) is a complex glycolipidic

constituent of the outer cell wall of Gram-negative bac-
teria. LPS initiates its response through the stimulation
of host cells such as monocytes and macrophages to pro-
duce and release endogenous mediators, including the
pro-inflammatory cytokines IL-1, IL-6 and TNF [12].
MOREIRA et al. [13] examined the inhibitory action of
thalidomide on TNF production induced by lipopolysac-
charides and reported that the drug increases the degrad-
ation of TNF mRNA. The authors found that inhibition
of TNF production was selective without changing other
cytokines induced by LPS. The referred selective inhib-
ition of TNF production allows the use of thalidomide
for treating inflammatory conditions, where it is desirable
to reduce TNF levels.
To further our understanding of thalidomide’s molecu-

lar mechanisms, we sought to explore the inflammation-
suppressive effect of this drug on gene expression by
using DNA microarrays in peripheral blood mono-
nuclear cells (PBMC) stimulated with LPS as a model of
inflammation.
Analysis of the molecular mechanisms of gene action

can be achieved using DNA microarrays, which allows
for the investigation of thousands of genes in a single ex-
periment. Although advantageous, the use of microar-
rays presents some difficulties related to data analysis,
including problems related to experimental noise, differ-
ences in dye incorporation and, in addition, the large
number of genes to be statistically tested [14-17]. Differ-
ent analytical approaches have been proposed to identify
gene expression profiles, but no method has shown
marked superiority over any other.
To identify genes associated with thalidomide treat-

ment, we propose a two-stage procedure for microarray
analysis. In the first stage, we use the rank product (RP)
method of BREITLING et al. [18] on the residual term
of the normalized LPS experiment with a less stringent
statistical criteria to identify a list of genes responding to
LPS stimulus. In the second stage, this set of genes was
analyzed to identify a subset of expressed genes in the
LPS stimulated cells treated with thalidomide.
Results
Microarray pre-processing
In most microarray experiments, the general assumption
is that most of the genes will not be differentially
expressed; therefore, the MA-plot should be evenly dis-
tributed around zero for all values of A. However, due to
expected systematic biases in dye coupling, imbalances in
hybridization efficiencies and other technical biases, the
MA-plot may show the presence of these artifacts. The
MA-plot is a plot of the Cy5 (R) versus Cy3 (G) obtained
by plotting the intensity ratio M ¼ log2 Rð Þ � log2 Gð Þ by
the average intensity A ¼ log2 Rð Þ þ log2 Gð Þ½ �=2 . The
graph for the LPS experiment is depicted in Figure 1. The
raw intensity data show a non-linear pattern in the MA-
plot. Figure 1a and 1b show the raw data for one slide of
each condition, LPS and LPS+ thalidomide. For each
slide, we applied the intensity global lowess regression ap-
proach for normalization and variability reduction of the
data within the slides. The use of this transformation was
efficient for properly removing the intensity dependent
curvature present in the data, and the method scaled and
centered each array (Figure 1c and 1d). Additional file 1:
Figure A.1 and Additional file 2: Figure A.2 shows the
MA plot for all arrays before and after lowess within
normalization.
After the within normalization, we normalized the ex-

pression values to achieve consistency between arrays
using the ANOVA model approach. The lowess centra-
lized the data for the two channels in each array, but for
further analysis to recognize differentially expressed
genes, it is recommended that all arrays have a common
reference level. This common reference level is obtained
with the residual term r of the ANOVA model, which is
the data used in the rank product method. See Add-
itional file 3: Figure B.1 (a) Box plot after lowess trans-
formation showing the centralization of the data for the
two channels; (b) Box plot of the residual term of the
ANOVA modeling.
The reproducibility of the arrays was evaluate by com-

puting the Pearson correlation coefficient between the
replicates within each array and between the probes
among the arrays. The r-values for within array varies
from 0.75 to 0.88 and between arrays from 0.25 to 0.65.
See Additional file 4: Table A.1 shows the correlations
for within arrays and table A.2 for the correlations be-
tween arrays.

Expressed genes and their functional classes under
LPS stimulation
After preprocessing the LPS arrays, the fold changes for
the genes ranged from 0.016 to 9.25. The median fold
change was 0.99, and about 50 % of the genes showed
values twice or greater than the median value. Using the
rank product statistics [18] we identify 1584 genes for
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Figure 1 MA-plots for one slide of each experimental condition. (a) LPS and (b) LPS + Thalidomide before lowess transformation, (c) and (d)
show the result of removing the intensity dependent curvature.
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further analysis. These genes were selected by using a
nominal p-value threshold of 0.05. We did not control
for multiple tests because we had only three arrays,
which results in higher false discovery rates, and our
main interest was in eliminating non-significant differen-
tially expressed genes for the second stage of the ana-
lysis. Of the selected genes responding to LPS stimulus
in our experiment, after a literature search, we found
that 50 were also reported by SHARIF et al. [19], who
analyzed the expression of NF-κB in macrophages in re-
sponse to LPS using DNA microarrays of approximately
500 genes. Another six genes were reported by LEE
et al. [20] who analyzed the expression profile of neutro-
phils obtained from skin biopsy material from patients
with erythema nodosum leprosy. See additional file 5:
Table B.1 shows the genes that were common to these
two other studies focusing on LPS action.
To gain biological insights into the selected genes, a

functional analysis was performed by searching for asso-
ciations with Gene Ontology (GO) annotations to clas-
sify the genes altered by the LPS treatment into known
functional processes. The gene universe was obtained by
removing from the whole assayed genes those without
GO representation, following the recommended proced-
ure for using GOstats [21]. For the set of selected genes,
the program finds the number of each GO term and
counts the number of appearances of the term in the set
of assayed genes in the experiment that have Entrez
Gene identifiers or that map to available GO terms. A p-
value for each GO term is computed indicating the
probability that this term is randomly selected. There-
fore, the GO terms with the lowest p-values are the ones
most specific for the analyzed genes. Table 1 shows the
biological process in differentially expressed genes in the
LPS data obtained by selecting the GO categories with
p-value< 0.05.
The analyses showed the biological process regulation

of important classes such as the regulation of T-helper
cell differentiation, the negative regulation of blood co-
agulation, the regulation of coagulation, alpha-beta T cell
activation involved in immune responses, T cell differen-
tiation involved in immune responses, CD4-positive,
alpha-beta T cell differentiation involved in immune
responses, cell chemotaxis, and positive regulation of
receptor-mediated endocytosis terms that are related to
an inflammatory/immune response induced by LPS. Be-
sides these, other terms were also found altered by LPS,
such as smooth muscle adaptation nerve development,
intracellular cholesterol transport, and intracellular lipid
transport.
Analysis of cellular components (parts of the cell or

extra cellular environment) revealed several genes in the
cytosol component (GO: 0005829), with 158 expressed
genes, where 82 genes are over-expressed. Another cellu-
lar component that showed the greatest number of genes
was non-membrane-enclosed organelles (GO: 0043228),



Table 1 Identification of LPS affected biological processes using the GOstats/R package for gene ontology analysis

GOBPID Pvalue Count Size Term

GO:0006414 0.000 36 78 translational elongation

GO:0042274 0.000 7 8 ribosomal small subunit biogenesis

GO:0042254 0.000 10 20 ribosome biogenesis

GO:0051591 0.001 6 9 response to cAMP

GO:0042416 0.004 3 3 dopamine biosynthetic process

GO:0050818 0.004 10 26 regulation of coagulation

GO:0015711 0.005 10 27 organic anion transport

GO:0032365 0.007 4 6 intracellular lipid transport

GO:0030195 0.007 8 20 negative regulation of blood coagulation

GO:0045730 0.011 5 10 respiratory burst

GO:0045022 0.013 3 4 early endosome to late endosome transport

GO:0014805 0.013 3 4 smooth muscle adaptation

GO:0032367 0.013 3 4 intracellular cholesterol transport

GO:0045410 0.013 3 4 positive regulation of interleukin-6 biosynthetic process

GO:0060325 0.013 3 4 face morphogenesis

GO:0030198 0.014 13 44 extracellular matrix organization

GO:0002293 0.014 4 7 alpha-beta T cell differentiation during immune response

GO:0042093 0.014 4 7 T-helper cell differentiation

GO:0045980 0.014 4 7 negative regulation of nucleotide metabolic process

GO:0006323 0.017 13 45 DNA packaging

GO:0030595 0.017 9 27 leukocyte chemotaxis

GO:0006333 0.017 14 50 chromatin assembly or disassembly

GO:0046635 0.018 5 11 positive regulation of alpha-beta T cell activation

GO:0045732 0.020 7 19 positive regulation of protein catabolic process

GO:0033993 0.024 4 8 response to lipid

GO:0002318 0.024 2 2 myeloid progenitor cell differentiation

GO:0002523 0.024 2 2 leukocyte migration during inflammatory response

GO:0008588 0.024 2 2 release of cytoplasmic sequestered NF-kappaB

GO:0015808 0.024 2 2 L-alanine transport

GO:0015824 0.024 2 2 proline transport

GO:0018347 0.024 2 2 protein amino acid farnesylation

GO:0019614 0.024 2 2 catechol catabolic process

GO:0031440 0.024 2 2 regulation of mRNA 3'-end processing

GO:0032417 0.024 2 2 positive regulation of sodium:hydrogen antiporter activity

GO:0032510 0.024 2 2 endosome to lysosome transport via multivesicular body sorting pathway

GO:0033625 0.024 2 2 positive regulation of integrin activation

GO:0033630 0.024 2 2 positive regulation of cell adhesion mediated by integrin

GO:0034109 0.024 2 2 homotypic cell-cell adhesion

GO:0042420 0.024 2 2 dopamine catabolic process

GO:0042832 0.024 2 2 defense response to protozoan

GO:0043179 0.024 2 2 rhythmic excitation

GO:0045627 0.024 2 2 positive regulation of T-helper 1 cell differentiation

GO:0045628 0.024 2 2 regulation of T-helper 2 cell differentiation

GO:0048103 0.024 2 2 somatic stem cell division

GO:0048539 0.024 2 2 bone marrow development
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with 255 genes represented in this set, including 145
over-expressed genes. In the category molecular function
(the elemental activities of the gene product at the mo-
lecular level), the over-represented profiles corresponded
to categories of GTPase regulator activity (GO: 0030695),
with a total of 41 genes in the profile, where 25 are over-
expressed, and there was enzyme regulator activity with
88 genes in the profile (52 genes over-expressed).
While GO annotations can summarize and simplify the

interpretation of the selected genes, additional enrichment
analysis for these genes can be gained by identifying meta-
bolic pathways in the Kyoto Encyclopedia of Genes and
Genomes (KEGG). For this analysis, we also used the
GOstats package, and the cut-off was p< 0.05 as well.
Table 2 shows the enriched metabolic pathways identified
from the KEGG database. From this analysis, for the over-
represented KEGG pathways, it is possible to observe sev-
eral genes identified in the ribosome pathway (hsa03010)
and the glutathione metabolism pathway (hsa00480), with
32 genes and 10 genes, respectively, in addition to fruc-
tose and mannose metabolism pathways, DNA replica-
tion, phototransduction, and ABC transporters.
The analysis of LPS activated cultures led to the iden-

tification of genes involved in processes or pathways
related to inflammation. This provides a more specific
analytic set of genes for studying the mechanism of ac-
tion of thalidomide in inflammation because only those
genes related to inflammation are considered.

Modulation of LPS induced genes by thalidomide
Only genes selected in the LPS experiment were taken
into account for further analysis involving the identifica-
tion of genes that were altered when treated with thal-
idomide. In this case, the gene expression values were
again log-transformed before preprocessing with lowess
and ANOVA following a similar approach as described
for the LPS data set. After these preprocessing stages,
the LPS + thalidomide residual data had a range of fold
changes for the three arrays varying from 0.016 to 9.25.
Rank product analysis was used to obtain a subset of 64
genes altered by the action of thalidomide (Table 3)
using a cutoff nominal p-value of 0.001. Again, we did
not considered multiple test correction due to the small
sample size. Here, we used a more stringent cutoff level
Table 2 Identification of biological pathways via KEGG
for LPS

KEGGID Pvalue Count Size Term

3010 0.000 30 62 Ribosome

51 0.018 9 27 Fructose and mannose metabolism

3030 0.032 8 25 DNA replication

480 0.038 10 35 Glutathione metabolism

2010 0.040 8 26 ABC transporters
because we are more interested in reducing the occur-
rence of type I error (false positive) due to the possibility
of coordinated expression of genes in the inflammation
model. For the selection of genes related to the inflam-
mation process, the presence of false positive genes was
not critical. The importance here was to avoid the pres-
ence of genes with coordinated expression, since the RP
method assumes the independence of genes and may
lead to underestimation when the values of the expres-
sion of many genes at the top of the list are dependent.
We examined whether the selected genes under a thal-

idomide treatment share similar biological functions or
are within similar functional classes and pathways of the
LPS experiment using GOstats. Analysis of the associ-
ation between gene and class in the category of bio-
logical process gene ontology identified terms that were
more significant within the group (Table 4). The associ-
ation analysis using the gene-class KEGG also identified
pathways that may be changed by thalidomide (Table 5).

Evaluation of gene expression by RT-PCR
For these experiments, PBMC from 4 healthy donors
were cultured and stimulated as described above. RNA
was isolated from the cultures, reverse transcribed and
expression of five genes was assayed by real time PCR.
Three of them (EPHX1, UBE2O, PTX3) were down regu-
lated (4–5 fold reduction) in cells treated with thalido-
mide whereas other two genes, FTH1 and IDH1, were
up regulated (Figure 2) when compared to cultures sti-
mulated with LPS alone. These data are in agreement
with the microarray analysis.

Discussion
Despite the recognized clinical merits of thalidomide,
the molecular mechanism of the action of this drug still
remains unclear. Over the past 10 years, even in the face
of increasing development of microarray technology to
study gene expression profiles, there is a limited amount
of microarray data related to thalidomide, and most
studies focus on the use of this drug in different types of
cancers [22-24]. Therefore, this study was undertaken to
understand the mechanism of action of thalidomide in
the inhibition of inflammatory processes.
In this paper, we describe a two-stage framework. In the

first stage, we identified a set of differentially expressed
genes in a model of inflammation induced by lipopolysac-
charide. The analysis of this experiment identified 1584
genes that may be altered by the inflammatory process.
We used a cutoff nominal p-value of 0.05 during this first
stage to avoid possible missing genes that, even with low
fold changes, may be induced by the action of thalido-
mide. Therefore, we increase the chance to have larger
numbers of false positives in the subset of selected genes
during this first stage since in the second stage of analysis,



Table 3 Genes with altered expression due to thalidomide action

Down regulated genes Up-regulated genes

Acc. Number Symbol FC P value Acc. Number Symbol FC P value

NM_022052 NXF3 0.39 0.0000 XM_030485 2.98 0.0000

NM_003192 TBCC 0.53 0.0000 NM_017660 p66alpha 2.91 0.0000

NM_020346 SLC17A6 0.54 0.0001 NM_000994 RPL32 2.18 0.0000

NM_000120 EPHX1 0.62 0.0002 NM_002032 FTH1 2.25 0.0000

NM_004081 DAZ4 0.62 0.0002 NM_001028 RPS25 2.16 0.0000

NM_002069 GNAI1 0.63 0.0003 NM_033496 HK1 2.21 0.0001

NM_022066 E2-230 K 0.53 0.0003 AF245436 FLJ23518 2.10 0.0001

NM_006468 POLR3C 0.63 0.0005 NM_024552 LASS4 2.01 0.0002

NM_018230 NUP133 0.56 0.0006 NM_023071 SPATS2 1.98 0.0004

NM_000303 PMM2 0.62 0.0007 NM_015937 PIGT 1.95 0.0004

NM_001868 CPA1 0.65 0.0008 NM_005896 IDH1 1.69 0.0005

NM_022163 MRPL46 0.63 0.0008 NM_006995 BTN2A2 1.68 0.0006

AF113016 PRO1073 0.57 0.0008 NM_003690 PRKRA 1.79 0.0009

NM_017708 FLJ20200 0.62 0.0009 NM_016025 DREV1 2.06 0.0009

NM_021737 CLCN6 0.66 0.0009 NM_021734 SLC25A19 1.75 0.0009

NM_002852 PTX3 0.69 0.0011 NM_022663 CTAGE1 1.76 0.0009

NM_000042 APOH 0.67 0.0011 NM_019848 SLC10A3 1.90 0.0010

NM_006052 DSCR3 0.67 0.0014 NM_022126 LHPP 1.71 0.0011

XM_007829 0.68 0.0017 NM_001493 GDI1 1.69 0.0012

NM_002630 PGC 0.67 0.0018 BC003599 BM-009 1.57 0.0013

NM_003033 SIAT4A 0.68 0.0019 NM_001825 CKMT2 1.83 0.0014

NM_001146 ANGPT1 0.68 0.0020 NM_013243 SCG3 1.83 0.0017

NM_014872 ZBTB5 0.69 0.0022 NM_005505 SCARB1 1.59 0.0018

NM_002819 PTBP1 0.66 0.0023 NM_024841 FLJ14213 1.61 0.0019

NM_024076 KCTD15 0.70 0.0024 NM_005557 KRT16 1.55 0.0022

NM_001586 CXorf2 0.68 0.0025 NM_003205 TCF12 1.56 0.0025

NM_017777 FLJ20345 0.70 0.0025 NM_003652 CPZ 1.58 0.0026

NM_003626 PPFIA1 0.71 0.0028 NM_001012 RPS8 1.55 0.0026

NM_006858 IL1RL1LG 0.70 0.0032 NM_001003 RPLP1 1.51 0.0027

NM_033540 MFN1 0.71 0.0046 NM_004576 PPP2R2B 1.56 0.0027

NM_004202 TMSB4Y 1.55 0.0030

NM_001626 AKT2 1.50 0.0030

NM_001152 SLC25A5 1.57 0.0030

NM_017452 STAU 1.59 0.0037

NM_000576 IL1B 1.59 0.0049

The table shows the accession number (Acc. number), the gene symbol, the fold-change (FC) and the Pvalue.

Table 4 Identification of biological processes using gene ontology affected by the action of thalidomide

GOBPID Pvalue Count Size Term

GO:0015931 0.006 3 9 nucleobase, nucleoside, nucleotide and nucleic acid transport

GO:0045429 0.011 2 4 positive regulation of nitric oxide biosynthetic process

GO:0051168 0.011 2 4 nuclear export

GO:0044267 0.017 18 246 cellular protein metabolic process

GO:0051707 0.022 3 14 response to other organism

GO:0046209 0.027 2 6 nitric oxide metabolic process

GO:0048514 0.032 3 16 blood vessel morphogenesis
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Table 5 KEEG enrichment and thalidomide

KEGGID Pvalue Count Size Term

4530 0.011 3 11 Tight junction

533 0.046 1 1 Keratan sulfate biosynthesis

604 0.046 1 1 Glycosphingolipid biosynthesis - ganglio series

1031 0.047 2 8 Glycan structures - biosynthesis 2

4620 0.047 2 8 Toll-like receptor signaling pathway

51 0.059 2 9 Fructose and mannose metabolism

4210 0.059 2 9 Apoptosis

3010 0.064 3 21 Ribosome

52 0.089 1 2 Galactose metabolism

512 0.089 1 2 O-Glycan biosynthesis

720 0.089 1 2 Reductive carboxylate cycle (CO2 fixation)

5213 0.089 1 2 Endometrial cancer

5218 0.089 1 2 Melanoma

5223 0.089 1 2 Non-small cell lung cancer
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these genes could be relevant to drug action. In the sec-
ond stage, the analysis of the experiment with thalido-
mide identified 64 differentially expressed genes, among
which 30 were under-expressed genes and 34 over-
expressed genes.
In this study, we used the rank product method as a

basic tool for identifying differentially expressed genes.
This method is based on the ratio of expression, where
mRNA levels are compared under different conditions
(A and B) on a slide. It is an approach that allows for an
easier interpretation of the results. Use of the rank prod-
uct method has been recommended after appropriate
normalization for situations where there are few repli-
cates [25]. The raw data showed systematic deviations
that were removed using normalization techniques.
Using the logarithmic transformation, the ratios between
the two channels are expressed in terms of differences,
and it stabilizes the variance of the wells of high inten-
sity. After the logarithmic transformation, the data
showed characteristic intensity dependence and, as a re-
sult, were normalized using the lowess method. This
method of local regression curve fitting reduced the
variability dependent on the intensity, allowing biological
differences to be better visualized. Finally, the ANOVA
provided a method to normalize between arrays and the
residue from this fitting is used as the data for the rank
product method.
The list of genes identified as differentially expressed

in the experiment with thalidomide can provide infor-
mation about the mechanism of action of this drug.
However, obtaining this list is not enough to provide in-
formation related to the biological mechanisms involved
on these altered profiles. To help the interpretation of
the data, we apply techniques of gene ontology analysis
that are freely available to categorize the differentially
expressed genes according to functional processes. We
also used pathway analysis for the identification of meta-
bolic pathways altered, providing further information
regarding the mechanisms of action of thalidomide.
The enrichment analysis allowed the identification of

biological processes affected by thalidomide. Among
these processes, we identified the morphogenesis of blood
vessels that may explain the anti-angiogenic properties of
thalidomide, with angiopoietin 1 (ANGPT1) identified as
under-expressed. The protein encoded by this gene is a
secreted glycoprotein that activates the receptor, inducing
its phosphorylation. This protein plays a key role in medi-
ating reciprocal interactions between the endothelium
and the underlying matrix as well as in the mesenchyme.
The protein also contributes to the stabilization and mat-
uration of blood vessels and may be involved in the initial
development of the heart [26]. In addition, other genes
were identified that are involved in apoptosis mechanisms
and in signaling pathways, such as the polypeptide pro-
tein tyrosine phosphatase, the receptor type F (PTPRF), a
member of the protein phosphatase family that regulate a
variety of cellular processes including cell growth, differ-
entiation, mitotic cycle, and oncogenic transformation
[27,28]; the interferon inducible double stranded RNA
dependent activator (PRKRA), which encodes a protein
kinase that mediates the effects of interferon in response
to viral infection [29].
Among the genes validated by RT-PCR, UBE2O is an

E2 ubiquitin ligase, it has a role in regulating protein
degradation [30]. Pentraxin-3, PTX3, belongs to the
acute phase proteins family produced mainly by macro-
phages, dendritic cells and endothelial cells in response
Toll-like receptor ligands and inflammatory cytokines
(eg. TNF and IL-1β) [31]; Ferritin, heavy polypeptide 1
(FTH1) is a subunit of the most important iron storage



EPHX1

**

*

E2-230K

PTX3 FTH1

IDH1

Figure 2 Thalidomide modulates gene expression induced by LPS in vitro. PBMC obtained from healthy donors were pre-treated with
thalidomide (30 min) and stimulated or not (NS) with LPS (1μg/mL) for 3 h. As an additional control, non-stimulated cells were also maintained in
culture with DMSO alone (0.1 %). Results are mean± SEM of four independent experiments carried out in duplicate. Expression of genes induced
by LPS, EPHX1, E2-230 K and PTX3 were down regulated In the presence of thalidomide whereas FTH1 and IDH1 were upregulated. Statistical
differences between groups were determined via a one-way analysis of variance (ANOVA) followed by the Bonferroni’s multiple comparison post-
test: *p< 0.05; **p< 0.01 indicate significant differences when compared to cultures stimulated with LPS alone.
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protein, plays an essential role in iron homeostasis and a
wide range of physiologic processes. Recently it was
described the interaction of FTH1 to the pathway Fas-
Daxx-ASK1-JNK1, demonstrating its properties to in-
hibit apoptosis mediated by Daxx and inhibition of JNK
activation [32]. The raise of FTH1 gene expression by
thalidomide can also imply in the immunomodulation
activity of this drug due to possible FTH1 inhibition of
JNK activation. EPHX1 encodes the gene of epoxide
hydrolase 1, it biotransforms epoxide derivatives of phar-
maceuticals, including metabolites of certain antiepilep-
tic medications [33].
Thalidomide had the ability to induce IDH1 gene ex-

pression, Isocitrate dehydrogenase (IDH)-1 mutations
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are associated to glioma development. IDH1 mutations
in arginine 132 result in a new ability of the enzyme to
catalyse the NADPH-dependent reduction of alpha-
ketoglutarate to R(−)-2-hydroxyglutarate (2HG) [34].
The biological processes of the genes altered by the LPS

inflammation model, which were affected by thalidomide,
are processes related to angiogenesis and to the response
to metabolic stress; a microorganism could for example,
trigger these processes. No direct action of thalidomide
on the gene expression of inflammatory cytokines was
observed, but thalidomide’s action occurs through pre-
cursor processes of the inflammation. A similar result
was recently reported by NOMAN et al. [35] in a study
of the inhibition of TNF production in RAW 264.7 cells.
In that work, the authors show that thalidomide has an
indirect effect on LPS signaling via down-regulation of
the MyD88 protein. This universal adapter protein is
used by all Toll-Like Receptors (except TLR3) to activate
the transcription factor NF- κB and mRNA and inhibits
LPS-induced TNF production.

Conclusions
In conclusion, we carried out a two-stage procedure of
microarray analysis to detect genes associated with thal-
idomide treatment under an inflammation model. The
proposed method detected effects that may fail to emerge
using a single experiment with LPS and thalidomide. To
find statistically significant changes in gene expression
with our small data set, we used the rank product method,
which is a flexible technique for detecting differentially
expressed genes, even under adverse conditions such as
with restricted replications [25]. Of the 64 identified
genes, five were evaluated using real time PCR to provide
more consistent evidence of their identified gene expres-
sion profiles.

Methods
Reagents
Lipopolysacharide (LPS) from Salmonella Minnesota Re
595 was purchased from Sigma Chemical Co. (St. Louis,
MO). Thalidomide was obtained from Calbiochem
(Cambridge, MA); DMSO (Sigma) was used as a solvent
for thalidomide and the final concentration of DMSO in
the cell cultures was 0.1 %.

Cell culture and stimulation
Buffy coats were obtained from three healthy donors at
the Hemotherapy Service of the Clementino Fraga Filho
University Hospital, associated with the Federal University
of Rio de Janeiro, RJ, Brazil, in accordance with the guide-
lines set down in the Declaration of Helsinki. The acquisi-
tion of all specimens was approved by the Human Ethics
Committee of the Oswaldo Cruz Foundation, Brazil.
Isolation of peripheral blood mononuclear cells (PBMC)
was performed under endotoxin free conditions through
Ficoll-Hypaque (Pharmacia Fine Chemicals, Piscataway,
NJ) density centrifugation. Cells (5x106/well) were cul-
tured in 6-well plates (Costar Corporation, Cambridge,
MA), in RPMI 1640 medium supplemented with 100U/ml
penicillin, 100 μg/ml streptomycin, 2 mM L-glutamine,
and 10 % FCS (Gibco BRL, Gaithersburg, MD) at 37 °C.
Cultures were pre-treated or not with thalidomide (25 μg/
ml) or were left unstimulated or were stimulated with LPS
(1 μg/ml) for an additional 3 hour. After the stimulation
period, cells were recovered and lysed for RNA isolation
by using tryzol (Gibco, BRL), processed according to the
manufacturer’s recommendation. The experiments con-
sidered a pool of RNAs obtained for each experimental
condition (non-stimulated untreated cells; cells stimulated
with LPS alone; cells treated with thalidomide alone; cells
treated with LPS and thalidomide).

Microarray
The microarray data were obtained through a partner-
ship between the Institute of Biophysics Carlos Chagas
Filho (UFRJ), the Leprosy Laboratory, FIOCRUZ and the
DNA Microarray Facility at the Universidad Nacional
Autónoma de México (UNAM - Mexico). Oligonucleo-
tides (50 mer) representing 9984 human genes, pur-
chased by UNAM from the MWG Biotech Company
(www.mwg-biotech.com), were spotted in duplicate onto
superamine-coated glass slides (Telechem International)
using the Virtek ChipWriter, resulting in a total of
19,968 spots. For each treatment condition, when we
compared LPS, thalidomide or LPS + thalidomide, target
cDNA was hybridized to three microarrays. To reduce
the bias of intensity associated with the difference in dye
incorporation, for two arrays, the stimulated samples
(LPS, thalidomide or LPS+ thalidomide) were labeled
using red-fluorescent dye, Cy5, and the non-exposed sam-
ples were assigned to the green-fluorescent dye, Cy3. For
the third array, dye labeling was reversed. The experimen-
tal microarray design used here is known as “dye swap.”
After standard pre-hybridization for 1 h at 420 C, samples
taken from the untreated cells (control) and treated cells
were added to buffer hybridization Hybit 2 (Telechea
International), and they were hybridized overnight in each
array at 420 C in a humidified chamber (Corning). The
hybridized slides were then washed, dried and scanned
using the Scan Array 4000 (Packard Biochips).
The intensities of the spots for each array were obtained

with the Array Pro Analyzer software, which generates
two 16 bit images, one for each dye. For each array, the
values of the gene expression were obtained by subtracting
for each spot its averaged background from the mean
foreground value. For cases with resulting values less than
or equal to zero, we replaced them with the internal

http://www.mwg-biotech.com


Paiva et al. BMC Research Notes 2012, 5:292 Page 10 of 12
http://www.biomedcentral.com/1756-0500/5/292
replicate if these were different from zero; otherwise, the
gene was eliminated. After background correction, the
mean values of the replicates were used to obtain the loga-
rithm with base two, resulting in the expression level yijkg
for each array. Initial analysis involved the production of
MA-plots for the arrays (Figure 1).
This exploratory tool is useful to identify systematic

variations due to different dye labeling efficiencies, dif-
ferences in the concentration of DNA on arrays, and
other effects. The MA-plot reveals whether the data ex-
hibit an intensity-dependent structure. The presence of
systematic effects impairs a proper analysis of individual
slides. Comparison of expression levels between slides
show a non-linear pattern in the MA-plot, indicating
the use of data normalization to remove these effects.
Here, we used lowess, a locally weighted scatter plot
smoothing for within slide normalization and variability
reduction [36].
The use of this transformation is efficient to properly

scale and to center the data for each slide. For proper
comparison between arrays, it is still necessary to center
all arrays at zero, and this task has been achieved with
the use of the ANOVA model [37]. The ANOVA model
was used only for normalization between slides. The
model considered the sources of variability that are usu-
ally present in a microarray experiment, and is defined
for each gene g as:

yijkg ¼ μþ Ai þ Dj þ ADij þ rijkg

where A and D are the array i, and the dye effects, j. AD
is the interaction between dye and array and μ captures
the array global mean for all genes, g, and the experi-
mental condition is k. The r term accounts for unex-
plained factors and is assumed as the error term with
zero mean. This residue from the ANOVA model was
used as the main data for statistical analysis using the
non-parametric rank product statistics [18] to identify
differentially expressed genes.
The entire normalization process, using the lowess

transformation and normalization with the ANOVA
model, was done with the package MAANOVA/R [38].
This preprocessing stage reduced or eliminated the vari-
ability introduced by differences in the efficiency of dye
incorporation and the differences in experimental condi-
tions that may influence the intensity of hybridization.
To carry out the rank product analysis, we used the Bio-
conductor R/Rank Prod package [39].
The rank product (RP) approach was selected because

it is a nonparametric test and does not require stringent
assumptions of probability distributions. It is also a
method that is less prone to be influenced by experimen-
tal noise, being applicable to experiments with a small
number of arrays [25], as in our case, in which there were
only three arrays for each experimental condition. The
RP method is based on rank ordering the fold change of
the genes for each array, followed by computing a geo-
metric mean of the ranks. Converting the fold changes
into ranks provides a more robust measure across arrays
even with a poor correlation across platforms. Genes
associated with the smallest ranks are the ones that
should be marked for further consideration. The RP
computed values is evaluated against a sampling distri-
bution obtained using permutation to generate nominal
p-values and also false discovery rates. A list of up- or
down- expressed genes can be obtained using a chosen
threshold level. Here we use the nominal p-values for the
ranked genes.
To further our understanding of the thalidomide mech-

anism of action, as a first step, we considered the LPS in-
fection model and we identified a list of up- or down
regulated genes using a less stringent p-value so that a lar-
ger number of genes would be selected as altered by the
LPS inflammation effect. The lists of selected differen-
tially expressed genes in response to LPS were submitted
to a functional analysis based on its association to Gene
Ontology (GO) terms. This enrichment analysis allowed
an integrated information of biological processes altered
by LPS. Association between the genes and their classes,
as defined in the databases of Gene Ontology (Gene
Ontology) and KEGG pathways (Encyclopedia of Genes
and Genomes Kyoto), was evaluated using the hypergeo-
metric test available in GOstats [21], a Bioconductor
package written in R. Additionally, we did a literature
search to identify reported altered genes under LPS
stimulus that are common to our selected set.
The set of genes selected in this first stage of analysis

was then investigated in the LPS + thalidomide experi-
ments. It is worth noting that all methods used for the
LPS experiment were also applied for the identification
of differentially expressed genes within this experiment.

Real time PCR
For validation of the microarray results, PBMC obtained
from 4 healthy donors were cultured and stimulated under
the same conditions as described above. Cells were pre-
treated or not with thalidomide (30 min), and stimulated
with LPS 1ug/ml for 3 h, when total RNA was extracted
by using Trizol. For RT-PCR, 1μg of total RNA was re-
verse transcribed using oligo-dT primers (Life Technolo-
gies) and the resulting cDNA was amplified by Real time
RT-PCR using the ABI 7500 Sequencer and the Taqman
expression assays (Applied Biosystems). For detection of
genes, primers used were: EPHX1 Hs01116806_m1,
UBE2O Hs00222904_m1, PTX3 Hs00173615_m1, FTH1
Hs01694011_s1, IDH1 Hs00271858_m1. GAPDH was used
as normalization control. The data were analyzed using
the 2-ΔΔCT method.
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Availability of supporting data
The data sets supporting the results of this article are
available at GEO repository in http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?token=pzafdaawusimezk&acc=
GSE28708.

Additional files

Additional file 1: FigureA1. MA plot of all arrays before normalization
with lowess.

Additional file 2: FigureA2. MA plot of all arrays after lowess
normalization.

Additional file 3: FigureB1. (a) Box plot after lowess transformation
showing the centralization of the data for the two channels; (b) Box plot
of the residual term of the ANOVA modeling. A1 to A6, LPS arrays; A7 to
A12, LPS + Thalidomide arrays and A13 to A18, thalidomide arrays.

Additional file 4: Table A.1_2. Table A.1 Correlation between the arrays
for the three experimental conditions and Table A.2 Correlation within
arrays for the three experimental conditions.

Additional file 5: TableB1. Genes identified as changed by LPS, as
reported in this work, and those of SHARIF et al. [19] and LEE et al. [20].

Competing interest
The authors declare that they have no competing interests.

Authors' contributions
RTP define and carried out the statistical, computational analysis,
interpretation of the results and wrote most of the paper. FFN contribute in
the definition of the computational methods to be used and in the writing
of the paper. ENS and UGL conceived the study and the design protocol.
AMS, TOF and EPS participate in the design of the study and coordination of
the experiments and data acquisition. JSS and DSC did the RT-PCR analysis.
All authors read and approved the final manuscript.

Acknowledgements
This work was supported by the Brazilian Research Council (CNPq) and the
Coordination for the Improvement of Higher Level Personnel (CAPES).

Author details
1Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio
de Janeiro, RJ, Brazil. 2Department of Microbiology, Immunology and
Parasitology, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
3Leprosy Laboratory, Institute Oswaldo Cruz, Rio de Janeiro, Brazil.
4Department of Molecular and Structural Biology, Federal University of Rio
de Janeiro, Rio de Janeiro, RJ, Brazil.

Received: 6 April 2012 Accepted: 30 May 2012
Published: 13 June 2012

References
1. von Moos R, Stolz R, Cerny T, Gillessen S: Thalidomide: from tragedy to

promise. Swiss Med. Wkly. 2003, 133(5/6):77–87.
2. Wu JJ, Huang DB, Pang KR, Hsu S, Tyring SK: Thalidomide: dermatological

indications, mechanisms of action and side-effects. Brit. J. Dermatol. 2005,
153(2):254–273.

3. Teo SK: Properties of thalidomide and its analogues: implications for
anticancer therapy. AAPS J 2005, 7(1):14–19.

4. Sampaio EP, Carvalho DS, Nery JAC, Lopes UG, Sarno EN: Thalidomide: an
overview of its pharmacological mechanisms of action. Curr. Med. Chem.:
Anti-Inflammatory Anti-Allergy Agents 2006, 5(1):71–77.

5. Fujita K, Asami Y, Tanaka K, Akita M, Merker H-J: Anti-angiogenic effects of
thalidomide: expression of apoptosis-inducible active-caspase-3 in a
three-dimensional collagen gel ulture of aorta. Histochem. Cell Biol 2004,
122(1).

6. Tadesse A, Shannon EJ: Effects of thalidomide on intracellular
Mycobacterium leprae in normal and activated macrophages. Clin
Vaccine Immunol 2005, 12(1):130–130.
7. Sampaio EP, Sarno EN, Galilly R, Cohn ZA, Kaplan G: Thalidomide
selectively inhibits tumor necrosis factor alpha production by stimulated
human monocytes. J. Exp. Med. 1991, 173(3):699–699.

8. Haslett PAJ, Roche P, Butlin CR, Macdonald M, Shrestha N, Manandhar R,
LeMaster J, Hawksworth R, Shah M, Lubinsky AS, et al: Effective treatment
of erythema nodosum leprosum with thalidomide is associated with
immune stimulation. J Infect Dis 2005, 192:2045–2053.

9. Lagier JC, Fenollar F, Lepidi H, Liozon E, Raoult D: Successful treatment of
immune reconstitution inflammatory syndrome in Whipple's disease
using Thalidomide. J. Infection 2010, 60(1):79–82.

10. Majumdar S, Lamothe B, Aggarwal BB: Thalidomide Suppresses NF-kappa
B Activation Induced by TNF and H2O2, But Not That Activated by
Ceramide, Lipopolysaccharides, or Phorbol Ester. J Immunol 2002,
168(6):2644–2651.

11. Baldwin AS: The NF-kappa B and I kappa B proteins: new discoveries and
insights. Annu Rev Immunol 1996, 14(1):649–681.

12. Kirschning CJ, Wesche H, Ayres TM, Rothe M: Human Toll-like Receptor 2
Confers Responsiveness to Bacterial Lipopolysaccharide. J. Exp. Med. 1998,
188(11):2091–2097.

13. Moreira AL, Sampaio E, Zmuidzinas A, Frindt P, Smith KA, Kaplan G:
Thalidomide exerts its inhibitory action on tumor necrosis factor alpha
by enhancing mRNA degradation. J. Exp. Med. 1993, 177(6):1675–1168.

14. Quackenbush J: Microarray data normalization and transformation. Nat
Genet 2002, 32:496–501.

15. Butte A: The use and analysis of microarray data. Nat. Rev. Drug Discovery
2002, 1(12):951–960.

16. Crowther DJ: Applications of microarrays in the pharmaceutical industry.
Curr Opin Pharmacol 2002, 2(5):551–554.

17. Brazma A, Vilo J: Gene expression data analysis. Microbes Infect. 2001,
3(10):823–829.

18. Breitling R, Armengaud P, Amtmann A, Herzyk P: Rank products: a simple,
yet powerful, new method to detect differentially regulated genes in
replicated microarray experiments. FEBS Lett 2004, 573(1–3):83–92.

19. Sharif O, Bolshakov VN, Raines S, Newham P, Perkins ND: Transcriptional
profiling of the LPS induced NF-κB response in macrophages. BMC
Immunol 2007, 8(1):1–1.

20. Lee DJ, Li H, Ochoa MT, Tanaka M, Carbone RJ, Damoiseaux R, Burdick A, Sarno
EN, Rea TH, Modlin RL: Integrated Pathways for Neutrophil Recruitment and
Inflammation in Leprosy. J Infect Dis 2010, 201(4):558–569.

21. Falcon S, Gentleman R: Using GOstats to test gene lists for GO term
association. Bioinformatics 2007, 23(2):257–258.

22. Ng SSW, MacPherson GR, GÃ¼tschow M, Eger K, Figg WD: Antitumor
Effects of Thalidomide Analogs in Human Prostate Cancer Xenografts
Implanted in Immunodeficient Mice. Clin. Cancer Res 2004,
10(12):4192–4197.

23. Liu WM, Strauss SJ, Chaplin T, Shahin S, Propper DJ, Young BD, Joel SP,
Malpas JS: s-Thalidomide has a greater effect on apoptosis than
angiogenesis in a multiple myeloma cell line. Hematol J 2004,
5(3):247–254.

24. Kumar S, Greipp PR, Haug J, Kline M, Chng WJ, Blood E, Bergsagel L, Lust JA,
Gertz MA, Fonseca R, et al: Gene Expression Profiling of Myeloma Cells at
Diagnosis Can Predict Response to Therapy with Thalidomide and
Dexamethasone Combination. ASH Annual Meeting Abstracts 2005,
106(11):508–508.

25. Jeffery IB, Higgins DG, Culhane AC: Comparison and evaluation of
methods for generating differentially expressed gene lists from
microarray data. BMC Bioinforma 2006, 7:359.

26. Gupta MK, Qin RY: Mechanism and its regulation of tumor-induced
angiogenesis. World J. Gastroentero. 2003, 9(6):1144–1155.

27. Brady-Kalnay SM, Tonks NK: Protein tyrosine phosphatases as adhesion
receptors. Curr Opin Cell Biol 1995, 7(5):650–657.

28. Tonks NK: Protein tyrosine phosphatases: from genes, to function, to
disease. Nat Rev Mol Cell Biol 2006, 7(11):833–846.

29. Der SD, Yang Y-L, Weissmann C, Williams BRG: A double-stranded RNA
activated protein kinase-dependent pathway mediating stress-induced
apoptosis. Proc Natl Acad Sci U S A 1997, 94(7):3279–3283.

30. Markson G, Kiel C, Hyde R, Brown S, Charalabous P, Bremm A, Semple J,
Woodsmith J, Duley S, Salehi-Ashtiani K, Vidal M, Komander D, Serrano L,
Lehner P, Sanderson CM: Analysis of the human E2 ubiquitin conjugating
enzyme protein interaction network. Genome Res 2009,
19(10):1905–11.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=pzafdaawusimezk&acc=GSE28708
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=pzafdaawusimezk&acc=GSE28708
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=pzafdaawusimezk&acc=GSE28708
http://www.biomedcentral.com/content/supplementary/1756-0500-5-292-S1.pdf
http://www.biomedcentral.com/content/supplementary/1756-0500-5-292-S2.pdf
http://www.biomedcentral.com/content/supplementary/1756-0500-5-292-S3.pdf
http://www.biomedcentral.com/content/supplementary/1756-0500-5-292-S4.pdf
http://www.biomedcentral.com/content/supplementary/1756-0500-5-292-S5.pdf


Paiva et al. BMC Research Notes 2012, 5:292 Page 12 of 12
http://www.biomedcentral.com/1756-0500/5/292
31. Inforzato A, Bottazzi B, Garlanda C, Valentino S, Mantovani A: Pentraxins in
humoral innate immunity. Adv. Exp. Med. Biol. 2012, 946:1–20.

32. Liu F, Du ZY, He JL, Liu XQ, Yu QB, Wang YX: FTH1 binds to Daxx and
inhibits Daxx-mediated cell apoptosis. Mol Biol Rep 2012, 39(2):873–9.

33. Chen CZ, Wang RH, Lee CH, Lin CC, Chang HY, Hsiue TR: Polymorphism of
microsomal epoxide hydrolase is associated with chronic obstructive
pulmonary disease and bronchodilator response. J. Formos. Med. Assoc.
2011, 110(11):685–9.

34. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin
VR, Jang HG, Jin S, Keenan MC, Marks KM, Prins RM, Ward PS, Yen KE, Liau
LM, Rabinowitz JD, Cantley LC, Thompson CB, Vander Heiden MG, Su SM:
Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature
2009, 462(7274):739–44.

35. Noman ASM, Koide N, Hassan F, I-E, Khuda I, Dagvadorj J, Tumurkhuu G,
Islam S, Naiki Y, Yoshida T, Yokochi T: Thalidomide inhibits
lipopolysaccharide-induced tumor necrosis factor-α production via
down-regulation of MyD88 expression. Innate Immun. 2009, 15(1):33–41.

36. Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP: Normalization
for cDNA microarray data: a robust composite method addressing single
and multiple slide systematic variation. Nucleic Acids Res 2002, 30(4):e15.

37. Kerr MK, Martin M, Churchill GA: Analysis of Variance for Gene Expression
Microarray Data. J Comput Biol 2000, 7(6):819–837.

38. Hao Wu, Hyuna Yang, Gary A, Churchill: R/MAANOVA, An extensive R
environment for the Analysis of Microarray Experiments.; 2009.
http://churchill.jax.org/software/rmaanova/maanova.pdf.

39. Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J:
RankProd: a bioconductor package for detecting differentially expressed
genes in meta-analysis. Bioinformatics 2006, 22(22):2825–2827.

doi:10.1186/1756-0500-5-292
Cite this article as: Paiva et al.: A framework to identify gene expression
profiles in a model of inflammation induced by lipopolysaccharide after
treatment with thalidomide. BMC Research Notes 2012 5:292.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Microarray &b_k;pre-&e_k;&b_k;processing&e_k;
	Expressed genes and their functional classes under LPS stimulation

	link_Fig1
	link_Tab1
	Modulation of LPS induced genes by thalidomide
	Evaluation of gene expression by &b_k;RT-&e_k;&b_k;PCR&e_k;

	Discussion
	link_Tab2
	link_Tab3
	link_Tab4
	link_Tab5
	link_Fig2
	Conclusions
	Methods
	Reagents
	Cell culture and stimulation
	Microarray
	Real time PCR
	Availability of supporting data

	Additional files
	show [me]
	Acknowledgements
	Author details
	References
	link_CR1
	link_CR2
	link_CR3
	link_CR4
	link_CR5
	link_CR6
	link_CR7
	link_CR8
	link_CR9
	link_CR10
	link_CR11
	link_CR12
	link_CR13
	link_CR14
	link_CR15
	link_CR16
	link_CR17
	link_CR18
	link_CR19
	link_CR20
	link_CR21
	link_CR22
	link_CR23
	link_CR24
	link_CR25
	link_CR26
	link_CR27
	link_CR28
	link_CR29
	link_CR30
	link_CR31
	link_CR32
	link_CR33
	link_CR34
	link_CR35
	link_CR36
	link_CR37
	link_CR38
	link_CR39

