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Abstract

Background: Linkage analysis is a useful tool for detecting genetic variants that regulate a trait of interest, especially
genes associated with a given disease. Although penetrance parameters play an important role in determining gene
location, they are assigned arbitrary values according to the researcher’s intuition or as estimated by the maximum
likelihood principle. Several methods exist by which to evaluate the maximum likelihood estimates of penetrance,
although not all of these are supported by software packages and some are biased by marker genotype information,
even when disease development is due solely to the genotype of a single allele.

Findings: Programs for exploring the maximum likelihood estimates of penetrance parameters were developed
using the R statistical programming language supplemented by external C functions. The software returns a vector of
polynomial coefficients of penetrance parameters, representing the likelihood of pedigree data. From the likelihood
polynomial supplied by the proposed method, the likelihood value and its gradient can be precisely computed. To
reduce the effect of the supplied dataset on the likelihood function, feasible parameter constraints can be introduced
into maximum likelihood estimates, thus enabling flexible exploration of the penetrance estimates. An auxiliary
program generates a perspective plot allowing visual validation of the model’s convergence. The functions are
collectively available as the MLEP R package.

Conclusions: Linkage analysis using penetrance parameters estimated by the MLEP package enables feasible
localization of a disease locus. This is shown through a simulation study and by demonstrating how the package is
used to explore maximum likelihood estimates. Although the input dataset tends to bias the likelihood estimates, the
method yields accurate results superior to the analysis using intuitive penetrance values for disease with low allele
frequencies. MLEP is part of the Comprehensive R Archive Network and is freely available at http://cran.r-project.org/
web/packages/MLEP/index.html.
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Findings
Background
Linkage analysis remains a useful tool for detecting
genetic variants that regulate a trait of interest, especially
genes associated with a given disease. The likelihood of
pedigree data plays an important role in this analysis;
however, the entire likelihood function embodies func-
tions of recombination fractions, penetrance parameters,
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and disease and marker allele frequencies. Such complex-
ity can be reduced by varying only the recombination frac-
tion, assigning fixed values to the other parameters. This
allows the multivariate function to be expressed in terms
of a single variable (the recombination fraction). The ratio
of the univariate likelihood, the so-called LOD score [1],
is then computed to map disease loci, rather than max-
imizing the likelihood itself. For a small recombination
fraction, a high LOD score (greater than 3) implies that the
disease locus is located near the markers employed in the
analysis. Assuming the conditional parameters to achieve
such high LOD scores depends largely on the researcher’s
intuition.
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Linkage analysis is hindered by the lack of useful tools
and programs for the parameter estimation, although sev-
eral methods for maximum likelihood estimate (MLE)
of penetrance have been proposed. Two types of pene-
trance estimation are described in the literature. The first
is based on pedigree data with marker genotype informa-
tion; for which the likelihood is pθ (aV ,mV ), where aV and
mV represent observations of affected status and marker
genotypes respectively, for a set of pedigree members
V. The parameter vector θ contains penetrance parame-
ters, disease allele frequency, and recombination fraction,
so that maximum likelihood estimates are obtained for
all parameters simultaneously. The evaluated maximum
likelihood estimate of penetrance parameters is therefore
affected by the estimates of both recombination frac-
tion and disease allele frequency. Because penetrance and
marker genotype observations are independent (unless
the marker and disease loci are extremely close), the
method is not suitable for penetrance estimation in
which a single disease allele determines whether the
disease will manifest. This method has been shown in
GENEHUNTER-MODSCORE [2-5] in which the ratio of
the likelihood, or mod score function [6], can be max-
imized in practice. The second approach considers the
likelihood of affected status; that is, the likelihood is
expressed as p

θ̃
(aV ). Maximized likelihood is a func-

tion of the penetrance parameters alone, θ̃ , for a par-
ticular case. Wang et al. [7] formalized the likelihood
using Bayes theorem and proposed a method for esti-
mating the penetrance parameter, but which functions
only when a carrier of a disease allele develops the dis-
ease. The estimate was applied to a dominant disease;
therefore, it is not applicable to diseases which man-
ifest via other modes of inheritance. Swartz et al. [8]
developed three different kinds of estimators and com-
pared their efficiencies by a ratio of asymptotic variance
of one estimator to another. The efficiency was com-
puted and illustrated by a perspective plot using the
program Maple [9,10], but these methods are limited to
sib pairs. The methods have not been packaged as freely
available software, hence are not immediately applicable
to wider data analysis. A known problem with pene-
trance estimation methods is that their estimates depend
largely on the collected pedigrees. However, these sec-
ond approaches ensure robust estimates by using multiple
sets of previously-recorded pedigree data for the same
disease to estimate parameters, which are available from
the literature; the marker genotype information is not
available.

Our proposed method belongs to the second class
of penetrance estimation. The likelihood p

θ̃
(aV ) can

be explicitly expressed as a polynomial of penetrance
parameters, and the evaluation measure is a vector of

likelihood polynomial coefficients. More precisely, the
coefficient vectors for each pedigree are evaluated by their
independence property. Once the likelihood vectors have
been computed, the problem reduces to one of optimiza-
tion. The maximum likelihood estimates of penetrance
parameters are then readily obtained by maximizing the
likelihood using standard statistical software. We have
developed programs to explore the maximum likelihood
estimates of penetrance parameters using R statistical pro-
gramming language [11] supplemented with external C
functions. The main function of the package evaluates the
list of likelihood coefficient vectors. The software enables
flexible exploration of the penetrance estimates by cal-
culating the likelihood value and its gradient precisely,
and passing them to an optimization function. The explo-
ration is rendered more powerful if feasible parameter
constraints can be incorporated in the maximum likeli-
hood evaluation. Another advantage of our method is that
it provides visual validation of convergence, in the form of
perspective plots of the likelihood surface. All of the func-
tions are available in the MLEP R package. Although the
MLEP estimates are biased by the collected disease pedi-
gree data, we show that they can more accurately identify
a disease locus than can analysis based on intuitive pene-
trance values provided that both true and assumed disease
allele frequency are small. The MLEP package is part of
the Comprehensive R Archive Network (CRAN) and is
freely downloadable from http://cran.r-project.org/web/
packages/MLEP/index.html.

Methods
First we introduce penetrance parameters as conditional
probabilities given the genotype of the disease locus, such
that α = P(affected|A/A), β = P(affected|A/a), and
γ = P(affected|a/a), where A and a represent the dis-
ease and normal alleles respectively, and the genotype
of the disease locus is expressed as two alleles sepa-
rated by a slash. For simplicity, we suppose that a sin-
gle locus contributes to disease development and that
the disease allele frequency is known a priori. Using the
above notations, the likelihood function for a pedigree is
explicitly expressed as a polynomial of the parameters as
follows:

L(α,β , γ ) =
∑

i,j,k
cijkαiβ jγ k ,

where i, j, and k run over from 0 to N subject to the
constraint max(i + j + k) = N and cijk is a polyno-
mial coefficient. Note that N, the number of individuals
whose disease status (affected or unaffected) is known
and the parameter constraint 0 ≤ γ ≤ β ≤ α ≤ 1
is reasonable. An individual of A/a genotype (where A
is a dominant disease allele) has equal or higher chance
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of developing disease than an individual of a/a geno-
type, while the A/A genotype incurs the highest risk of
disease development. Details of the likelihood evaluation
algorithm are provided as Additional file 1. The polyno-
mial form of a likelihood evaluation for the recombination
fraction has been previously proposed and its usefulness
has been demonstrated [12]. Here we present a modified
form of the evaluation. Because the coefficient cijk is inher-
ited through the generations from founder to descendant,
the likelihood coefficients of penetrance parameters can
similarly be evaluated.

Evaluation of maximum likelihood estimate by MLEP
Here we use the MLEP package to explore the maximum
likelihood estimate of penetrance parameters through a
simulation study.

Data Simulation
We used the SLINK package [13,14] to generate sim-
ulation pedigree data. The pedigree structure followed
that of Kamatani et al. [15] and the same phenotypes
of the top two founders were used in the simulation,
while the others were generated. All marker genotypes
were also simulated by the program, assuming five marker
alleles with equal frequencies. Allele frequency for the
disease allele was assumed to be 0.0001. Three pen-
etrance parameters (α,β , γ ), with values 0.95, 0.7 and
0, were assigned, and the recombination frequency was
assumed to be 0. By repeating the simulation under
these conditions, 50 pedigree datasets were generated.
All of the diseased individuals for each pedigree are
assumed to have acquired their disease from a single
locus.

Evaluation of likelihood polynomial
The main function of the MLEP package, mlep, evalu-
ates the list of likelihood coefficient vectors of penetrance
parameters. This function accepts a pedigree matrix con-
sisting of the first six columns in a pedfile (the sixth
column supplies affected status information), and returns
a list of likelihood coefficients. To conserve computa-
tional memory, powers of penetrance parameters, i, j,
and k, for a coefficient cijk are converted into a sin-
gle value, i + j × max power + k × max power2; the
converted values are then combined into a vector and
assigned to the evaluated coefficients vector as a “pow-
ers” attribute, where “max power” = N + 1. An addi-
tional attribute, “max power”, maps the converted value
to the original powers. After installing the MLEP pack-
age from the CRANwebsite and importing the simulation
pedigree data into R as pedigree object, the package
can be loaded and the mlep function can be executed
by assuming the disease allele frequency to be 0.0001
as follows:

> library(MLEP)
> polynomial = mlep(pedigree, 0.0001)

Evaluation ofmaximum likelihood estimate
Once the likelihood polynomial has been evaluated by
the mlep function, maximum likelihood estimates may
be computed using any optimization program. Deriva-
tives (and the Hessian) of the function are readily com-
puted from the evaluated likelihood coefficient, hence the
method presents as a powerful tool for seeking maxi-
mum likelihood. To this end, the functions fr and grr
are provided for evaluation of the log likelihood value
and its gradient. The likelihood polynomial is maxi-
mized by the pre-included R function constrOptim,
which minimizes or maximizes a function subject to
linear inequality constraints using an adaptive barrier
algorithm [16]. Assuming the initial values of the param-
eters to be 0.9, 0.8, and 0.1, the constrOptim func-
tion can be executed to maximize the likelihood poly-
nomial function, subject to 0 ≤ γ ≤ β ≤ α ≤ 1
as follows:

> constrOptim(c(0.9,0.8,0.1), fr, grr,
ui=rbind(c(1,0,0),c(0,1,0),c(0,0,1),

c(-1,0,0),c(0,-1,0),c(0,0,-1),
c(1,-1,0),c(0,1,-1)),

ci=c(rep(0,3), rep(-1,3), rep(0,2)),
poly=polynomial, control=list
(fnscale=-1), mu=0.01)

By executing the above command, the maximum likeli-
hood estimates were obtained as 0.970, 0.943, and 0.188
with log likelihood value -1640.339. It is important to
check whether the iteration converges to the global max-
imum. To this end, we use the PerspPenetrance
function, which draws a perspective plot of the log like-
lihood surface fixed on one of the parameters. A plot of
the evaluated likelihood for fixed γ = 0.188 is shown
in Figure 1. The plot is generated from the following
command:

> PerspPenetrance(polynomial, "gamma",
0.188, theta=-60, phi=20)

Although the maximum is found near those of the other
two maximum likelihood estimates, α and β , evaluated
in this study, the estimates appear to be biased. This bias
is not inherent in the model, but is introduced by the
input data. The moderate probability of disease develop-
ment for individuals of A/a disease genotype, 0.7, has
likely produced the bias. If strong evidence exists that the
probability of disease development for individuals of a/a
genotype is low (,that is, phenocopy rate is low), a sec-
ond command can be executed by changing one of the
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Figure 1 Perspective plot of the log likelihood surface of the
simulation pedigree data with γ = 0.188. The simulated pedigree
dataset is generated assuming penetrance values 0.95, 0.7, and 0, and
disease allele frequency 0.0001. The likelihood of the simulated
pedigree data is evaluated with frequency assigned to 0.0001, and
the penetrances are estimated by the MLEP package. Fixing γ at its
estimate 0.188, the log likelihood surface is drawn on a limited region
reflecting the parameter constraint α ≥ β . The maximum appears
near those of the other two maximum likelihood estimates
(α,β) = (0.970, 0.943).

linear inequality constraints and the initial value of γ to
0 ≤ γ ≤ 0.01 and 0.001 as follows:

> constrOptim(c(0.9,0.8,0.001), fr, grr,
ui=rbind(c(1,0,0),c(0,1,0),c(0,0,1),

c(-1,0,0),c(0,-1,0),c(0,0,-1),
c(1,-1,0),c(0,1,-1)),

ci=c(rep(0,3), rep(-1,2), -0.01,
rep(0,2)), poly=polynomial,
control=list(fnscale=-1), mu=0.01)

Following this adjustment, the obtained maximum like-
lihood estimates were 0.875, 0.759, and 0.003 with log
likelihood value -1644.840 less that of global maximum.
The perspective plot for fixed γ = 0.003 is shown in
Figure 2 and the maximum is found near those of the
other two estimates although the surface is flat around the
maximum.

Power Comparison
To assess linkage analysis efficacy for different pene-
trance values, the expected LOD score was evaluated
by the SLINK package given the following four pene-
trance models: true penetrance model (0.950, 0.700, and
0.000), dominant model (0.999, 0.999, and 0.000), MLE
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Figure 2 Perspective plot of the log likelihood surface of the
simulation pedigree data with γ = 0.003. The same likelihood
polynomial as that of Figure 1 is plotted with the γ penetrance
estimate fixed at 0.003. The penetrance estimates are evaluated
employing a parameter constraint 0 ≤ γ ≤ 0.01. The maximum
appears near those of the other two estimates (α,β) = (0.875, 0.759).

with the γ constraint model (0.875, 0.759, and 0.003), and
unrestrained MLE model (0.970, 0.943, and 0.188). The
results are summarized in Table 1. In the true penetrance
model, the highest LOD score (exceeding 3) is correctly
obtained at θ = 0. The dominant model, which is often
used for simplicity in practical analysis, yields the high-
est LOD score at θ = 0.1. Therefore, researchers may
conclude that the disease locus exists relatively close, but
not extremely close to, the employed marker. This exam-
ple highlights the potential of intuitive approaches to yield
an incorrect result. Analysis via MLE constrained by the
γ parameter yields results that match the true model, but
unconstrainedMLE leads to the uncertain conclusion that
the disease locus may not exist near the employed marker,
since the maximum LOD score at θ = 0.05 in this case is
less than 3.

Effect of misspecifying disease allele frequency
In the above simulation study, we assigned the disease
allele frequency to the value used to simulate the pedigree
data (referred to as the “true” value in this paper) to evalu-
ate the likelihood polynomial, but the extent to which this
value matches reality is unknown. To evaluate the effect
of misspecification of disease allele frequency on maxi-
mum likelihood estimates of penetrance parameters and
on the subsequent linkage analysis, we altered both true
and assumed disease allele frequencies in the following
simulation study.
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Table 1 Summary of LOD scores for the four parameter models

Model
Recombination fraction (θ )

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

True 4.071 3.831 3.535 3.201 2.835 2.438 2.011 1.553 1.066 0.549

Dominant -0.158 3.296 3.394 3.240 2.965 2.609 2.189 1.714 1.189 0.617

MLE (with γ constraint) 3.992 3.797 3.520 3.198 2.838 2.444 2.017 1.559 1.069 0.550

MLE (unconstrained) 0.781 0.792 0.710 0.603 0.487 0.370 0.260 0.167 0.095 0.041

Data Simulation
The pedigree structure, number of marker alleles, marker
allele frequencies, penetrance parameters, and recombi-
nation fractions were identical to those used in the previ-
ous simulation, while disease allele frequency was altered
to 0.0001, 0.001, 0.01, 0.1, or 0.2. 50 pedigree datasets
were generated for each disease allele frequency. For the
simulated pedigree datasets, disease allele frequency was
then assumed to be 0.0001, 0.001, 0.01, 0.1, 0.25, or 0.5,
and the likelihood polynomials were evaluated in each
case.

Maximum likelihood estimate
For each of the evaluated likelihood polynomials, we also
evaluated their maximum likelihood estimates subject to
the constraint 0 ≤ γ ≤ 0.01. The unconstrained esti-
mates for disease allele frequency 0.0001 displayed similar
bias to the assumed frequency in the previous simula-
tion study. Hence we employed the same parameter con-
straints as previously applied for all cases in the present
simulation, although the constraint exerted little effect
on the likelihood estimates at disease allele frequencies
greater than 0.0001. The evaluated maximum likelihood

Table 2 Summary of maximum likelihood estimates of penetrance parameters

True value 0.0001

Assumed value 0.0001 0.001 0.01 0.1 0.25 0.5

MLE (0.832,0.759,0.003) (0.766,0.757,0.002) (0.749,0.749,0.001) (0.690,0.688,0.000) (0.989,0.159,0.000) (0.602,0.002,0.000)

Bias (0.118,0.112,0.002) (0.124,0.112,0.002) (0.145,0.110,0.002) (0.188,0.143,0.001) (0.204,0.379,0.001) (0.330,0.628,0.001)

MSE (0.020,0.020,0.000) (0.023,0.020,0.000) (0.035,0.020,0.000) (0.064,0.030,0.000) (0.082,0.183,0.000) (0.142,0.415,0.000)

True value 0.001

Assumed value 0.0001 0.001 0.01 0.1 0.25 0.5

MLE (0.832,0.759,0.003) (0.766,0.757,0.002) (0.749,0.748,0.001) (0.617,0.614,0.000) (0.916,0.208,0.000) (0.592,0.003,0.000)

Bias (0.118,0.112,0.002) (0.124,0.112,0.002) (0.145,0.111,0.002) (0.215,0.135,0.001) (0.213,0.380,0.001) (0.360,0.656,0.000)

MSE (0.020,0.020,0.000) (0.023,0.020,0.000) (0.035,0.020,0.000) (0.076,0.026,0.000) (0.085,0.180,0.000) (0.149,0.441,0.000)

True value 0.01

Assumed value 0.0001 0.001 0.01 0.1 0.25 0.5

MLE (0.772,0.767,0.010) (0.766,0.765,0.008) (0.753,0.753,0.002) (0.632,0.612,0.000) (0.880,0.279,0.000) (0.586,0.000,0.000)

Bias (0.111,0.110,0.003) (0.114,0.110,0.003) (0.132,0.109,0.003) (0.191,0.127,0.001) (0.197,0.365,0.001) (0.356,0.648,0.000)

MSE (0.017,0.020,0.000) (0.019,0.020,0.000) (0.031,0.019,0.000) (0.063,0.024,0.000) (0.075,0.170,0.000) (0.145,0.430,0.000)

True value 0.1

Assumed value 0.0001 0.001 0.01 0.1 0.25 0.5

MLE (0.972,0.802,0.010) (0.962,0.804,0.010) (0.925,0.799,0.010) (0.776,0.680,0.000) (0.764,0.440,0.000) (0.591,0.017,0.000)

Bias (0.083,0.116,0.007) (0.095,0.118,0.007) (0.106,0.116,0.006) (0.125,0.111,0.002) (0.181,0.269,0.002) (0.272,0.588,0.001)

MSE (0.011,0.020,0.000) (0.013,0.021,0.000) (0.018,0.021,0.000) (0.033,0.020,0.000) (0.056,0.102,0.000) (0.099,0.373,0.000)

True value 0.2

Assumed value 0.0001 0.001 0.01 0.1 0.25 0.5

MLE (0.995,0.765,0.010) (0.998,0.777,0.010) (0.964,0.778,0.010) (0.697,0.647,0.005) (0.719,0.381,0.000) (0.631,0.074,0.000)

Bias (0.104,0.129,0.009) (0.104,0.130,0.009) (0.108,0.139,0.008) (0.142,0.132,0.005) (0.203,0.220,0.003) (0.308,0.579,0.002)

MSE (0.018,0.026,0.000) (0.019,0.026,0.000) (0.023,0.028,0.000) (0.043,0.030,0.000) (0.070,0.071,0.000) (0.124,0.351,0.000)
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Table 3 Summary of LOD scores for the three penetrancemodels

Disease allele frequency
Model

Recombination fraction (θ )

True value Assumed value 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.0001

0.0001

True 4.071 3.831 3.535 3.201 2.835 2.438 2.011 1.553 1.066 0.549

MLE 3.992 3.797 3.520 3.198 2.838 2.444 2.017 1.559 1.069 0.550

Dominant -0.158 3.296 3.394 3.240 2.965 2.609 2.189 1.714 1.189 0.617

0.001

True 4.065 3.826 3.530 3.196 2.830 2.434 2.007 1.550 1.063 0.547

MLE 4.003 3.805 3.527 3.204 2.843 2.448 2.021 1.561 1.071 0.550

Dominant -0.188 3.265 3.364 3.211 2.939 2.586 2.170 1.698 1.176 0.609

0.01

True 4.022 3.784 3.489 3.157 2.792 2.398 1.974 1.521 1.040 0.532

MLE 3.984 3.780 3.500 3.175 2.815 2.421 1.995 1.538 1.051 0.538

Dominant -0.234 3.217 3.320 3.171 2.902 2.552 2.138 1.670 1.155 0.598

0.1

True 3.702 3.474 3.191 2.872 2.524 2.150 1.750 1.328 0.887 0.437

MLE 3.665 3.429 3.143 2.823 2.476 2.103 1.708 1.292 0.860 0.422

Dominant -0.425 3.040 3.146 3.002 2.738 2.397 1.997 1.549 1.059 0.534

0.25

True 3.257 3.049 2.787 2.492 2.171 1.827 1.464 1.087 0.704 0.331

MLE 1.524 1.407 1.270 1.121 0.964 0.800 0.634 0.467 0.303 0.146

Dominant -0.743 2.748 2.862 2.727 2.478 2.158 1.783 1.362 0.906 0.437

0.5

True 2.549 2.384 2.165 1.917 1.646 1.359 1.061 0.760 0.469 0.205

MLE -0.009 0.204 0.292 0.321 0.315 0.284 0.238 0.182 0.121 0.059

Dominant -1.339 2.208 2.349 2.250 2.044 1.765 1.434 1.067 0.682 0.311

0.001

0.0001

True 4.086 3.846 3.548 3.213 2.846 2.447 2.019 1.560 1.070 0.551

MLE 4.008 3.812 3.534 3.210 2.849 2.453 2.025 1.565 1.073 0.552

Dominant -0.140 3.312 3.409 3.253 2.977 2.619 2.198 1.721 1.193 0.619

0.001

True 4.081 3.841 3.543 3.208 2.841 2.443 2.014 1.556 1.067 0.549

MLE 4.018 3.820 3.541 3.216 2.854 2.458 2.028 1.567 1.075 0.553

Dominant -0.170 3.281 3.379 3.225 2.951 2.597 2.179 1.705 1.180 0.611

0.01

True 4.038 3.799 3.502 3.169 2.803 2.407 1.981 1.527 1.044 0.534

MLE 4.000 3.795 3.513 3.187 2.825 2.429 2.002 1.543 1.055 0.540

Dominant -0.216 3.234 3.335 3.185 2.915 2.563 2.147 1.677 1.160 0.601

0.1

True 3.717 3.489 3.204 2.884 2.535 2.159 1.757 1.334 0.891 0.439

MLE 3.602 3.338 3.040 2.717 2.372 2.006 1.621 1.221 0.809 0.394

Dominant -0.407 3.056 3.161 3.016 2.751 2.407 2.006 1.556 1.064 0.536

0.25

True 3.272 3.063 2.800 2.503 2.181 1.836 1.471 1.093 0.708 0.332

MLE 1.847 1.667 1.479 1.286 1.090 0.893 0.698 0.508 0.325 0.154

Dominant -0.725 2.765 2.877 2.741 2.490 2.168 1.792 1.369 0.911 0.439

0.5

True 2.563 2.397 2.177 1.927 1.655 1.366 1.067 0.765 0.471 0.207

MLE 0.048 0.234 0.310 0.332 0.321 0.288 0.240 0.183 0.121 0.060

Dominant -1.321 2.225 2.364 2.264 2.056 1.776 1.443 1.073 0.686 0.312

0.0001

True 3.808 3.619 3.348 3.038 2.694 2.317 1.909 1.472 1.008 0.517

MLE 3.647 3.461 3.206 2.913 2.588 2.231 1.841 1.421 0.973 0.499

Dominant -0.374 3.002 3.150 3.037 2.794 2.466 2.072 1.621 1.122 0.580

0.001

True 3.863 3.639 3.355 3.038 2.691 2.313 1.905 1.469 1.005 0.515

MLE 3.730 3.532 3.267 2.964 2.628 2.262 1.864 1.437 0.983 0.503

Dominant -0.345 3.011 3.136 3.013 2.770 2.444 2.053 1.605 1.109 0.572
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Table 3 Summary of LOD scores for the three penetrancemodels Continued

0.01

0.01

True 3.881 3.637 3.344 3.018 2.664 2.284 1.876 1.442 0.983 0.501

MLE 3.836 3.623 3.344 3.026 2.677 2.299 1.891 1.455 0.992 0.505

Dominant -0.329 3.019 3.133 2.998 2.746 2.417 2.025 1.579 1.089 0.562

0.1

True 3.629 3.389 3.101 2.782 2.436 2.067 1.677 1.268 0.844 0.415

MLE 3.514 3.243 2.944 2.622 2.281 1.922 1.548 1.162 0.767 0.374

Dominant -0.455 2.907 3.021 2.884 2.628 2.297 1.909 1.478 1.008 0.508

0.25

True 3.224 3.002 2.734 2.437 2.115 1.775 1.418 1.050 0.679 0.319

MLE 2.100 1.888 1.668 1.445 1.219 0.993 0.772 0.557 0.354 0.166

Dominant -0.737 2.651 2.774 2.647 2.405 2.093 1.728 1.320 0.879 0.426

0.5

True 2.563 2.384 2.158 1.905 1.632 1.345 1.049 0.752 0.465 0.205

MLE -0.105 0.150 0.249 0.286 0.286 0.262 0.221 0.170 0.114 0.056

Dominant -1.289 2.160 2.311 2.219 2.018 1.746 1.422 1.062 0.684 0.315

0.1

0.0001

True 2.571 3.140 2.984 2.742 2.445 2.105 1.730 1.326 0.900 0.457

MLE 2.645 2.809 2.691 2.494 2.245 1.955 1.632 1.276 0.886 0.460

Dominant -3.354 2.123 2.564 2.607 2.467 2.211 1.869 1.462 1.005 0.513

0.001

True 2.965 3.191 3.011 2.753 2.447 2.103 1.727 1.323 0.897 0.455

MLE 2.986 3.054 2.898 2.663 2.377 2.051 1.692 1.304 0.891 0.456

Dominant -2.980 2.115 2.538 2.580 2.442 2.189 1.850 1.446 0.991 0.504

0.01

True 3.319 3.265 3.044 2.763 2.441 2.086 1.705 1.300 0.877 0.442

MLE 3.223 3.185 2.991 2.731 2.423 2.077 1.701 1.299 0.876 0.441

Dominant -2.599 2.149 2.524 2.555 2.415 2.161 1.823 1.420 0.971 0.495

0.1

True 3.388 3.185 2.916 2.609 2.274 1.915 1.538 1.149 0.754 0.366

MLE 3.350 3.133 2.859 2.551 2.218 1.863 1.492 1.111 0.727 0.351

Dominant -2.344 2.159 2.479 2.473 2.314 2.051 1.713 1.320 0.894 0.446

0.25

True 3.111 2.897 2.627 2.327 2.003 1.662 1.311 0.956 0.608 0.283

MLE 2.471 2.224 1.967 1.702 1.434 1.165 0.900 0.644 0.403 0.186

Dominant -2.443 1.991 2.296 2.283 2.120 1.861 1.536 1.169 0.774 0.372

0.5

True 2.561 2.370 2.128 1.859 1.573 1.276 0.978 0.688 0.419 0.184

MLE 0.240 0.324 0.351 0.344 0.315 0.271 0.217 0.160 0.102 0.048

Dominant -2.804 1.584 1.892 1.894 1.751 1.522 1.244 0.929 0.596 0.275

0.2

0.0001

True 1.245 2.462 2.452 2.312 2.096 1.827 1.517 1.174 0.804 0.412

MLE 1.471 2.049 2.086 2.006 1.852 1.641 1.383 1.086 0.754 0.392

Dominant -5.718 1.358 1.978 2.131 2.078 1.898 1.628 1.290 0.898 0.465

0.001

True 1.891 2.542 2.488 2.325 2.099 1.826 1.514 1.171 0.801 0.410

MLE 2.027 2.354 2.310 2.174 1.976 1.730 1.444 1.122 0.772 0.397

Dominant -5.102 1.341 1.948 2.100 2.048 1.869 1.602 1.268 0.883 0.458

0.01

True 2.484 2.669 2.544 2.343 2.094 1.808 1.491 1.147 0.781 0.397

MLE 2.435 2.557 2.448 2.263 2.030 1.757 1.451 1.116 0.759 0.385

Dominant -4.507 1.360 1.924 2.059 1.997 1.816 1.552 1.227 0.851 0.436

0.1

True 2.763 2.662 2.461 2.218 1.944 1.647 1.332 1.002 0.663 0.323

MLE 2.684 2.539 2.326 2.081 1.813 1.526 1.226 0.916 0.602 0.291

Dominant -4.074 1.352 1.847 1.951 1.876 1.694 1.435 1.117 0.756 0.379
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Table 3 Summary of LOD scores for the three penetrancemodels Continued

0.25

True 2.570 2.425 2.215 1.972 1.705 1.423 1.128 0.828 0.529 0.246

MLE 1.948 1.755 1.551 1.341 1.128 0.916 0.707 0.506 0.317 0.146

Dominant -4.071 1.211 1.691 1.789 1.717 1.540 1.290 0.986 0.657 0.320

0.5

True 2.101 1.964 1.775 1.560 1.328 1.085 0.837 0.591 0.360 0.159

MLE 0.625 0.595 0.545 0.484 0.416 0.343 0.269 0.195 0.125 0.060

Dominant -4.299 0.868 1.353 1.466 1.413 1.260 1.039 0.781 0.509 0.239

estimates, mean absolute bias, and mean squared error
(MSE) of the estimates are summarized in Table 2. Note
that γ is restricted to small values. When the true fre-
quency is 0.0001, 0.001, or 0.01, and the likelihood is
also evaluated at one of these frequencies, we find that
α is underestimated and β is overestimated. If the likeli-
hood is evaluated at frequencies exceeding 0.01, the esti-
mates become unstable as both the mean bias and MSE
become large. Assuming the true frequency to be 0.1 or 0.2
but evaluating the likelihood at frequencies less than 0.1
results in overestimation of both α and β . If the likelihood
is evaluated at frequency 0.1, the estimates remain biased,
but likelihood estimates evaluated at higher allele frequen-
cies become unstable. Perspective plots of the resulting log
likelihood surfaces at fixed γ are provided as Additional
file 2. Although the estimates are biased or unstable, the
maxima are correctly located near those of the other two
estimates for all cases studied.

Power of detecting linkage
Based on the evaluated maximum likelihood estimates,
the expected LOD scores for the following three pene-
trance models were evaluated by the SLINK packages;
true penetrance model (0.950, 0.700, and 0.000), domi-
nant model (0.999, 0.999, and 0.000), andMLEmodel (the
estimates are listed in Table 2). The results are shown
in Table 3. The true and MLE models yield maximum
LOD scores greater than 3 at θ = 0 when both true and
assumed disease allele frequencies are 0.0001, 0.001, or
0.01, or when the true frequency is one of these values
and the assumed frequency is 0.1. These models per-
formed with similar correctness at true frequency 0.1 and
assumed frequency 0.01 or 0.1. The dominant model, on
the other hand, yielded poor or misplaced LOD scores for
all cases.
These results indicate that genetic diseases with low

allele frequencies (< 0.01) are suitable for analysis by link-
age analysis; that is, the linkage between disease locus and
marker locus can be correctly identified. At disease allele
frequencies exceeding 0.1, the correct conclusion may not
be reached because the peak of the significant LOD score
(greater than 3) is obtained at different recombination
fractions or because the linkage-detecting efficacy is insuf-
ficient (i.e., no LOD score higher than 3 is obtained)

even when true penetrance parameters are employed. The
MLEP package will almost certainly yield correct results
for genetic diseases with small allele frequency, provided
that the frequency is also assumed to be 0.1 or less. In this
case, incorrectly specifying the disease allele frequency
will have little effect on the results. When the true fre-
quency is 0.1, assigning a small frequency (of order 0.01)
to likelihood evaluations will again yield the correct result.
In all other cases, the effect of allele frequency misspeci-
fication cannot be neglected. These results were validated
by another simulation study, in which true penetrance
parameters were assumed to be 0.990, 0.900, and 0.000.
Maximum likelihood estimates, LOD scores for the three
penetrance models, and perspective plots are provided as
Additional files 3, 4, and 5, respectively.

Discussion
We have developed the MLEP R package to explore
maximum likelihood estimates of penetrance parameters.
The polynomial form of the likelihood evaluation enables
flexible exploration of penetrance estimates by evaluat-
ing both the likelihood value and its gradient precisely,
and by introducing parameter constraints if these can be
assumed. Introduction of a low phenocopy rate (γ < 0.01)
especially improved the quality of the analysis result in
the presented simulation study. Convergence may be ver-
ified visually by auxiliary perspective plots. The input
pedigree datasets bias the evaluated maximum likelihood
estimates; however, the likelihood surface may be flat
around the maximum and the performance of the esti-
mates at correctly identifying linkages is superior to that
of intuitive penetrance values.
Currently, common linkage analysis employs dense

marker data. The proposed method is applicable to such
vast datasets because it treats only the likelihood that the
disease status of a pedigree member is “affected”, and is
independent of dataset size, which is derived from the
marker genotypes. Penetrance parameters are estimated
separately from the marker information, and linkage
analysis employing the estimates is conducted as the next
step. The method is applicable only to diseases with large
effect size, that is, when a single disease locus greatly
or wholly contributes to disease development. Diseases
resulting from other mechanisms, such as multifactorial
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diseases, are not suitable for analysis by this approach.
Disease allele frequency is another unknown important
parameter in linkage analysis, but several previous stud-
ies have reported that misspecifying the disease allele
frequency does not significantly influence to the detec-
tion of the linkage [6,17]. Our simulation study supports
these results, provided that both true and assumed dis-
ease allele frequencies are small. It has also been men-
tioned that linkage analysis would be successful if a disease
allele frequency is rare in the population [18]; therefore,
assigning the frequency to a small value for such the
disease produces a feasible result. Here, we have demon-
strated that linkage analysis using maximum likelihood
estimates by the MLEP package correctly localizes a dis-
ease locus, if the frequency of the disease allele is made
small (<0.1).

Availability and requirements
• Project name:MLEP
• Project home page: http://cran.r-project.org/web/

packages/MLEP/index.html
http://www.stat.math.keio.ac.jp/∼sugaya/PIA/MLEP/
index.html

• Operating systems: Linux/Mac/Windows
• Programming language: R and C
• Other requirements: R version≥2.14
• License: GPL≥2
• Any restrictions to use by non-academics: None

Availability of supporting data
The data set supporting the results of this article is
available at http://www.stat.math.keio.ac.jp/∼sugaya/PIA/
MLEP/index.html.

Additional files

Additional file 1: Algorithm for likelihood polynomial of penetrance
parameters.

Additional file 2: Figure S1. Perspective plots of log likelihood surface for
the simulation study of the penetrance model, 0.950, 0.700, and 0.000. The
log likelihood surfaces are plotted for 30 cases of disease allele frequencies
of the penetrance model, 0.950, 0.700, and 0.000. Fixing γ at its estimate
evaluated under the constraint 0 ≤ γ ≤ 0.01, each log likelihood surface is
drawn on a limited region α ≥ β .

Additional file 3: Table S1. Summary of maximum likelihood estimates
of penetrance parameters for the simulation study of the penetrance
model, 0.990, 0.900, and 0.000. The pedigree structure, number of marker
alleles, marker allele frequencies, and recombination fractions are identical
to those used in the simulation for the penetrance model, 0.950, 0.700, and
0.000, while penetrance parameters are assumed to be 0.990, 0.900, and
0.000. Six pedigree datasets with 50 pedigrees are generated, assuming
disease allele frequencies to be 0.0001, 0.001, 0.01, 0.1, and 0.2. For each
datasets, the likelihood polynomial is evaluated, assuming the frequency to
be 0.0001, 0.001, 0.01, 0.1, 0.25, and 0.5, and the maximum likelihood
estimates are evaluated under the constraint 0 ≤ γ ≤ 0.01.

Additional file 4: Table S2. Summary of LOD scores for the simulation
study of the penetrance model, 0.990, 0.900, and 0.000. LOD scores are
evaluated for 30 cases of disease allele frequencies for three penetrance
models; true penetrance model (0.990, 0.900, and 0.000), dominant model
(0.999, 0.999, and 0.000),and MLE model (the estimates are listed in
Supplementary Table S1).

Additional file 5: Figure S2. Perspective plots of log likelihood surface for
the simulation study of the penetrance model, 0.990, 0.900, and 0.000. The
log likelihood surfaces are plotted for 30 cases of disease allele frequencies
of the penetrance model, 0.990, 0.900, and 0.000. Fixing γ at its constrained
estimate under the 0 ≤ γ ≤ 0.01, each log likelihood surface is drawn on a
limited region α ≥ β .
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