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Abstract

Background: Many consensus-based and Position Weight Matrix-based methods for recognizing transcription factor
binding sites (TFBS) are not well suited to the variability in the lengths of binding sites. Besides, many methods discard
known binding sites while building the model. Moreover, the impact of Information Content (IC) and the positional
dependence of nucleotides within an aligned set of TFBS has not been well researched for modeling variable-length
binding sites. In this paper, we proposeML-Consensus (Mixed-Length Consensus): a consensus model for
variable-length TFBS which does not exclude any reported binding sites.

Methods: We consider Pairwise Score (PS) as a measure of positional dependence of nucleotides within an alignment
of TFBS. We investigate how the prediction accuracy of ML-Consensus is affected by the incorporation of IC and PS
with a particular binding site alignment strategy. We perform cross-validations for datasets of six species from the
TRANSFAC public database, and analyze the results using ROC curves and the Wilcoxon matched-pair signed-ranks
test.

Results: We observe that the incorporation of IC and PS in ML-Consensus results in statistically significant
improvement in the prediction accuracy of the model. Moreover, the existence of a core region among the known
binding sites (of any length) is witnessed by the pairwise coexistence of nucleotides within the core length.

Conclusions: These observations suggest the possibility of an efficient multiple sequence alignment algorithm for
aligning TFBS, accommodating known binding sites of any length, for optimal (or near-optimal) TFBS prediction.
However, designing such an algorithm is a matter of further investigation.

Background
Transcription factors (TF) are proteins that bind to spe-
cific locations of DNA (referred to as binding sites, BS)
and facilitate/repress the transcription process. In many
cases binding sites of a transcription factor contain a
common nucleotide pattern [1]. DNA motif-finding algo-
rithms use various models to represent this pattern [1].
One of these models is the consensus, a sequence repre-
sentation derived from a multiple sequence alignment of
binding sites [2,3]. The consensus sequence retains only
the most conserved base at any position, resulting in loss
of information about other bases at that position. Posi-
tion weight matrix (PWM), also known as probabilistic
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sequence model or scoring matrix, is another represen-
tation model which records frequency (or probability)
of every base at each position of the multiple sequence
alignment [1,4,5]. The survey by Das and Dai provides
a classification of DNA motif-finding methods based on
different representation models [6].
Both basic consensus-based and PWM-based methods

need equal-length sequences. Although this is acceptable
for cases where there is no variability in lengths of binding
sites (e.g., the bacterial dataset described in [7]), there are
other datasets where TFBS show remarkable variability in
lengths (e.g., datasets described in Section Input, train-
ing, and testing). In order to circumvent this variability,
variants of these methods apply constraints and assump-
tions on the nature of binding sites. For example, only
fixed-length sites are considered, or only sites containing
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a fixed-length subsequence are considered [8]. It is not
confirmed, however, whether the protein-DNA binding
mechanism indeed follows such constraints. Therefore it
is necessary to modify these models for allowing vari-
ability in TFBS lengths. Some studies described such a
PWM-based model that allows gaps in the PWM and thus
accommodates variable-length binding sites [9].
There are models which can accommodate binding sites

of different lengths. A widely used TFBS prediction pro-
gram is the PMATCH, which uses Gibbs sampling [10]
to align binding sites of different lengths [11]. However,
PMATCH excludes some documented binding sites based
on constraints on the lengths of the sites, and imposes a
constraint on the the core region; it defines the core region
as the five most conserved positions within the alignment
[11].
Models that involve a matrix representation (PWM/

consensus) must make a multiple sequence alignment
from the known binding sites. Therefore, the multiple
sequence alignment algorithm associated with such a
model will influence its performance because the align-
ment (and therefore, the scoring matrix or consensus)
generated by different algorithms will be different. An
excellent survey of multiple sequence alignment algo-
rithms can be found in [12]. On the other hand, the
TFBS prediction algorithm SiTaR does not align input
sequences at all [13]. By not aligning, SiTaR avoids many
uncertainties arising from the generalizations made by
multiple sequence alignment.
Basic consensus-based and PWM-basedmodels assume

that positions in a binding site are independent. How-
ever, some biological studies suggest that positions in a
binding site are correlated [14,15]. Several computational
models for this correlation have been proposed [16,17].
Some studies described pairwise score (PS), a method that
computes interdependence of any two positions that are
located within a fixed distance from one another in a bind-
ing site [18]. This distance is called the scope of PS. It has
been shown that the addition of PS to basic consensus-
based and PWM-based models results in statistically sig-
nificant improvement in performance [18]. However, pair-
wise correlation is not the same as the statistical measure
“correlation”; rather, it is a measure of co-occurrence of
bases within a given proximity (i.e., scope). The math-
ematical definition of pairwise score can be found in
Section Scoring function with pairwise score (PS).
Information content (IC) of an alignment of binding sites

is a measure of conservation of any base at any given posi-
tion in that alignment. It has been shown that the addition
of IC in basic consensus-based and PWM-based models
results in statistically significant improvement in perfor-
mance [18]. However, these results regarding PS and IC
were demonstrated on a dataset that does not have any
variability in the lengths of binding sites for a TF [7].

Our research
In this paper, we define a consensus model (Mixed-length
Consensus or ML-Consensus) for recognizing variable-
length TFBS. Our model does not exclude any known/
reported binding site while building the model for a
set of TFBS. Moreover, ML-Consensus does not make
any assumption on the lengths of binding sites or on
the length/composition of the core region. However, it
assumes that there exists one core region for a set of TFBS,
the core region is present, in part or whole, in every bind-
ing site. This assumption is used in constructing the naı̈ve
multiple alignment algorithm associated with this model
(described later in this section).
Our input data covers six species from the TRANSFAC

public database [19]. We study the effect of pairwise cor-
relation of nucleotides, information content, and multiple
sequence alignment strategy on the prediction accuracy of
our model.
If each binding site of any given TF has the same length

(e.g., the E. coli dataset in [7]), it is trivial to align them
and get the consensus or scoring matrix. Otherwise, one
needs to make a multiple sequence alignment from those
sequences in order to derive a scoring matrix or a con-
sensus. TFBS prediction tools employ variousmethods for
aligning binding sites [6]. All other things remaining the
same, effectiveness of two multiple sequence alignment
algorithms for aligning TFBS can be evaluated by com-
paring the performance of a TFBS prediction model using
those two alignment strategies.
In our study, our goal was to evaluate the effective-

ness of commonly used multiple sequence alignment
strategies in aligning TFBS. We present a naı̈ve sorting-
based multiple sequence alignment algorithm and com-
pare it to ClustalW2, a widely used multiple sequence
alignment algorithm [20]. We pick ClustalW2 as a rep-
resentative of sophisticated alignment algorithms; our
simple-sorted alignment algorithm is so naı̈ve that when
comparing it to another algorithm the implementation
specifics of the other algorithm does not matter provided
the other algorithm is one of the good and sophisti-
cated algorithms. Our algorithm (see Appendix A: The
naı̈ve sorting-based multiple sequence alignment algo-
rithm) operates on a simple principle: it picks the short-
est yet-to-align sequence and adds it to the temporary
alignment. This is done based on the assumption that
all binding sites of a TF have some pattern in common
(i.e., a core region), and therefore the probability that any
given position of a binding site would be a part of the
core region is higher in a short binding site than that
in a long binding site. On the other hand, ClustalW2
creates the alignment from the phylogenetic tree built
from pairwise alignments from the input sequences.
In our experiments, we used ClustalW2 without iter-
ative refinement. Table 1 shows different alignments
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produced by these two algorithms from the same input
sequences.
Pairwise score (PS) is a measure of the dependence of

nucleotides at two positions that are situated within a
given distance in an alignment of TFBS. Whereas other
studies (e.g., [18]) have discussed effect of PS on consen-
sus/matrix-based TFBS models for fixed-length binding
sites, we study the effect of PS onML-Consensus, a model
for variable-length binding sites. Specifically, we perform
experiments with different PS scopes to find whether
there is any regularity with which a change in PS scope
affects the performance of ML-Consensus. We consider
the following choices for PS: no PS, PS scopes 1–10, and
a large scope value that covers the entire overlap between
a test sequence and the consensus while scoring that
sequence against the consensus.
As mentioned earlier, ML-Consensus has three configu-

ration variables: pairwise score, information content, and
multiple sequence alignment strategy. We construct one
experiment-configuration for each combination of vari-
ables (e.g., ClustalW2 alignment using IC and PS scope 2,
etc.). We conduct leave-one-out cross-validation scheme
for training/testing ourmodel on TFBS data for six species
extracted fromTRANSFAC public database [19].We used
ROC curves and theWilcoxonmatched-pair signed-ranks
test for statistical evaluation of the performance data.
Our results show that the adoption of IC or PS in the

scoring function of ML-Consensus results in significant
improvement in performance. Moreover, a large PS scope
(e.g., the full scope) does not produce the best perfor-
mance for a given configuration; performance decreases
after PS scope is larger than a certain value. Not only
is this observation counterintuitive, but it also provides
a way to estimate the core length. Our results also sug-
gest that it is possible to design a TFBS-specific multiple
sequence alignment algorithm that will perform better
than general-purpose algorithms by means of utilizing
prior information and assumptions about TFBS. However,
we do not present such an algorithm yet since it is subject
to further investigation.
The main contributions of this paper are the follow-

ing: (1) We describe a new model for TFBS prediction

Table 1 Consensus derived from binding sites aligned
using ClustalW2 (left) and simple sorted (right) multiple
sequence alignment algorithms

ClustalW2 Alignment Simple Sorted Alignment

-------ATTACACCAAGTACC -------ACCTAAGCTG--

----GGAATTTCCTGTTGATCC ----ATTACACCAAGTACC

-------ACCTAA-GCTG---- -GGAATTTCCTGTTGATCC

CTAAAGGACGTCACATTGC--- CTAAAGGACGTCACATTGC

-------A--TCA---TG---- ----A--AC-T-A--T--C

which accommodates all known binding sites of different
lengths. (2) We show that incorporating information con-
tent and pairwise correlation into scoring function for this
model improves the prediction accuracy. (3) We study the
effect of different PS scopes on the prediction accuracy of
this model. (4) We show that it is possible to estimate the
length of the core region in a set of TFBS, and (5)We show
that it is possible to design a multiple sequence align-
ment algorithmwhich will do better than general-purpose
algorithms while aligning TFBS.

Results and discussion
In the following discussion AUC refers to the area under
ROC curve. A configuration is an experiment with any
particular settings for IC, PS scope, and alignment strat-
egy. AUC of a configuration is taken as a measure of its
performance (i.e., prediction accuracy). However, when
comparing performances of two configurations, the statis-
tical significance of difference in performance is consid-
ered. If significant, the event is mentioned as configuration
A performs better than configuration B. Otherwise, it is
mentioned as the two configurations are equivalent. For a
given configuration, peak in its AUC denotes the PS scope
value which, among all scopes, produces the highest AUC
for that configuration. The phrases naı̈ve alignment, sim-
ple sorting-based alignment and simple-sorted alignment
all refer to our heuristic, sorting-based, multiple sequence
alignment algorithm presented in Appendix A: The naı̈ve
sorting-based multiple sequence alignment algorithm.

Some adjacent PS scopes produce significantly better
performance than other scopes
By definition (see Section Scoring function with pair-
wise score (PS)), all information gathered in a smaller PS
scope are retained in a larger PS scope. However, Figure 1
and Figure 2 show that the performance of a configura-
tion starts to decrease when PS scope grows larger than
a certain value. The location of the peak (i.e., the PS
scope which produces the highest area under ROC curve)
for a configuration varies in different species. Figure 2
depicts whether the change in performance between suc-
cessive PS scopes is statistically significant. We observe
that there is always a range of PS scopes where per-
formance, after initially increasing significantly, does not
change significantly with a change in PS scope. After this
range, however, performance decreases significantly. We
call this range of PS scopes a significance plateau.
The above observation can be explained as follows. For

any leave-one-out experiment over a given set of TFBS,
the known positive example may have one or more mis-
matches with respect to the consensus. These positions
may get involved in position-pair matches between the
consensus and a known negative example. (We term this
event as noise.) If such an event takes place, it increases
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Figure 1 Effect of IC on alignment and PS (H. sapiens). There are two regions: ClustalW2 (left) and simple sorting-based algorithm (right). In each
region, PS scopes are placed in x-axis, from left to right, in the following order: no PS, scopes 1–10, and full scope. Between the two configurations
(one using IC, and the other without IC), if one performs significantly better than the other at any PS scope, it is marked with a diamond.

the probability that the known negative example would
score higher than the known positive example — produc-
ing a false positive. PS scopes larger than a certain value do
not capture any new position-pair matches, yet continue
picking up noise. This is why we observe a decrease in
performance of a configuration with increase in PS scopes
beyond a certain value. This scope indicates themaximum
distance within which two positions in an aligned set of
TFBS are correlated. In an alignment, only positions that
form the core region will be correlated. Therefore the core
region (for the sites in the alignment) should be at most
as long as this scope value. However, this scope value is
found by running a given experiment-configuration over
all sets of TFBS for a given species, and therefore it is asso-
ciated with the overall TFBS dataset for the species and
not with any particular set of TFBS. Additionally, different
experiment-configurations produce possibly different sig-
nificance plateaus for any given species dataset. Therefore,
the location of the plateau depends on which experiment-
configuration is in use. Our suggestion is that for a given
species, we should choose the experiment-configuration
that produces highest area under its ROC curves across all
PS scopes, thus having the highest discriminatory power.

ClustalW2 does not perform as expected
We perform theWilcoxonmatched-pair signed-ranks test
in order to determine whether ClustalW2 performs sig-
nificantly better than the naı̈ve alignment algorithm. Since

ClustalW2 is a sophisticated algorithm, the null hypoth-
esis is that ClustalW2 should perform significantly better
(with p <= 0.05) than simple sorted alignment algorithm
in all combinations of other variables. However, if the
difference in performance is found insignificant it should
be considered as an evidence against the null hypothesis.
We divide all configurations into pairs (based on align-
ment strategy), and then compute statistical significance
of difference in performance of the two configurations
in each pair. Table 2 shows the statistical significance of
the difference in performance of configurations using
different alignment algorithms according to the null
hypothesis mentioned above. It can be seen that the null
hypothesis does not hold true in four out of six species
with p <= 0.01. This means ClustalW2 does not perform
significantly better than naı̈ve sorting-based alignment
strategy in all experiments.
Since the naı̈ve algorithm operates on simple assump-

tions, and it does not do anything as involved as common
multiple sequence alignment algorithms do, the naı̈ve
algorithm has much room for improvement. Since the
performance of this algorithm is already as good as (or
better than) the performance of ClustalW2 in most sit-
uations, we can say that it is possible to design a TFBS-
specific multiple sequence alignment algorithm that will
perform better than general-purpose algorithms (e.g.,
ClustalW2, etc.) by means of utilizing prior information
and assumptions about TFBS. For example, an assumption
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Figure 2 Performance of all configurations in H. sapiens. If a PS scope produces significantly better performance than that produced by its
previous scope and is followed by a scope where the performance does not change significantly, it is marked with a diamond (the start of the
significance plateau). After this point, if the performance does not change significantly in subsequent scopes, data points are still marked with a
diamond (continuation of the plateau). A round marker denotes the highest AUC in a configuration. A large diamond indicates that the scope
producing this peak in AUC is inside the significance plateau.

made by the naı̈ve alignment algorithm is that there is
a core region contained by all binding sites. In addition,
an example of prior information about TFBS is the core
length suggested by the PS scopes in significance plateau.
However, the relationship between the core length and the
significance plateau is not known yet.
Performance of configurations using the same align-

ment algorithm varies across different species. Figure 3
shows that simple sorted alignment performs better than
ClustalW2 in M. musculus. On the other hand, Figure 4
shows that ClustalW2 performs better than naı̈ve sorting-
based algorithm in R. norvegicus. Although we do not

Table 2 Comparison between ClustalW2 and simple sorted
alignment strategies in all configurations

Species
ClustalW2 Superior Z p ≤
%Cases Alignment

D. melanogaster 0.980 ClustalW2 5.78 0.01

G. gallus 0.000 Simple sorted 6.03 0.01

H. sapiens 0.540 None 0.50 –

M.musculus 0.060 Simple sorted 5.28 0.01

R. norvegicus 1.000 ClustalW2 6.03 0.01

S. cerevisiae 0.125 Simple sorted 4.53 0.01

know why this happens, our hypothesis is that it may be
due to the differences in the composition of binding sites
(i.e., number and lengths of binding sites, the nature of
the core region, etc.) for each species. This observation
requires further investigation.

Both IC and PS lead to improved performance
The addition of IC to a configuration without IC always
improves its performance. However, the improvement is
more prominent for larger scopes which can be seen in
Figure 1 and Figure 2. In these figures, AUC of con-
figurations without IC drops quickly at large PS scopes.
However, curves for configurations with IC tend to be
more flat at large PS scopes. Similarly, addition of PS (with
appropriate scope value) to configurations without PS
results in improved performance. These observations are
in accordance with the observations made by [18] regard-
ing influence of IC and PS on models for fixed-length
binding sites.

Conclusions and future works
In this paper we describe ML-Consensus, a consensus
model for recognizing variable-length transcription fac-
tor binding sites. We show that certain PS scope values
indicate the range within which positions in a binding
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Figure 3 Effect of alignment on IC and PS (M.musculus). A diamond marker indicates where a configuration performs significantly better than
the other in the same PS scope.

site are correlated. However, the statistical correlation of
nucleotides in a set of binding sites is out of the scope of
this research, and is a matter of future work.We also show
that in most cases, configurations that use ClustalW2 as
alignment algorithm do not perform significantly better
than configurations that use a naı̈ve sorting-based heuris-
tic alignment algorithm. It suggests that it is possible to
improve the naı̈ve algorithm into a TFBS-specific mul-
tiple sequence alignment algorithm (using information/
assumptions about TFBS) which would perform better
than general-purpose multiple sequence alignment algo-
rithms. However, designing such an algorithm is another
direction of future investigation. Lastly, although we use
a consensus model, our approach and methods can be
extended to a PWM-based model for variable-length
binding sites.

Methods
In this section, we start with presenting the mathemati-
cal definition of the ML-Consensus model and its various
parts. Next we describe how we collected and processed
the input data to build training and testing datasets.
Then we describe how we made statistical evaluation
of the experiments through ROC curves and Wilcoxon
matched-pair signed-ranks test.

Model definition
The ML-Consensus model has the following parts: (1)
Building a multiple sequence alignment from a given set
of binding sites, (2) Generating the consensus sequence
from this alignment, (3) A basic scoring function which
compares a given DNA sequence with this consensus and
tells how close they are; this scoring function can be mod-
ified to incorporate information content (IC) and pairwise
score (PS).

Building a consensus
Let S be the set of N binding sites for a particular tran-
scription factor. Let A be a multiple sequence alignment
of S with width ofM. A gap in alignments in A is denoted
by ‘-’.
Let nj(b) be the number of times base b ∈ {A,C,G, T}

appears at j-th position of A. Let fj(b) = nj(b)/N be the
corresponding frequency. Similarly, let n(b) be the num-
ber of times base b appears overall in A, and f (b) be the
overall frequency for base b in A.
A letter representingmore than one nucleotides is called

the ambiguity code for those nucleotides. Let amb(b, d)

be the ambiguity code for two bases b, d ∈ {A,C,G, T} as
described in Table 3, and amb(b, ∗) be any ambiguity code
involving base b. Let C be the consensus sequence derived
from A, and Cj be the j-th base in C.
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Figure 4 Effect of alignment on IC and PS (R. norvegicus). A diamond marker indicates where a configuration performs significantly better than
the other in the same PS scope.

Cj is computed as follows. For each position j of A,

• If fj(b) > 0.5 for base b ∈ {A,C,G, T}, set Cj = b.
• Otherwise, if fj(b) + fj(d) > 0.75 for any two bases

b, d ∈ {A,C,G, T}, set Cj = amb(b, d).
• Otherwise, set Cj = ‘-’, the gap character.

Table 1 shows how to derive a consensus from two
different sequence alignments produced by two different
alignment algorithms. Computing fj(b) for all j, b takes
O(NM) time.

Scoring function
Let t be a putative binding site. Let tj be the j-th base of t.
To compute the score of t with respect to consensus C, we
used a sliding window approach where t is shifted along
C, from left to right. At each point of shifting there is an
overlap between t and C. For each overlap w let Cw,i be
the base in consensus corresponding to the i-th position
inw. Define tw,i in similar way. For each overlapwwe com-
puted σ(t,C,w), the score of t at that particular overlap;

Table 3 Ambiguity codes used in consensus for a pair of
nucleotides

b A A A C C G

d C G T G T T

amb(b, d) I J K L M N

this score is equal to the number of matches between t and
C at w:

σ(t,C,w) =
∑
i∈w

Match(w, i) , (1)

where

Match(w, i) =
⎧⎨
⎩
1 : Cw,i = tw,i
1 : Cw,i = amb(tw,i, ∗)

0 : otherwise
. (2)

Computing Match(w, i) takes O(1) time, and comput-
ing σ(t,C,w) takes O(M) since size of w is O(M). Finally,
the score of t with respect to C is the maximum score
obtained in all overlaps, which takes O(M2) since there
can be at most O(M) overlaps.

σ(t,C) = max
w

(σ (t,C,w)) . (3)

Scoring function with information content (IC)
Information Content (also called entropy) at any position
j of the alignment A is a measure of conservation of any
base at that position [4,21]. If a base is highly conserved
at a position, chance of encountering a different base at
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that position is small; thus the information content at
that position is low. The IC at position j of the alignment
matrix A is defined as:

IC(A, j) = 2 +
∑

b∈{A,C,G,T}
fj(b) log fj(b) , (4)

where the term fj(b) log fj(b) becomes zero whenever fj(b)
becomes zero, thus avoiding evaluation of log 0. IC(A, j)
for all j can be computed in O(M) time. Let A(w, i) be the
position in A that corresponds to the i-th position in w.
When IC is used in scoring, the scoring function for the
overlap becomes:

σIC(t,C,w) =
∑
i∈w

Match(w, i) · IC (A,A (w, i)) . (5)

This takes O(M) time when IC(A, j) are pre-computed.

Scoring function with pairwise score (PS)
Pairwise score is a measure of interdependence among
positions in a binding site with respect to the consensus
[18]. Two different positions in an overlap w are corre-
lated if there are matches in both positions. In overlap w,
let positions i and i + k be separated by k positions. The
match-score for this position-pair, MatchPair(w, i, k), is
defined as follows:

MatchPair(w, i, k) =

⎧⎪⎪⎨
⎪⎪⎩

2 : Match(w, i) = 1
and
Match(w, i + k) = 1

0 : otherwise

(6)

This takes O(1) time.
Let K be the maximum distance considered between

any two positions, and |w| be the length of the overlap. K
is called the scope of PS. The pairwise score of t at overlap
w, σPS(t,C,w), is defined as the total number of position-
pair matches for all positions situated within the scope of
PS.

σPS(t,C,w) =
K∑
s=1

|w|−s∑
i=1

s∑
k=1

MatchPair(w, i, k) (7)

This operation takes O(MK2) time. Score at any PS
scope contains all matches from all smaller scopes along
with new matches at the said scope. Thus it does not
lose any information about position-matches gathered in
previous scopes.

Scoring function with both information content and pairwise
score
At any overlap w, let nij(b, d) be the number of times
two bases b and d appear together at positions i and

j, respectively. Let fij(b, d) = nij(b, d)/N be the corre-
sponding frequency. Then, IC of position-pair (i, j) in the
alignment matrix A is defined as follows:

ICpair(A, i, j) = 4 +
∑

b,d∈{A,C,G,T}
fij(b, d) log fij(b, d) (8)

Computing fij(b, d) for all i, j, b, d takes O(M2) time.
After that, computing ICpair(A, i, j) for all i, j takes O(M2)
time.
Let A(w, i) be the position in A that corresponds to the

i-th position in w. Let ICpair(w, i, k) be the information
content of the position-pair (i, i+k) in w, which is defined
as follows:

ICpair(w, i, k) = ICpair (A,A (w, i) ,A (w, i + k)) (9)

Finally, the score of t at overlap w is defined as follows:

σICPS(t,C,w) =
K∑
s=1

|w|−s∑
i=1

s∑
k=1

MatchPair(w, i, k)

× · ICpair(w, i, k) . (10)

This takes O(K2M) time because all ICpair(A, i, j) values
are already computed for all i, j.

Experiment design
We studied the effect of three variables on the perfor-
mance of ML-Consensus: multiple sequence alignment
strategy, IC, and PS. The alignment algorithm can be
either ClustalW2 or simple sorted alignment algorithm.
There are two choices for IC: either using IC, or not using
IC. However, PS can have twelve possible values: not using
PS; PS scopes 1–10; and lastly full PS scope, which means
the scope spans the entire overlap between a putative site
and the consensus. Therefore, there are 2 × 2 × 12 = 48
possible experiment-configurations, one for each combi-
nation of the three variables. Each of these configurations
was trained and tested using the same input, training, and
testing data.

Input, training, and testing
We extracted TFBS data from TRANSFAC public
database [19]. We considered TFs with at least three
binding sites. Table 4 shows basic statistics for this data.
Figure 5 shows the variability in TFBS lengths in the input
data. The x-axis shows the ratio of population SD and
mean in BS length computed for a set of TFBS. From the
figure it can be observed that 9.5% TFs have small devi-
ation in size (the first bin of histogram) but they cover
only 7.5% of total BSs. From first three bins, it can be seen
that 40% of TFs (covering 29% BSs) have low variability
( SD
mean < 0.3). From next three bins, it can be observed
that another 49% TFs (covering 60% BSs) have much



Quader and Huang BMC Research Notes 2012, 5:340 Page 9 of 11
http://www.biomedcentral.com/1756-0500/5/340

Table 4 Statistics of input TFBS data

Species
TF BS Average Standard

BS length Deviation

D. melanogaster 29 352 12.14 5.83

G. gallus 23 179 7.78 5.47

H. sapiens 179 2493 13.93 7.11

M.musculus 125 1266 10.13 6.01

R. norvegicus 59 795 13.47 6.80

S. cerevisiae 42 385 9.17 5.18

All species 457 5470 11.97 6.43

The Standard Deviation (SD) column is the average of population SD in BS
lengths for all TFs.

higher variability (0.3 ≤ SD
mean < 0.6). Remaining 11% TFs

have extreme variability, and they cover the remaining
11% of BSs.
We conducted leave-one-out cross-validation for all TFs

over respective BS data. For each TF, the training data
contained all its binding sites except the one left out. The
test data contained all known negative examples (binding
sites of other TFs of the same species) and one known pos-
itive example (the left-out site). In accordance with [18],
we removed any site from the set of negative examples for
this TF if the site is also a BS of this TF.

Statistical evaluation
If a known negative example scored higher than the only
known positive example, it was treated as a false positive.
We needed to know which false positive rate corresponds
to which true positive rate in order to draw an ROC
curve for a configuration. In our case there was only
one known positive example. Because several negative
sites may score higher than the positive one, our model

must allow these false positives (compromising prediction
accuracy) in order to correctly classify the known positive
example. We considered allowable false positive rate from
0% to 20%. This range was discretized into several slots
(each denoting a smaller range in false positive rate val-
ues). For each leave-one-out experiment over a given set
of TFBSwe computed the true positive rate corresponding
to each of these slots. These values were used to generate
an ROC curve for this configuration. Details of this con-
struction are given in Appendix B: Construction of ROC
curves. Area under the ROC curve of a configuration is a
measure of its discriminatory power. However, it should
be noted that the performance of two configurations can
not be compared solely by the areas under respective
ROC curves if the two curves intersect at one or more
points [22].
We used Wilcoxon matched-pair signed-ranks test

to compare performance of any two configurations at
p-values 0.05 and 0.01 [23]. This test is well suited to our
experiments because the underlying distribution of the
data is unknown, yet we know that individual data points
are independent. We used the number of false positives
for each individual leave-one-out experiment for a TF
as the rank of the experiment. Therefore, a high rank
indicated poor performance.

Availability of supporting data
The data set, supplementary data, source codes (C#), and
figures supporting the results of this article are available in
http://biogrid.engr.uconn.edu/mlconsensus/.

Appendix A: The naı̈ve sorting-basedmultiple
sequence alignment algorithm
The assumption behind this algorithm is that the core
region is shared by all sites, and therefore on average,
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positions in short sites are more likely to constitute the
core region (than positions in long sites). The steps of the
algorithm are as follows:

1. Sort all binding sites from shortest to longest.
2. Take the shortest site that is yet unaligned. If more

than one sites have the smallest length, pick one in
random. This makes up the initial alignment, A.

3. Compute C, the consensus, from A.
4. Let s be the next shortest, unaligned site.
5. If such an s does not exist, go to step 8. Otherwise,
6. Shift s along C from left to right. Find the alignment

which produces highest score of t with respect to C.
Add t to A at this alignment.

7. Go to step 3
8. Output: A is the complete multiple sequence

alignment of S.

It can be observed that the order of choosing sites affects
the resultant alignment, and a heterogeneous short site
is likely to negatively impact the rest of the alignment.
However, according to the assumption of the algorithm, if
the short site contains the core region then it will not be
heterogeneous.

Appendix B: Construction of ROC curves
Let TP, TN, FP and FN denote the number of true pos-
itives, true negatives, false positives, and false negatives,
respectively.
False Positive Rate, or FPR, is defined as the fraction of

incorrectly classified known negative examples. Similarly,
True Positive Rate, or TPR, is defined as the fraction of
correctly classified known positive examples.
Let NTF be the number of TFs for the given species.

Let TFi be the i-th TF. Let Ni
BS be the number of known

binding sites for TFi. A leave-one-out cross-validation is
conducted for each of the Ni

BS binding sites. If a known
negative example scores more than the known positive
example, it is considered as a false positive.
We computed an ROC (Receiver Operating Character-

istic) curve for each configuration over each species. FPR
and TPR were placed along x-axis and y-axis, respectively,
and the curve indicates the TPR obtained at different
values for FPR. The computation for each configuration
was done in three steps. At first, we computed TPR and
FPR for each leave-one-out experiment involving a known
binding site. Next, these values were averaged over all BSs
for each TF. Lastly, these values were further averaged
over all TFs for a given species.

Step One: Individual binding sites. Let BSj,i be the j-
th BS of TFi. Let FPRmax be the maximum false positive
rate considered for drawing the ROC curve. We used
FPRmax = 0.20, or 20%. Let the range 0 ≤ FPR ≤ FPRmax

be divided into M equal slots. Let FPRslot
k denote the false

positive rate corresponding to the k-th slot.
Let FPj,i be the number of false positives in the leave-

one-out run which involves BSj,i as the known positive
binding site. Let FPRj,i be the observed false positive rate.
For any given allowable false positive rate, if FPRj,i is
greater than the allowable FPR, the given configuration
will not be able to identify the known positive exam-
ple. Tj(i, k) denotes whether the known positive example
could be identified (i.e., occurrence of a true positive) by
setting the allowable FPR equal to the false positive rate
for the k-th FPR slot.

Tj(i, k) =
{
1 : FPRj,i ≤ FPRslot

k
0 : otherwise , (11)

for 1 ≤ j ≤ Ni
BS, 1 ≤ i ≤ NTF, 1 ≤ k ≤ M .

Step Two: Averaging over all BSs for a given TF. For
TFi, let TBS(i, k) be the average number of true positives
obtained by setting the allowable FPR equal to the false
positive rate for the k-th FPR slot.

TBS(i, k) = 1
Ni
BS

·
Ni
BS∑

j=1
Tj(i, k) (12)

for 1 ≤ i ≤ NTF, 1 ≤ k ≤ M .

Step Three: Averaging over all TFs for a species. Let
TTF(k) be the average number of true positives obtained
by setting the allowable FPR equal to the false positive rate
for the k-th FPR slot across all TFs.

TTF(k) = 1
NTF

·
NTF∑
i=1

TBS(i, k) (13)

for 1 ≤ k ≤ M. The ROC curve is produced by plotting
TTF(k) at k-th FPR slot.
We considered only 0%–20% false positive rate for com-

puting the area under an ROC curve. Since the FPR
slots are discrete, we used the sum of TPR values in the
mentioned FPR range as the area under an ROC curve.
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