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Abstract

Background: This paper lies in the context of modeling the evolution of gene expression away from stationary
states, for example in systems subject to external perturbations or during the development of an organism. We
base our analysis on experimental data and proceed in a top-down approach, where we start from data on a
system’s transcriptome, and deduce rules and models from it without a priori knowledge. We focus here on a
publicly available DNA microarray time series, representing the transcriptome of Drosophila across evolution from
the embryonic to the adult stage.

Results: In the first step, genes were clustered on the basis of similarity of their expression profiles, measured by a
translation-invariant and scale-invariant distance that proved appropriate for detecting transitions between
development stages. Average profiles representing each cluster were computed and their time evolution was
analyzed using coupled differential equations. A linear and several non-linear model structures involving a
transcription and a degradation term were tested. The parameters were identified in three steps: determination of
the strongest connections between genes, optimization of the parameters defining these connections, and
elimination of the unnecessary parameters using various reduction schemes. Different solutions were compared on
the basis of their abilities to reproduce the data, to keep realistic gene expression levels when extrapolated in time,
to show the biologically expected robustness with respect to parameter variations, and to contain as few
parameters as possible.

Conclusions: We showed that the linear model did very well in reproducing the data with few parameters, but
was not sufficiently robust and yielded unrealistic values upon extrapolation in time. In contrast, the non-linear
models all reached the latter two objectives, but some were unable to reproduce the data. A family of non-linear
models, constructed from the exponential of linear combinations of expression levels, reached all the objectives. It
defined networks with a mean number of connections equal to two, when restricted to the embryonic time series,
and equal to five for the full time series. These networks were compared with experimental data about gene-
transcription factor and protein-protein interactions. The non-uniqueness of the solutions was discussed in the
context of plasticity and cluster versus single-gene networks.

Background
The impressive amount of data generated in the area of
systems biology during the last few years, owing to
powerful high-throughput technologies, has motivated
novel bioinformatics and biomodeling developments to
handle, rationalize and model these data. In the field of
gene expression, DNA microarray techniques provide the

simultaneous expression levels of many–sometimes all–
genes in a cell sample, usually relative to those in a refer-
ence sample [1,2]. These data are extensively exploited to
distinguish gene expression in pathological versus healthy
cell systems, or in systems subject to different conditions
or environments. Time series of DNA microarray data
give a picture of the evolution of gene expression levels
during, for example, the development stages of the host
organism, the cell cycle, the circadian cycle, and the
response to external perturbations; therefore they yield
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crucial dynamical information. In principle, the rationali-
zation of these time-dependent data, if accurate and
numerous enough, allows the reverse engineering of the
gene network in the framework of a predefined mathe-
matical model structure (see e.g. [3-12]). However,
neither the uniqueness of the model structure nor the
parameters that define it are guaranteed (see e.g. [13]).
A first possibility to handle the degeneracy of the solu-

tions is to use a priori knowledge about the gene expres-
sion network, so as to limit the solution space. We take
here a different approach, using biology-based constraints,
and ask whether it could also reduce degeneracy. One bio-
logical constraint considered here is the robustness of the
solutions with respect to parameter variations (see e.g.
[14-16]). Indeed, all biological systems have a stochastic
behavior, where the changes in the environment, the vary-
ing amount of biomolecules present, their non-determinis-
tic binding and function, etc., do not affect the main
properties of the system, which continues to give similar
response to the same stimuli. Only very large or very spe-
cific perturbations can lead the system out of its correctly
functioning state, and lead it to another state or cause dys-
function and illnesses. It is thus of extreme importance
that the models that simulate biological systems have the
same properties, and thus do not yield very different solu-
tions for similar parameter values.
Another biological constraint is related to the stability of

the solutions when extrapolated in time. Even though the
available data usually cover only a part of the system’s life,
it is reasonable to assume that the expression levels con-
tinue to be of the same order of magnitude, never becom-
ing unrealistically large or negative. The same property is
expected to be built in the model: the solutions must take
realistic values until the next perturbation, development
stage, or the end of the organism’s life.
We analyze in this paper the effects of adding these bio-

logical constraints on the modeled dynamics of gene
expression, particularly in the framework of the develop-
ment of an organism. More specifically, we investigate
whether these constraints limit the choice of the model
structure and/or its parameter values. We use Drosophila
as model organism, and model the time evolution of its
transcriptome using coupled, linear and non-linear, differ-
ential equations.

Methods
DNA microarray time series
With the DNA microarray technique [1,2] one measures
the fluorescence intensities Iμ (τ) emitted by the fluoro-
phores attached to the mRNAs labeled here by μ (more
precisely, to the corresponding cRNAs or cDNAs), which
are extracted from a specific sample taken at a given time
τ and are hybridized to their complementary sequence
attached to a microarray. These intensities are usually

expressed relative to the intensity IRμ of the same mRNAs

taken from a reference sample. As the measures come
from different hybridizations, they must be normalized to
correct for different effects including the unequal quanti-
ties of RNA copies, differences in labeling or detection effi-
ciencies between the fluorescent dyes, and systematic
biases in the measured expression levels [17,18]. We
define each gene expression profile Xμ (τ) as a function of
the normalized intensities Ĩ , that is:

Xμ(τ ) =
Ĩμ(τ )

ĨRμ
. (1)

Time series are obtained when considering the sample at
N different time points τi (i = 1,..N). We made here the
common assumption that the RNA concentrations and
fluorescence intensities are proportional [19], i.e. that Xμ

(τ) represents the RNA concentration up to a gene-depen-

dent scaling factor IRμ . In what follows, the index μ will

refer indistinguishably to the gene product–RNA or pro-
tein–or the gene wherein the gene product is encoded.
We use here a DNA microarray time series of male

Drosophila melanogaster [20]. It contains the expression
levels of 4,028 genes across all four developmental
phases. Of the 67 time points, 31 are in the embryonic
phase (covering 24 h), 10 in the larval phase (81 h), 18
in the pupal phase (111 h), and 8 in the adult phase (30
days). The reference sample consists of a mixture of all
samples of the series, i.e. of Drosophila of all ages. We
considered here on the one hand the complete time ser-
ies of 67 time points, and on the other hand the part of
the time series covering the embryonic phase, which
contains the 31 first time points.

Classification of gene expression profiles
It is technically impossible to model the evolution of the
expression levels of thousands of genes, given the few
data points available. Moreover, even if we had a suffi-
cient number of time points to ensure parameter identi-
fication, the problem would be degenerate, in that
multiple solutions with almost the same ability to repro-
duce the data would exist. Indeed, many of the gene
expression profiles are very similar and are thus basically
indistinguishable without additional information. We
therefore cluster the gene expression profiles into a lim-
ited number of distinct classes.
The clustering is performed on the basis of the least-

square distance D [21]. This distance is translation-invar-
iant and scale-invariant with scaling dimension 1/2. This
means that the distance D between two profiles Xμ (τ)
and Xv (τ) satisfies, ∀a, b ∈ � : D(Xμ,Xv + b) = D(Xμ,Xv)

and D(Xμ, a.Xv) =
√
aD(Xμ,Xv) . The choice of this
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distance is justified by the fact that expression levels are
generally defined relative to a gene-dependent but time-
independent reference expression level (see Eq. 1). The
scaling factor between two profiles may thus simply be
due to their different reference expression levels, and
thus has no intrinsic meaning. Moreover, we chose not
to take into account the difference between two profiles
with the same shape but different average expression
levels, as such profiles are merely translated with respect
to each other. This distance has proven to be relevant for
detecting the limits of developmental stages or perturba-
tions phases from DNA microarray data [21].
With these constraints of scale and translation invar-

iance and the usual symmetry constraint
D(Xμ,Xv) = D(Xv,Xμ) , the distance D is shown to be of
the form [21]:

D(Xμ,Xv) =

√√√√ςμςv

N

N∑
k=1

(
Xμ (τk) − 〈

Xμ

〉
ςμ

± Xv (τk) − 〈Xv〉
ςv

)2

, (2)

in terms of the mean
〈
Xμ

〉
and standard deviation ςμ:

〈
Xμ

〉
=

1
N

N∑
k=1

Xμ (τk) and ςμ =

√√√√ 1
N

N∑
k=1

(
Xμ (τk) − 〈

Xμ

〉)2, (3)

where the sign that minimizes D is chosen in Eq. 2.
Based on this distance, the gene expression profiles

are clustered using a hierarchical, tree-like algorithm. It
starts by considering each gene as a class on its own. It
then joins, at each step, the two classes for which the
average distance D between any pairs of profiles from
the two classes is minimum. It stops when all genes are
in the same class. This clustering tree is then cut at a
certain level by putting a threshold on the maximum
number of classes, denoted C. The choice of this thresh-
old is always a subjective matter and depends on the
aim of the clustering. Here, the number of classes must
be sufficiently low to ensure that they are manageable
for modeling purposes. Moreover, to have a meaningful
classification, the distances between profiles within each
cluster must be sufficiently low and those between pro-
files of different clusters sufficiently high.
Each of the C clusters labeled by c (c = 1,...,C) is

represented the average profile X̄c(τ ) . To compute this
profile, we first identified the representative profile of
the cluster, defined as the profile for which the distance
with respect to all other members of the class is mini-
mum. All the profiles of the cluster were then superim-
posed on the representative using the translation and
scaling factor that minimize the distance. The average
profile X̄c(τ ) corresponds then to the average, at each
time point, of all translated and scaled profiles in the
cluster.

Model structures
The system of differential equations that correctly mod-
els the evolution of gene expression across development
stages is not known, and even less is known about equa-
tions that can model gene clusters. We therefore test
several model structures. Assuming the system to be
autonomous, we consider structures of the form:

˙̄Xc(t) = �c(X) − �c(X)X̄c(t), (4)

where X = (X̄1, . . . X̄C) and t is the real, continuous

time. The dot means the derivative with respect to t.
Since the transcription term �c(X) is defined to be

positive, it increases the concentration X̄c of cluster c,
basically through the binding of transcription factors,
which either activate or repress genes in this cluster.
The positively defined function �c(X) is called the
degradation factor because it describes the degradation,
destabilization or inhibition of the activity of the gene
products belonging to cluster c, or their removal from
the system. Note that this general model, which is deter-
ministic, represents the average behavior of the system,
which is stochastic.
Five model structures are studied. The first is the lin-

ear model, defined as:

mlin : �c(X) =
C∑
d=1

McdXd(t), �c(X) = 0. (5)

The other four model structures are non-linear. They
resemble models that have been developed to describe
Escherichia coli subject to glucose-lactose diauxie [11].
The first reads as:

mpol
NC : �c(X) = ρc

C∑
d=1

AcdXd(t)(
1 +

C∑
d=1

AcdXd(t)
)(

1 +
C∑
d=1

BcdXd(t)
) , �c(X) = γc, (6)

where Acd, Bcd, rc, gc≥ 0. The degradation factor is con-
sidered to be constant. The parameters Acd weigh the
effect of activators on the expression of genes from cluster
c, whereas Bcd weigh the effect of repressors. The tran-
scription term is thus proportional to the product of the
probability that an activator is bound to the promoter and
the probability it is not bound to a repressor. It is obtained
by making the approximation that the expression of a
gene can be activated or repressed by a single protein, and
does not require protein complexes or cascades of inter-
acting proteins. Another assumption is that the form of
the dynamic equations remains the same for individual
genes and for gene clusters.
The degradation term can also be considered as

dependent on gene expression levels. As in the model
describing diauxie [11], we chose it to be of the form:
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mexp
CN : �(X) = ρc, �(X) =

κ+
c + κ−

c exp
(

C∑
d=1

KcdXd (t)

)

1 + exp
(

C∑
d=1

KcdXd (t)

) . (7)

with ρc, κ+
c , κ−

c ≥ 0 . It was assumed here that the
degradation factor is modulated by interactions between
gene products so as to either prolong (e.g. through stabi-
lizing complexes) or shorten (e.g. through degradation
by proteases) their period of activity. The two para-

meters κ+
c and κ−

c symbolize the maximum and mini-

mum degradation rate when κ+
c > κ−

c and the converse

when κ+
c < κ−

c , and Kcd gives the influence (stabilizing
or destabilizing according to its sign) of gene product d
on gene product c.
The above expression for the degradation term may

also be used for the transcription term, while keeping
the degradation factor constant. This yields:

mexp
NC : �(X) =

λ+
c + λ−

c exp
(

−
C∑
d=1

LcdXd (t)

)

1 + exp
(

−
C∑
d=1

LcdXd (t)

) , �(X) = γc. (8)

with γc, λ+
c , λ−

c ≥ 0 .
Finally, the last model structure we considered has the

same expression for both the transcription term and the
degradation factor:

mexp
NN : �(X) =

λ+
c + λ−

c exp
(

−
C∑
d=1

LcdXd (t)

)

1 + exp
(

−
C∑
d=1

LcdXd (t)

) , �(X) =

κ+
c + κ−

c exp
(

−
C∑
d=1

KcdXd (t)

)

1 + exp
(

−
C∑
d=1

KcdXd (t)

) . (9)

with κ+
c , κ−

c , λ+
c , λ+

c ≥ 0.

Network identification
To manage the large amount of parameters and the
non-linearity of the equations, we used a two-stage pro-
cedure for parameter identification. The first stage con-
sists of reproducing the derivatives of the gene
expression levels rather than the gene expression levels
themselves. This entails considering the expression
levels and their derivatives as independent variables and
reducing the identification to an algebraic problem,
where the functions ζc to be minimized are decoupled.
These read as:

ζc(Jc) =

√√√√ 1
N

N∑
k=1

(
˙̄Xc (τk) − ˆ̄̇

Xc (τk, Jc)
)2

and ζc(Jc) =

√√√√ 1
C

C∑
c=1

ζc(Jc)
2. (10)

The estimates of the t-derivative of the gene expres-

sion profiles, referred to as ˆ̄̇
Xc
, are obtained from the

right hand side of Eq. 4, with the transcription term and
degradation factor given by one of the model structures
defined by eqs (5-9). The parameters entering these

equations are generically denoted as Jc. The t-derivatives
of the measured gene expression profiles, ˙̄Xc, are
obtained by simple data interpolation with the cubic
smoothing splines algorithm csaps in Matlab (The
MathWorks, Inc., Natick, MA, USA).
The procedure used to identify the parameters Jc is

inspired by [22], and works as follows. The connectivity q
is defined to be the average number of connections that
end at a node of the network. The number of parameters
defining a connection depends on the model structure.
In a first step q is considered identical for all nodes, that
is, an identical number of gene classes regulates each
gene class. We start by putting q = 1 and test, for each
gene cluster c, all possible connections one by one. The
identification of the parameters that define each connec-
tion and minimize ζc is first performed using the global
optimization algorithm Direct [23] implemented in
Matlab. The parameters are restricted, in absolute value,
to the [10] interval, corresponding roughly to the range
of values adopted by X̄c , to ensure their biological signifi-
cance. The solution obtained by this algorithm is then
refined: it is used to initialize the local optimization algo-
rithm fmincon of Matlab. For each cluster c, the connec-
tion for which ζc is minimum is kept. This procedure is
repeated for q = 2 up to q = C. Note that each time a
connection is added, the parameters defining the pre-
viously fixed connections are freed and reoptimized.

Parameter identification
In the second stage, the parameters that maintain the net-
work defined in the previous stage and minimize the dif-
ference between measured and estimated profiles, rather
than their derivatives, are identified. More precisely, we
start with the connections determined in the q = 1 solu-
tion of the previous stage, with the parameters initialized
either to the values of this solution or to zero, whichever
minimizes the standard deviation s, defined as:

σc(J) =

√√√√ 1
N

N∑
k=1

(
X̄c (τk) − ˆ̄Xc (τk, J)

)2
and σc(J) =

√√√√ 1
C

N∑
c=1

σc(Jc)2, (11)

where J = (J1,..., JC). We then free the parameters and
optimize them using the fmincon optimization algorithm
of Matlab, so as to minimize the function s. The estimate
of the gene expression profiles, ˆ̄Xc , is obtained by integra-
tion of the differential equations (4), using one of the
model structures given by eqs (5-9). Note that the equa-
tions for different clusters are no longer decoupled as they
were in the first stage. Thus both sc and ˆ̄Xc depend on J
rather than on Jc only. We then repeat this procedure by
choosing the q = 2 up to q = C solutions obtained in the
first stage, freeing the parameters and identifying them by
minimizing the function (11). The initial values of the
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parameters are chosen to be those obtained for the q-1
identification, with the newly added parameters set to
zero.
In practice, we do not continue this procedure up to q =

C, but stop it when the value of s stops decreasing signifi-
cantly, thus when no additional connection improves sig-
nificantly the quality of the data reproduction.

Parameter reduction
The next step consists of eliminating unnecessary para-
meters among Mcd, Acd, Bcd, Lcd, and Kcd that appear in
eqs (5-9). We require that at least one connection per
gene class be kept. We proceed by dropping one para-
meter at a time, according to different criteria detailed in
what follows. Note that we also tried to drop several para-
meters at the same time, but the results were worse. The
reduction procedure was stopped when the value of s
exceeded 0.5, as the measured and estimated gene expres-
sion profiles started to differ too much.
Several reduction procedures were tested. They consist

of eliminating at each iteration:

1) the parameter of smallest absolute value (this pro-
cedure will be referred to as Ψv);
2) the parameter which, when dropped, leads to the
smallest increase of s (Ψs);
3) the parameter that is most sensitive to a perturba-
tion (ΨP) (in order to determine this parameter, we
add or subtract to each parameter in turn 1% of its
value, estimate again the gene expression profile and
compute the resulting s-value; the eliminated para-
meter is the one that leads to the largest increase in
s upon perturbation);
4) the least sensitive parameter in the Fisher sense
�−

F ;

5) the most sensitive parameter in the Fisher sense
�+

F .

To determine the most or the least sensitive para-
meter in the Fisher sense, we compute the Fisher infor-
mation matrix F [24], defined from the change of the
estimated profiles upon infinitesimal variations of the
parameters:

Fij =
C∑
c=1

N∑
k=1

(
∂ ˆ̄Xc(Jc, τk)

∂Ji

∂ ˆ̄Xc(Jc, τk)
∂Jj

)
, (12)

where i, j = 1,..p, with p being the total number of para-
meters. The parameter i to be eliminated is the one that is
correlated with at least one other parameter j, i.e.

∃j : Fij ≥ 0.9
√
FiiFjj , and is the least sensitive (in point 4)

or the most sensitive (in point 5), i.e. corresponds to the

minimum value of Fii (in point 4) or its maximum value
(in point 5).
After a parameter is eliminated the remaining para-

meters are optimized again using the local optimization
algorithm fmincon. The elimination procedure is then reit-
erated. Note that the reductions 1, 2 and 4 are standard
procedures, whereas the reductions 3 and 5 attempt to
eliminate parameters that are sensitive to perturbations.

Evaluation of the solutions
Four criteria were used to evaluate the quality of the
estimated profiles:

1) the number or remaining parameters;
2) the standard deviation s between estimated and
experimental profiles, defined in Eq. 11;
3) the robustness of the solution with respect to per-
turbations of its parameters; this is estimated by add-
ing to each parameter in turn ± 1% of its value,
determining which perturbation leads to the largest
deviation between measured and estimated expression

levels,
∣∣∣X̄c(τk) − ˆ̄Xc(τk)

∣∣∣, for any cluster c and time

point τk, and computing the value of the standard
deviation s obtained with this perturbed parameter,
denoted spert;
4) the stability of the solution, evaluated by extrapo-
lating the estimated profiles up to a time τend and by
computing the difference between the average value
of the estimated gene expression levels over the
measuring period and the extrapolated level:

χ =
C∑
c=1

∣∣∣∣∣
(
1
N

N∑
k=1

ˆ̄Xc(τk)

)
− ˆ̄Xc(τend)

∣∣∣∣∣. (13)

The time τend corresponds to 3 times the measured time
span and at most the Drosophila life time, i.e. 80 days.

Results and discussion
Gene clusters
The 4,028 gene expression profiles across Drosophila
development, presented in section 2.a, are classified
using a translation-invariant and scale-invariant distance
measure and a hierarchical tree-like classification proce-
dure, as detailed in section 2.b. To obtain the final
classes, we cut the clustering tree by putting a threshold
on the maximum number of classes, so as to ensure
that the distances between profiles within each cluster
are sufficiently low, that the distances between profiles
of different clusters are sufficiently high, and that the
number of classes is sufficiently low for allowing the
identification of the models’ parameters on the basis of
the available data points. Taking these criteria into
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account, we took the number of classes C to be equal to
12 for the full time series and 10 for the embryonic
stage.
The clusters for the embryonic stage and for the com-

plete time series are shown in Additional file 1: Figures
S1a-b; the members of each cluster are given in Addi-
tional file 1: Table S1 a-b. Each cluster is represented by

the average profile, X̄c(τk) , defined at each time point as
the average of the gene expression levels of the mem-
bers of the class, after suitable scaling and translation
on the representative profile (see section 2b). The aver-
age profiles are much smoother than the individual pro-
files, and can be considered as relatively noise-free. In
what follows we will focus on the average profiles and
model their evolution using the five structures described
by eqs (5-9).
Note that our clustering procedure is based on a dis-

tance measure between profiles that is adapted to our
modeling purposes, and that it differs from previously
described ones [20,25]. In particular, we clustered the
gene expression levels Xμ (τ) defined in Eq. 1 rather
than their logarithms, because these levels are the natu-
rally appearing functions in our differential equation
model given in Eq. 4.

Cluster network identification
The first stage of parameter identification is a bottom-
up procedure devised to fix the gene expression net-
work. It starts with a single connection per cluster and
ends with a constant number of connections q per clus-
ter, as described in section 2.d. This algebraic procedure
attempts to minimize ζ, i.e. the standard deviation
between the time derivatives of estimated and experi-
mental gene expression profiles (Eq. 10). The procedure
is stopped when ζ does not significantly decrease any
more. The results are given in Figures 1a-b for the
embryonic and full time series.
The value of ζ, for the same connectivity q, is higher

for the embryonic stage than for the full time series.
This is due to the fact that in the embryonic stage the
profiles are less smooth and thus the derivatives are
higher than in the full time series. The model structure

mpol
NC , expressed in terms of polynomials (Eq. 6), fails to

reproduce the gene expression profiles for both the
embryonic stage and full time series, with ζ-values
remaining almost constant as the connectivity increases.

The best structure turns out to be mexp
NN , with the tran-

scription term and the degradation factor having expo-
nential forms (Eq. 9). Note that these two model
structures have almost the same number of parameters;
therefore the drop in performance cannot be due to this

difference. However, all the parameters of mpol
NC are

required to be positive, which could be problematic in
the parameter identification. The other three model
structures, which have significantly less parameters,
minimize ζ reasonably well.

Parameter identification
Having fixed the gene expression network, the second
step consists of identifying the parameters that minimize
s, i.e. the standard deviation between estimated and mea-
sured gene expression profiles (Eq. 11), rather than their
time derivatives. The results are given in Figures 2a-b for
the embryonic and full time series.
The results confirm those obtained in the previous

step: the model structure mpol
NC does worse than all the

others. The other four structures do reasonably well.
The structure with the largest number of parameters,

mexp
NN , does well in both stages, and so does the linear

model, mlin, which has by far the fewest parameters.

Interestingly, the two structures mexp
CN and mexp

NC , which

have the same number of parameters but have, respec-
tively, the transcription term and the degradation factor
constant, behave differently in the embryonic and full
time series: the former does better in the embryonic
stage and the latter in the full series.
Based on these results, we determined the minimum

connectivity qm that must be considered to yield a fair
reproduction of the expression profiles, and beyond
which the reproduction does not significantly improve.
By visual inspection of Figures 2a-b, we determined that
qm = 3 for the embryonic stage and qm = 7 for the full
time series. Clearly, the network needs more connec-
tions to describe reliably the complete time series than
just the embryonic stage.

Evaluation of the solutions
The solutions obtained with these values of qm are eval-
uated according to the criteria listed in section 2.g. As
seen in Tables 1, 2 and Figures 3a-b, all the model

structures except for mpol
NC allow a good reproduction of

the data, with s-values below 0.5. The linear model mlin

achieves this with the smallest number of parameters.
This result would a priori push to the selection of the
linear model mlin and to the rejection of the non-linear

model mpol
NC .

However, when perturbing the parameters by ± 1%,
the linear model appears to be by far the least robust.
This is particularly visible for the full time series where
the perturbed s values are 300 times larger than the

unperturbed ones. Note that the non-linear mexp
NC model

structure also lacks robustness for certain parameter
variations in the case of the full series.
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Furthermore, the stability of the solutions, which is
evaluated by extrapolating the estimated profiles in time
(see Eq. 13), is depicted in Figures 4a-b. We consider
that a solution is stable if the expression levels at extra-
polated times are of the same order of magnitude as the
average level. We observe that only the linear model dis-
plays a very poor stability. All non-linear models appear
reasonably stable.
The principal criterion that the solutions have to fulfill is

the reproduction of the data. However, to ensure biological

significance, they must moreover be reasonably robust
against parameter perturbations (see e.g. [14-16]). Indeed,
the gene expression process in real cells is intrinsically sto-
chastic, but gives nevertheless basically the same response
whatever the system’s perturbations are. If the system were
not robust, any perturbation would lead to dysfunctional
cells. Moreover, the modeled profiles must also be rela-
tively stable in the extrapolated time regime, until the end
of a development stage or the organism’s life, in order to
keep the levels of expression in a realistic range.

(a)        (b)  
Figure 1 Bottom-up construction of the gene expression network. The standard deviation ζ is given as a function of the connectivity q. The

five curves correspond to the five model structures of eqs (5-9): dashed line: mpol
NC

; thick solid line: mexp
NN ; dashed-dotted line: mexp

NC ; dotted

line: mexp
CN ; thin solid line: mlin. (a) embryonic time series; (b) full time series.

(a)       (b)  
Figure 2 Parameter optimization for the gene expression networks. The standard deviation s is given as a function of the total number of

parameters p. The five curves correspond to the five model structures of eqs (5-9): dashed line: mpol
NC

; thick solid: mexp
NN ; dashed-dotted line:

mexp
NC ; dotted line: mexp

CN ; thin solid line: mlin. The number of parameters (p) depends on the connectivity per class (q) and the number of

classes (C): p = (2q+4)C for mpol
NC

, p = (2q+5)C for mexp
NN , p = (q+4)C for mexp

NC and mexp
CN , and p = (q+1)C for mlin. The value of the minimum

connectivity qm necessary to yield good data reproduction is indicated by a large circle. (a) Embryonic time series; the number of parameters p
shown corresponds to connectivities q between 1 and 4; qm = 3; (b) full time series; the number of parameters p shown corresponds to
connectivities q between 1 and 12; qm = 7.
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Note that network models involving individual genes
for which a few specific parameters are sensitive to per-
turbations may not be immediately disqualified.

However, we do not work here with networks of indivi-
dual genes, but rather with clusters containing hundreds
of genes. Therefore, if a parameter that represents the
strength of the interaction between these groups of
genes is sensitive to perturbations, it is not one but a
large number of genes that deviate from their intended
expression profiles. We thus require our models to be
robust with respect to all (tested) parameter variations.
Hence we can conclude that the non-linear model

mpol
NC is inappropriate as it fails in reproducing the

expression profiles, and that the linear model mlin is
unsuitable as it is non-robust and non-stable. Only the

three non-linear structures mexp
NN , m

exp
NC and mexp

CN will be

further analyzed.

Parameter reduction
In the identification stage described in sections 3.b-c, we
determined the number of connections qm per gene
necessary to minimize s. However, some of the genes
probably require fewer connections than others, and
some of the connections fewer parameters. To identify
the parameters that may be dropped without altering
the data reproduction too much, we applied the five dif-
ferent reduction schemes described in section 2f. Three
of them are commonly used schemes: Ψv drops the
parameters of smallest absolute value; Ψs, the para-
meters that increase s the least; and �−

F , the parameters
that are correlated with at least one other parameter and
are the least sensitive to infinitesimal parameter varia-
tions as defined by the Fisher matrix. The latter two
reductions, �−

F and ΨP, aim at selecting solutions that

are the most robust with respect to variations of the
parameters: they drop parameters that are the most sen-
sitive to infinitesimal and finite parameter variations,
respectively. Note that the parameters are dropped one
by one in all these schemes. The scores reached, when
dropping several parameters simultaneously, are not as
good.
The quality of the data reproduction (s), the robust-

ness (spert) and the stability upon extrapolation (c) of
the reduced solutions obtained by the five different
reduction procedures applied to the three remaining

model structures mexp
NN , m

exp
NC and mexp

CN , for the embryo-

nic and full time series, are given in Additional file 1:
Figure S2. As expected, the procedure Ψs, which drops
the parameters that increase s the least, leads almost
invariably to the solutions that best reproduce the data.
The procedure Ψv, which drops the parameters of smal-
lest absolute value, does also very well in this respect,
whereas the other three procedures generally perform
less well. Surprisingly, the reduced solutions obtained by
the procedures Ψs and Ψv are also robust against

Table 1 Characteristics of full and reduced estimated
solutions for the embryonic time series.

Model Reduction s spert c p q

mlin - 0.32 0.56 200.3 40 3

mpol
NC

- 0.56 0.56 5.3 100 3

mexp
NC - 0.37 0.37 4.8 70 3

mexp
NN - 0.30 0.30 4.1 110 3

Ψs 0.31 0.34 3.6 78 2.1

Ψv 0.32 0.35 3.9 85 2.3

�−
F 0.31 0.33 2.7 101 3

�+
F 0.30 0.32 4.9 108 3

ΨP 0.33 0.38 7.2 108 3

mexp
CN - 0.28 0.31 2.1 70 3

Ψs 0.28 0.42 1.5 65 2.5

Ψv 0.29 0.37 1.3 62 2.2

�−
F 0.28 0.33 2.0 69 2.9

�+
F 0.28 0.31 1.5 69 2.9

ΨP 0.35 0.75 4.0 69 2.9

The solutions in bold satisfy the condition sc≤0.5 ∀c. The gray lines
correspond to the selected solutions whose network is depicted in Figure 6.

Table 2 Characteristics of full and reduced estimated
solutions for the complete time series.

Model Reduction s spert c p q

mlin - 0.37 115.70 41.9 96 7

mpol
NC

- 0.58 0.58 1 216 7

mexp
CN - 0.50 0.81 1.47 132 7

mexp
NN - 0.31 13.77 0.7 228 7

Ψs 0.36 9.08 0.1 161 6.1

Ψv 0.27 9.12 2.4 188 6.7

�−
F 0.32 1.68 0.8 187 6.8

�+
F 1.43 0.91 1.0 131 7

ΨP 0.88 0.88 0.1 225 7

mexp
NC - 0.36 0.90 1.0 132 7

Ψs 0.34 1.08 0.9 124 6.3

Ψv 0.34 1.02 0.8 108 5

�−
F 0.35 0.99 1.0 127 6.6

�+
F 0.34 0.81 1.0 122 6.2

ΨP 0.65 0.65 0.1 131 6.9

The solutions in bold satisfy the condition sc≤0.5 ∀c. The gray lines
correspond to the selected solutions whose network is depicted in Additional
file 1: Figure S5.
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perturbations and stable upon extrapolation, usually
even more than the solutions obtained with the proce-
dures �+

F and ΨP that are nevertheless designed to
select robust solutions. The commonly used Fisher

matrix-based �−
F procedure that keeps sensitive para-

meters is in general not as good as the Ψs and Ψv, for
none of the criteria considered, and is of the same order
as �+

F and ΨP. Note that, in some cases, �+
F and �−

F

give very similar results although they seem a priori
quite different. However, it has to be reminded that they
have a common part: they both drop correlated para-
meters, which may explain the similarity.
We now proceed to select the best reduced solutions.

Up to now we used the criterion for data reproduction
to be s≤0.5. However, the value of s is an average over
all clusters, so that this value can be reached when all

(a)  (b)  
Figure 3 Gene profile reproduction and robustness of the solutions. Black bars indicate the standard deviation s and grey bars the
standard deviation spert after the parameter perturbations defined in section 2g. The five bars correspond to the five model structures of eqs (5-
9). (a) Embryonic time series; (b) full time series.

(a)  (b)
Figure 4 Stability of the solutions upon extrapolation in time. Bars indicate the value of c, which corresponds to the difference between
the estimated expression levels averaged over the time points and the expression level extrapolated to τend (see Eq. 13). The five bars
correspond to the five model structures of eqs (5-9). (a) Embryonic time series; τend corresponds to 3 times the measuring period; (b) full time
series; τend corresponds to the Drosophila life time, i.e. 80 days.
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profiles are well reproduced, but also when almost all
profiles are well reproduced and a few are not. To pre-
vent this from happening, we define a new criterion,
sc≤0.5 ∀c, where sc is defined in Eq. 11. This criterion
imposes that the expression profiles must be well repro-
duced for each cluster individually. The most reduced
solution that satisfies this constraint is selected for every
reduction procedure, for every model structure and for
every time series. These solutions are indicated in Addi-
tional file 1: Figure S2 and their characteristics are given
in Table 1.
For the embryonic time series, even the non-reduced

solution obtained with the structure me
NC fails to fulfill

this more stringent criterion (sc≤0.5 ∀c), and therefore
no reductions are indicated in the Table. The same

holds for the structure mexp
CN for the full time series. We

are thus left with the two model structures mexp
CN and

mexp
NN for the embryonic series and the two structures

mexp
NC and mexp

CN for the full series. For each of these

structures we dispose of five reduced solutions based on
the procedures Ψv, Ψs, �−

F , �+
F and ΨP. Among these,

the best solutions are those that satisfy the criterion
sc≤0.5 ∀c and have: the lowest value of the deviation
between estimated and experimental profiles, s; the low-
est value of this deviation after perturbation of the para-
meters, sπεrτ; the lowest value of the extrapolated
expression level, c; and the lowest number of para-
meters, p. The best solutions so selected are indicated in
Table 1.
The most reduced of these best solutions have an

average of two connections per node for the embryonic
time series, and five connections per node for the full
time series. The embryonic gene expression network is
thus much sparser than the network of the full time ser-
ies. This reflects the fact that the embryonic profiles are
much simpler to reproduce than those of the full series.
Indeed, the four development stages of the Drosophila
show different gene expression profiles, where the tran-
sition from one stage to the next is encoded by abrupt
changes [21].
As shown in Figure 5 and Additional file 1: Figures

S3-S4, our best solutions reproduce the experimental
gene expression profiles very well. This is true both for
the embryonic phase and the full time series, owing to
the larger number of connections.

Analysis of cluster networks
The cluster regulatory networks defined by the different
solutions selected in the previous section were further
analyzed. For the embryonic times series these solutions

are obtained with the model mexp
NN and the parameter

reduction scheme Ψs, and with mexp
CN and Ψv; for the

full time series they are obtained with mexp
NN and �−

F ,

and with mexp
NC and Ψv (see Tables 1, 2). The corre-

sponding gene regulatory networks are depicted in Fig-
ures 6a-b for the embryonic time series and in
Additional file 1: Figures S5a-b for the full time series.
Given that the networks for the full time series have on
average 5 to 7 connections ending at each node, they
are quite complex and difficult to analyze further. Thus
we focused on the networks for the embryonic series
that have on average two connections arriving at each
node.
The two networks selected for the embryonic stage are

almost equally sparse, which is in agreement with the
current knowledge about gene expression networks.
They have moreover some connections in common. For
example, cluster 3 is linked to the three clusters 6, 7
and 10 in both networks, and cluster 9 auto-represses
itself. In contrast, some connections are very different,
as for example those starting or ending at cluster 9,
which is a hub in one of the networks and not in the
other. It is impossible to determine what is the most
realistic network on the basis of the available DNA
microarray data alone.
A way to support our results is to compare the

obtained networks with experimental data. The compar-
ison is not straightforward, as we deal here with rela-
tions between clusters of genes that have similar
expression patterns, whereas the experimental data
apply to individual genes. Moreover, we look for the
dynamical influences of genes on the expression rate of
other genes, whereas experimental data focus on physi-
cal interactions between genes and/or gene products,
coexpression of genes, or functional relationships
between genes or pathways. However, there is an over-
lap between these different kinds of information. In par-
ticular, genes and/or gene products that interact during
some or all development stages can be expected to be in
the same cluster when the classification encompasses
these stages. Alternatively, they can be expected to influ-
ence each others’ expression rate. In contrast, two genes
in the same cluster are not necessarily coexpressed,
sharing a common function or involved in the same
pathway. The only certainty is that they have similar
expression profiles during the development stages under
consideration.
To get a better biological understanding of our net-

works, we compare them with other predicted networks
and with experimental data. The gene networks involved
in the segmentation of the fly embryo have been thor-
oughly studied (for a review, see e.g. [26]) and modeled
using logic-based approaches [27,28], but unfortunately
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most of these genes are not part of the DNA microarray
time series studied here. Another well-studied subset of
genes, which are all part of the time series, concerns
muscle development [20]; their gene regulatory subnet-
work has been predicted using a probabilistic modeling
approach [29]. We focused on this subnetwork, which
contains 20 genes.
We first note that our clustering procedure groups

several of these 20 genes in the same cluster. More pre-
cisely, these genes are distributed among 7 clusters
when considering the embryonic time series and among
5 clusters for the whole series. To be able to compare

our modeled networks with the model of [29], which we
will refer to as Z-network, we first translated the latter
into a cluster network by defining an oriented connec-
tion between two clusters when at least one of the
genes they contain shows that connection. We then
compared this network with ours, and in particular with
the two best non-reduced models and the two best

reduced ones, which are (mexp
NN ), (m

exp
NN , Ψs), (m

exp
CN ) and

(mexp
CN , Ψv) for the embryonic time series (see Table 1),

and (mexp
NN ), (m

exp
NN , �−

F ), (m
exp
NC ) and (mexp

NC , Ψv) for the

full series (see Table 2). We find that these different

(a)  (b)  

(c) (d)  
Figure 5 Experimental ( X̄c ) and estimated ( ˆ̄Xc

) gene expression profiles for four clusters, obtained with the selected reduced

solutions. These solutions correspond to the gray lines in Tables 1, 2. Clusters 1 and 2 of the embryonic stage; dots: experimental data; solid

line: model structure mexp
NN with the reduction scheme Ψs; dashed line: model structure mexp

CN with the reduction scheme Ψv; the curves are

given as a function of the real time. (c-d) Clusters 1 and 2 of the full time series; dots: experimental data; solid line: model structure mexp
NN with

the reduction scheme ΨF-; dashed line: model structure mexp
NN with the reduction scheme Ψv; the curves are given as a function of the time-

points.
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networks share between 17% and 50% of the Z-network
connections, taking the connections’ orientations into
account. There is thus a significant overlap between our
models and the Z-model.
Another way to get insight into our results is to com-

pare the predicted connections with physical protein-pro-
tein or protein-gene interactions. Such interactions are
listed in the DroID database [30]. Among the experimen-
tally determined interactions between a transcription fac-
tor and a gene, which are contained in this database and
for which the transcription factor and the gene are in two
different clusters, 38% to 69% correspond to connections
present in our 8 best (abovementioned) solutions. For the
experimentally determined protein-protein interactions,
the correspondence is even higher: 50% to 100%. Strik-
ingly, the correspondence between the Z-network and
the experimental interactions is lower: for the transcrip-
tion factor-gene interactions, the correspondence is 6%
when considering individual genes, 38% when consider-
ing embryonic clusters, and 57% when considering the
clusters of the full time series; for the protein-protein
interactions, the values are 25%, 50% and 75%. Our
results are thus encouraging and support our approach.

Conclusions
We tested the ability of five model structures, one linear
and four non-linear, to reproduce the gene expression
profiles across the whole life span of Drosophila, or the
profiles limited to the embryonic phase. The linear

model mlin led to very good data reproduction, with few
parameters, but turned out to be much too sensitive to
parameter variations, and to yield unrealistic values of
the expression levels when extrapolated in time. This
model was rejected because it was incapable of absorb-
ing the stochastic variations inherent to all biological
systems and keeping the estimated values in a biologi-
cally reasonable range.
The parameter identification procedure developed here

contained two steps: selection of the connections that are
necessary to reproduce the data, which was achieved by
minimizing ζ the standard deviation between the time
derivatives of estimated and experimental gene expres-
sion profiles; and optimization of the parameters defining
these connections by minimizing s the standard devia-
tion between the estimated and experimental gene
expression profiles. Although this procedure is adequate
for non-linear model structures, an easier method can be
used for linear structures. It also consists of two steps.
The first step consists of linear, least-squares parameter
identification so as to minimize ζ, and the second step
entails non-linear optimization of these parameters so as
to minimize s [9]. The existence of alternative parameter
identification methods for the linear structure gave us
the opportunity to test the performance of the new pro-
cedure developed here, by using both on the linear
model. For the embryonic stage, we found s to be equal
to 0.32 with both methods. This result corroborates the
validity of the present approach. Note that lower s-values

(a) (b)
Figure 6 Gene regulatory network of selected reduced solutions for the embryonic stage. The best reduced solutions obtained with the
model structures mexp

NN and mexp
CN for the embryonic stage, as defined by a good reproduction of the data, a low number of parameters, a

good robustness with respect to parameter variations and a good stability in time (corresponding to the two gray lines in Table 1). The arrows
and dots represent activation and inhibition, respectively. The black and gray solid lines represent the connections shared by both solutions,
with the same sign or opposite sign, respectively. The connections that are present in only one of these solutions are indicated with dashed
black lines (a) Network obtained with the model structure mexp

NN and the reduction scheme Ψs; (b) Network obtained with the model structure
mexp

CN and the reduction scheme Ψv.
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can be reached when considering the logarithm of the
gene expression profiles X̄c(τ ) [9], because this function

tends to smooth out the profiles.

Among the four non-linear model structures, mpol
NC ,

which has been developed previously [11] to model a
prokaryotic system subject to glucose-lactose diauxie
and where the transcription term is proportional to the
probabilities that the promoter is bound to an activator
and not to a repressor, failed to reproduce correctly the
Drosophila gene expression profiles and was rejected.
Two reasons can be invoked to explain why this biol-
ogy-based structure did not work. The first is that it has
been developed for prokaryotes, where the transcrip-
tional and translational regulation machineries are much
simpler. For instance, one single repressor (activator) is
able to repress (activate) gene expression in such sys-
tems, whereas in eukaryotes large biomolecular com-
plexes are usually required. The second reason is that
this transcription term is physical for gene expression
networks involving single genes, but not for gene clus-
ters. Some arguments have been presented to justify the
use of this model structure for gene clusters [11], but
they are based on approximations that may not be valid
in the present case.
The three remaining non-linear model structures

include a transcription term and/or a degradation factor
that is constructed from ratios of exponential terms of

the form exp

(
−

C∑
d=1

KcdX̄d(t)

)
. These structures, mexp,

are much more flexible and encode the possibility that
gene regulation is driven by biomolecular complexes.
The three model structures considered differ by the
constancy of the transcription term or degradation fac-

tor: mexp
CN has a constant transcription term, mexp

NC a con-

stant degradation factor, and for mexp
NN neither is

constant. As mexp
NN includes the other two models, it

should in principle always outperform them. However,
this is not always so, because its larger number of para-
meters sometimes entails identification problems.

Besides, mexp
CN does not systematically outperform mexp

CN ,

nor the opposite: the former is better for the embryonic
stage and the latter for the full time series. But in all
tested cases, at least two of the three mexp model struc-
tures reproduced the data very well, as clearly seen in
Figure 5 and Additional file 1: Figures S3-S4.
In addition to fair data reproduction, the biologically

crucial properties that make the mexp family of model
structures adequate for modeling Drosophila gene
expression across development, is their generally robust
behavior against parameter variation and their large

stability upon extrapolating the solutions in time. These
structures are therefore selected for further analysis.
To get rid of the unnecessary parameters and connec-

tions in the mexp model structures, several reduction pro-
cedures were defined and applied. The two simplest
procedures, Ψv and Ψs, where the former amounts to
dropping the parameters of smallest absolute value and
the latter to keeping the parameters that increase s the
least, gave in general the best results in terms of data
reproduction, robustness against parameter perturbations
and stability upon extrapolation in time. The common
procedure �−

F , which amounts to dropping parameters

that are correlated with others and are the least sensitive
in the Fisher sense, i.e. the most robust with respect to
infinitesimal parameter variations, was in general less effi-
cient (although it gave one of the best reduced solutions).
The variant �+

F , which drops parameters that are the
most sensitive in the Fisher sense yielded similar perfor-
mances. This surprising result is probably due to the fact
that the most important property of the Fisher matrix-
based reduction procedures is to minimize the correlation
between parameters. The last reduction scheme tested,
which amounts to dropping parameters that are the most
sensitive to finite perturbations, usually did not allow the
elimination of many parameters and thus showed the low-
est performances.
We finally selected the best reduced solutions, for the

embryonic stage and the full time series. These solutions
turned out to have all required characteristics: good data
reproduction, robustness against parameter variations,
stability when extrapolating in time, and a reasonably low
number of parameters. Note that parameter reduction
does not have the general tendency of increasing the
robustness and stability of the non-linear models (see
Additional file 1: Figure S2), as it is the case for the linear
models [31] (without nevertheless reaching a sufficient
robustness level). These best non-linear solutions show a
mean number of connections equal to two for the
embryonic stage and five for the full time series. The
associated networks are thus quite sparse, especially for
the embryonic stage, in agreement with experimental
results on E. coli [32]. We can thus conclude at this stage
that the model structure mexp, the two-step parameter
identification procedure developed here and the two
reduction schemes Ψv and Ψs, are all together appropri-
ate for modeling the Drosophila gene expression across
development.
Although overfitting of the models’ parameters can

never be totally excluded in the absence of thorough
cross validation, our reduction procedure is designed to
avoid this problem. Indeed, the original solutions, which
might suffer from overfitting, are reduced until their s
values start to exceed a threshold value, above which
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the correct reproduction of the data is no longer guar-
anteed. The parameters of the most reduced solutions
can thus be assumed not to be overfitted. Note also that
the number of parameters of the reduced solutions are
much smaller than the number of data points (see
Tables 1, 2). For the two best reduced solutions in parti-
cular, there are 62 and 78 parameters and 310 data
points in the embryonic stage, and 108 and 187 para-
meters and 804 data points in the full time series.
However, our results suffer from an important draw-

back, that is, that many gene expression networks and
parameter values can be found which have approxi-
mately the same performance in terms of our different
criteria, and cannot be ranked on the basis of the avail-
able data. We would like to emphasize that the biologi-
cal constraints we have introduced, namely the
robustness against parameter variations and the stability
of the solutions upon extrapolation in time, limit the
possible model structures and parameter ranges, and
thus partially lift degeneracy, but not completely. With-
out additional data, it is impossible to determine which
of the networks is the most realistic. The inclusion of
other types of data and subsequent analysis of whether
this renders the solution unique will be the focus of
future research. Also, the application of our approach to
the gene expression across the development of other
organisms, or to systems subject to external perturba-
tions such as stress, will also lead to relevant insights.
Notwithstanding the nonuniqueness of our predicted

cluster networks, they compare favorably with experi-
mental data. Indeed, focusing on the well-studied gene
subset involved in muscle development, we observed
that many of the partners of the experimentally identi-
fied transcription factor-gene and protein-protein inter-
actions are members of the same gene cluster. In many
other cases, the clusters these partners belong to are
connected in the predicted networks. These results will
be thoroughly analyzed and confirmed in further studies
on the basis of experimental data on other gene subsets.
It can also be argued that the non-uniqueness of the

network is actually a correct result, and can be due to
the inherent plasticity of gene expression networks,
where a same external perturbation can lead to different
gene expression responses [33]. However, it is not
obvious that such a mechanism applies to gene expres-
sion across an organism’s development. As a last com-
ment, we would like to suggest the hypothesis that
many of the networks selected by our approach are
valid, not because of network plasticity but because our
networks connect clusters rather than single genes.
These networks can thus be viewed as superimpositions
of single-gene networks. If we could disentangle these
networks, we would probably realize that some gene
subsets are regulated according to one of the networks,

and other gene subsets according to other networks.
The large number of networks and solutions found for
gene clusters would then be fully relevant and useful to
disentangle the gene regulatory mechanisms.

Additional material

Additional file 1: Supplementary material.
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