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Abstract

Background: To estimate a classifier’s error in predicting future observations, bootstrap methods have been
proposed as reduced-variation alternatives to traditional cross-validation (CV) methods based on sampling without
replacement. Monte Carlo (MC) simulation studies aimed at estimating the true misclassification error conditional
on the training set are commonly used to compare CV methods. We conducted an MC simulation study to
compare a new method of bootstrap CV (BCV) to k-fold CV for estimating classification error.

Findings: For the low-dimensional conditions simulated, the modest positive bias of k-fold CV contrasted sharply
with the substantial negative bias of the new BCV method. This behavior was corroborated using a real-world
dataset of prognostic gene-expression profiles in breast cancer patients. Our simulation results demonstrate some
extreme characteristics of variance and bias that can occur due to a fault in the design of CV exercises aimed at
estimating the true conditional error of a classifier, and that appear not to have been fully appreciated in previous
studies. Although CV is a sound practice for estimating a classifier’s generalization error, using CV to estimate the
fixed misclassification error of a trained classifier conditional on the training set is problematic. While MC simulation
of this estimation exercise can correctly represent the average bias of a classifier, it will overstate the between-run
variance of the bias.

Conclusions: We recommend k-fold CV over the new BCV method for estimating a classifier’s generalization error.
The extreme negative bias of BCV is too high a price to pay for its reduced variance.
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Background
Class prediction involves the use of statistical learning
techniques to develop algorithms for classifying un-
known samples through supervised learning on samples
of known class. In assessing the performance of a classi-
fication algorithm, the goal is to estimate its ability to
generalize, i.e., to predict the outcomes of samples not
included in the data set used to train the classifier. The
performance may be assessed on the basis of a number
of different indices. For problems having a dichotomous
outcome variable (e.g., positive or negative), the sensitiv-
ity, specificity, positive predictive value and negative pre-
dictive value are indices that may be of interest in
addition to the overall prediction accuracy [1]. In this
paper, attention is focused on the overall prediction
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accuracy, or equivalently, on its counterpart, the predic-
tion error.
Cross-validation (CV) is a widely used method for per-

formance assessment in class prediction [2-4]. With k-
fold CV, a data set of n samples is randomly divided into
k subsets each having (approximately) n/k samples. Each
of these k subsets serves in turn as a test set. For each of
these k test sets of size n/k, a classifier is trained on the
remaining (k-1)×(n/k) observations (the training set).
The trained classifier is then used to classify the n/k
samples in the test set, and the prediction error (per-
haps, along with other indices) is calculated. The com-
bined value of the prediction error over the k test sets,
which is based on the prediction of all n samples one
time each, is the cross-validated estimate of that error.
Generally, several replicates of k-fold cross-validation are
performed based on different random permutations of
the n samples in order to account for the random
resampling variance, and the average and standard
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deviation of these replicates are used to assess the per-
formance of the classifier [5,6]. When k = n, the exercise
is called leave-one-out cross-validation (LOOCV); there
is only one unique way to do LOOCV and, hence, it can-
not be replicated. A common choice of k is 10, and
10 to 30 replicates of 10-fold CV have been shown to
be sufficient to achieve stable values of the prediction
error [7].
Before 10-fold CV became popular, efforts were direc-

ted toward reducing the variability of LOOCV, recogniz-
ing that it gave nearly unbiased estimates of the
prediction error [8]. The .632 and .632+ bootstrap meth-
ods are well known alternatives to LOOCV [9]. Recently,
Fu, Carroll and Wang [10] introduced a new boot-
strap version of LOOCV (bootstrap cross-validation or
BCV), which they compared to LOOCV and to the .632
bootstrap method (BT632) on problems with low-
dimensional predictor spaces. Like Efron and Tibshirani
[9], Fu et al. [10] used a mean squared error (MSE)
represented by the mean squared bias (MSB) over N
Monte Carlo simulations (discussed in Methods Section)
as the primary criterion for evaluating estimators of the
true conditional error, i.e., the true misclassification error
of the trained classifier conditional on the training set
[9]. These and similar investigations into estimating the
true conditional error via cross-validation (e.g., see
[7,11]) have been interpreted as assessing a classifier’s
error in predicting future observations, i.e., its
generalization error [8,9]. It is argued in this paper that
while cross-validation is a sound, generally-accepted
method for evaluating a classifier’s generalization error,
it may be problematic to use cross-validation to assess
this generalizability in terms of estimating a true condi-
tional error defined as a single fixed quantity for a given
set of data. With that approach the variance of cross-
validation will tend to be overstated, even though its bias
can still be appropriately characterized, as will be shown
in this paper via Monte Carlo simulation and will be
explained more fully in the Discussion.
While Efron and Tibshirani used the traditional abso-

lute scale to calculate the MSB and its square root (the
root mean square or RMS in their notation), Fu et al.
focused on what they termed the mean squared ‘relative’
error (MSRE), stating that calculations on the absolute
scale gave similar results. Here, the mean squared error
and associated quantities calculated on the absolute scale
are used.
The purpose of this paper is to report the results of a

more extensive comparison of BCV to conventional CV
done via a simulation study like that of Fu et al. [10],
based on k-fold CV in addition to LOOCV, and to use
those results to fuel a discussion of several issues related
to cross-validation. Finally, the performance of BCV and
k-fold CV are demonstrated for a real-world data set by
classifying patients with breast cancer according to prog-
nosis based on their gene-expression profiles.

Methods
Mean squared error
In order to facilitate the definition of terms, suppose for
the moment that k-fold cross-validation (kCV) will be
used to assess a classifier’s true conditional error rate
based on the results of N Monte Carlo simulations. Let
k < n, where n is the sample size, and assume that kCV
is repeated R times. Then the MSE for the ith simulation
is given by

MSE ¼ 1
R

XR
r¼1

ê ri � eið Þ2

¼ 1
R

XR
r¼1

ê ri � �eRið Þ2 þ �eRi � eið Þ2;

ð1Þ
where ei denotes the true conditional error for the ith

simulation, ê ri denotes the rth kCV estimate of ei for the

ith simulation, and �eRi ¼ 1=Rð Þ
XR

r¼1
ê ri is the mean esti-

mate of the ith true conditional error over R re-samples.
The terms on the right hand side of (1) are the variance
and bias components of the MSE. The average MSE over
N simulations is given by

―
MSE ¼ 1

N

XN
i¼1

1
R

XR
r¼1

ê ri � eið Þ2; ð2Þ

which can be decomposed into average variance and
average (squared) bias components,

―

MSE ¼―VARþ
―

BIAS2

¼ 1
N

1
R

XN
i¼1

XR
r¼1

ê ri � �eRið Þ2 þ 1
N

XN
i¼1

�eRi � eið Þ2:

ð3Þ

In (3)
―

VAR is the average variance and
―

BIAS2 is the
mean squared bias (MSB) over N simulations. It is noted
that the two components in (3) are analogous to the
pooled variance and lack-of-fit components in linear
regression where there are R observations at each of
N values of an independent variable.
With BCV, like kCV, it is possible to calculate the

MSE in (1) for each value of the true conditional error
(k < n). Each of the R bootstrap samples is drawn first,
and then each of the n observations in the with-
replacement sample is left out one at a time to get an
estimate of the prediction error. With BT632, however,
it is not possible to calculate the MSE in (1) because
only one estimate of the true conditional error can be



Table 1 Cross-validation methods to be compared

Method No.
Repetitions

Sample
Type

Total No.
Retrainings

kCVn1 1 NA n

BCVn2 B Bootstrap B×n

kCVn/2 2×B Permutation B×n

BCVn/2 2×B Bootstrap B×n

kCV10 B×n/10 Permutation B×n

BCV10 B×n/10 Bootstrap B×n
1kCVn is leave-one-out CV (LOOCV).
2BCVn is BCV as defined by Fu et al. (2005).
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calculated from the R bootstrap samples in each of the
N simulation runs. That is, with BT632 each of the n
samples is left out one at a time and then R bootstrap
samples are drawn from the remaining n-1 samples.
These R bootstrap samples give an estimate of the pre-
diction error for the left-out observation, and the aver-
age of these estimates over the n samples is the
BT632 estimate. (Efron and Tibshirani [9] presented
an efficient algorithm for computing BT632 that uses
only R total bootstrap samples instead of R × n sam-
ples; the expected number of bootstrap samples used
to estimate the prediction error for each left-out obser-
vation is (1–0.632) × R.) Hence, the decomposition in
(3) can be achieved with both kCV and BCV, but not
with BT632.
Of necessity, because of the construction of BT632

and associated estimators, Efron and Tibshirani [9] used
only the MSB (second term in (3)) to evaluate the per-
formance of cross-validation methods, where ēRi for
BT632 has a different connotation than for kCV and
BCV, but is still an average calculated from R (or fewer)
bootstrap samples per observation. Similarly, Molinaro
et al. [7] employed the MSB in their investigation.
Although it was not explicitly shown, in both papers the
MSB was further decomposed as

MSB ¼ SD BIASð Þ½ �2 þ―BIAS2

¼ 1
N

XN
i¼1

�eRi � eið Þ � �eN � �eð Þf g2 þ ð�eN � �eÞ2

ð4Þ

where �eN ¼
XN

i¼1
�eRi=N and �e ¼

XN

i¼1
ei=N , with inter-

pretations of results based on the standard deviation
of the bias, SD(BIAS), and the average bias,

―

BIAS, but
using different notation. Although the simulation
study conducted by Fu et al. [10] provided informa-
tion on the variance and bias components of the
―

MSE in (3) with respect to the BCV estimator of the
true conditional error rate, the information on vari-
ance was not used in the comparison with LOOCV
and BT632, as it was not possible to obtain equiva-
lent information with the latter two methods. Instead,
Fu et al. [10] presented information 2on components
comparable to those of the MSB in (4), but defined
on a relative basis. In the simulation study reported
here, in addition to the information provided by the
squared-bias component and its sub-components in
(4), the information that both BCV and kCV provide
on the variance component of the M�SE in (3) has
been compared. To make the BCV-kCV comparison
as fair as possible, the number of recomputations, i.e.,
the number of retrainings of a classifier, was equal-
ized for BCV and kCV. The purpose was to equalize
information rather than to equalize computational ef-
fort (see [9,11]). As with the study of Fu et al. [10],
the present comparison was restricted to low-
dimensional predictor spaces.
Monte Carlo simulation study
It was assumed that there were two populations (classes)
defined by p ≥ 1 predictors or features having underlying
Gaussian distributions [10]. The first population was
assumed to be distributed N(μ1, Σ1) with μ1 = 0(p)

' and the

second N(μ2, Σ2) with μ2 ¼ Δ pð Þ=
ffiffiffi
p

p� �0
, where 0(p) is the

p-dimensional zero vector and Δ(p) is a p-dimensional
vector of non-zero constants, Δ. The structure of μ2 is
a modified configuration of Freidman [12]. In addition
to the equal variance case studied by Fu et al. [10],
where Σ1 = Σ2 = Ι(p) (the p×p identity matrix), here the
case of unequal population variances was also stud-
ied, where Σ1 = Ι(p) and Σ2 = 2Ι(p). Independence
among predictors, as reflected by Σ1 = Ι(p) and Σ2 =
2Ι(p), was assumed in order to be consistent with Fu
et al. [10]. Given the mean structures, any positive cor-
relation among predictors would simply decrease the
generalized Mahalanobis distance between the two
populations while negative correlation would increase
the distance.
Feature dimensions of p = 1 and 5 were simulated,

along with Δ = 1 and 3. For p = 1, sample sizes of n =
20, 50 and 100 were simulated (n/2 in each class), while
for p = 5, only n = 50 and 100 were considered. Whereas
Fu et al. [10] used quadratic discriminant analysis
(QDA) to classify samples for some comparisons and a
k-nearest neighbor (k-NN) classifier for others, here
QDA was used for all comparisons in light of the low-
dimensionality. For higher dimensions, where p > n, a
method like k-NN would be required.
As mentioned above, there is only one way to do

LOOCV with a given sample. On the other hand, BCV
as defined by Fu et al. [10] uses an average of the
LOOCV prediction errors over B bootstrap (re)samples.
Hence, BCV is based on B × n recomputations
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(retrainings of the classifier) while LOOCV is based on
only n recomputations. For a more extensive comparison,
three approaches were taken here in order to compare
BCV to k-fold CV (henceforward kCV), as summarized in
Table 1.
First, LOOCV was compared to BCV as was done

by Fu and colleagues [10]. These methods are denoted
by kCVn and BCVn, respectively, in Table 1. Second,
n/2-fold CV (leave-two-out CV, denoted kCVn/2) was
done in order to stay as close as possible to LOOCV
(kCVn) while allowing multiple retrainings of the
classifier. To keep the number of recomputations the
same as for BCV, 2 × B repetitions of kCVn/2 were
run (2×B×n/2 = B × n). Also, a version of BCV based on
n/2-fold CV (BCVn/2) was implemented with 2 × B repe-
titions for a head-to-head comparison with kCVn/2
based on the same number, B×n, of total retrainings.
Third, a version of BCV based on 10-fold CV (BCV10)
was implemented and compared to traditional 10-fold
CV (kCV10), where again the number of recomputations
was the same. Here, both BCV10 and kCV10 were based
on B×n/10 repetitions for a total of B×n retrainings.
BCVn/2 and BCV10 were defined like kCVn/2 and
kCV10, except that in each repetition, a bootstrap
sample of size n was randomly divided into n/2 or
10 subsets, while with kCVn/2 and kCV10 the original
n observations were randomly re-divided into n/2 or
10 subsets (these are the same when n = 20). In this
study, B = 50 [9,10].
The simulation study was implemented as follows.

For each combination of p and Δ, a “super-population”
of size 10000 was drawn, 5000 from N(μ1,Σ 1) and
5000 from N(μ2, Σ 2). Then, for each value of n, N = 1000
simulations were run. For each simulation run, a stratified
random sample of size n was drawn without
replacement, n/2 observations from the 5000 N(μ1, Σ 1)
population values and n/2 observations from the 5000 N
(μ2, Σ 2) population values. The QDA classifier was trained
on the sample. Following Molinaro et al. [7], the true con-
ditional error rate for each classifier was calculated as the
proportion of times the trained classifier misclassified the
remaining 10000-n members of the super-population. Then
kCVn, BCVn, kCVn/2, BCVn/2, kCV10 and BCV10 were
each conducted on the sample to estimate the true condi-
tional error. Their MSE, variance and bias were calculated
from expression (1).
For p=1 it was found that at least four distinct obser-

vations were needed in each class to avoid numerical
problems in training the QDA classifier for the BCVn/2
and BCV10 methods. Hence, this requirement was
imposed on all three BCV methods. (Fu et al., [10],
required at least three distinct observations in each class
for the original BCV method, BCVn.) In addition, for
p=5, the BCV methods were implemented with stratified
sampling, i.e., n/2 bootstrap samples from each class,
along with a requirement of at least eight distinct obser-
vations in each class.
The mean and standard deviation of the MSE, vari-

ance, and bias, as well as the MSB over the N = 1000
simulations were calculated for BCV and kCV. With R
representing the number of repetitions of each method
(Table 1, column 2), the means are defined by

―
MSE ¼ 1=Nð Þ

XN
i¼1

1=Rð Þ
XR
r¼1

ê ri � eið Þ2; ð5Þ

―
VAR ¼ 1=Nð Þ

XN
i¼1

1=Rð Þ
XR
r¼1

ê ri � �eRið Þ2; ð6Þ

―
BIAS ¼ 1=Nð Þ

XN
i¼1

�eRi � eið Þ; ð7Þ

―
BIAS2 ¼ 1=Nð Þ

XN
i¼1

�eRi � eið Þ2: ð8Þ

The three standard deviations for each method are
defined by

SDðMSEÞ ¼
h
ð1=fN � 1gÞ

XN
i¼1

n
ð1=RÞ

XR
R¼1

ê ri � eiÞ2
� �―MSE

o2
i1=2

ð9Þ

SDðVARÞ ¼
h
ð1=fN � 1gÞ

XN
i¼1

n
ð1=RÞ

XR
R¼1

ê ri � �eRið Þ2 �―VAR
o2i1=2

ð10Þ

SD BIASð Þ ¼
h
1= N � 1f gð Þ

XN
i¼1

n
�eRi � eið Þ �―BIAS

o2i1=2

ð11Þ

The means and standard deviations defined in (5) – (11)
were used to compare the performance of the methods.
R Version 2.6.0 was used to conduct the Monte Carlo

simulation study, with an independently written SAS/
IML program being used to verify the mean calculations
for the equal-variance case with p=1 [13,14].

Results and discussion
The results of the simulation study are summarized in
Tables 2 and 3 and Figures 1, 2, 3, 4. Table 2 is the same
case as covered in Table 1 of Fu and colleagues [10]. For
brevity, all configuration results are discussed but only a
limited portion of the results are displayed in Tables 2
and 3 (i.e., cases for LOOCV, BCVn, kCV10, BCV10
where Σ1 = Σ2 = Ι(p) ). The interested reader is referred to



Table 2 Simulation results for p = 1, Σ1 = Σ2 = I(1), N = 1000

Method n Δ ē a ēN
―

MSE SD(MSE)
―

VAR SD(VAR) MSB
―

BIAS SD(BIAS)

LOOCV 50 1 0.30907 0.31124 0.00446 0.00635 0 0 0.00446 0.00217 0.06677

50 3 0.07185 0.07114 0.00130 0.00184 0 0 0.00130 −0.00071 0.03603

BCVn 50 1 0.30907 0.30791 0.00942 0.00582 0.00543 0.00204 0.00399 −0.00116 0.06317

50 3 0.07185 0.06781 0.00256 0.00180 0.00143 0.00074 0.00113 −0.00404 0.03340

LOOCV 100 1 0.30483 0.30579 0.00191 0.00281 0 0 0.00191 0.00096 0.04366

100 3 0.07020 0.06987 0.00075 0.00114 0 0 0.00075 −0.00033 0.02741

BCVn 100 1 0.30483 0.30469 0.00419 0.00289 0.00243 0.00074 0.00175 −0.00013 0.04188

100 3 0.07020 0.06829 0.00139 0.00109 0.00070 0.00030 0.00069 −0.00190 0.02621

kCV10 50 1 0.30907 0.31241 0.00461 0.00625 0.00029 0.00023 0.00432 0.00334 0.06568

50 3 0.07185 0.07123 0.00131 0.00180 0.00008 0.00008 0.00123 −0.00062 0.03511

BCV10 50 1 0.30907 0.30906 0.00915 0.00526 0.00536 0.00145 0.00379 −0.00001 0.06163

50 3 0.07185 0.06812 0.00252 0.00173 0.00141 0.00067 0.00111 −0.00373 0.03306

kCV10 100 1 0.30483 0.30642 0.00195 0.00280 0.00009 0.00005 0.00186 0.00160 0.04307

100 3 0.07020 0.06993 0.00075 0.00108 0.00003 0.00002 0.00072 −0.00026 0.02683

BCV10 100 1 0.30483 0.30511 0.00411 0.00254 0.00241 0.00038 0.00170 0.00028 0.04125

100 3 0.07020 0.06848 0.00136 0.00101 0.00069 0.00025 0.00067 −0.00171 0.02577

a�e ¼ 1=Nð Þ
XN

i¼1
ei ; �eN ¼ 1=Nð Þ

XN

i¼1
�eRi ; MSB ¼ 1=Nð Þ

XN

i¼1
�eRi � eið Þ2.
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the supplementary material section for the tables in their
entirety and for the cases where Σ1 = Ι(p) and Σ2 = 2Ι(p).

Beginning with the MSB (i.e.,
―

BIAS2), which is the cri-
terion used by Efron and Tibshirani [9], Molinaro et al.
[7], Fu et al. [10] and Kim [11] to compare estimators of
the true conditional classification error, it is shown in
Table 2 that for p = 1 the MSB of kCV is always larger
than that of BCV. In terms of the components of the
MSB, this is due to a larger SD(BIAS) for kCV than
BCV, although the

―

BIAS of BCV tends to be negative
Table 3 Simulation results for p = 5, Σ1 = Σ2 = Ι(5), N = 1000

Method n Δ ē a ēN
―

MSE SD(MS

LOOCV 50 1 0.38308 0.38848 0.00688 0.009

50 3 0.09741 0.10052 0.00227 0.003

BCVn 50 1 0.38308 0.27058 0.02073 0.010

50 3 0.09741 0.07686 0.00305 0.001

LOOCV 100 1 0.35366 0.35164 0.00291 0.004

100 3 0.07962 0.07906 0.00080 0.001

BCVn 100 1 0.35366 0.29312 0.00799 0.004

100 3 0.07962 0.06781 0.00141 0.000

kCV10 50 1 0.38308 0.39236 0.00711 0.008

50 3 0.09741 0.10438 0.00252 0.003

BCV10 50 1 0.38308 0.27549 0.01950 0.009

50 3 0.09741 0.08135 0.00302 0.001

kCV10 100 1 0.35366 0.35585 0.00299 0.003

100 3 0.07962 0.08055 0.00085 0.001

BCV10 100 1 0.35366 0.29629 0.00756 0.004

100 3 0.07962 0.06942 0.00136 0.000

a�e ¼ 1=Nð Þ
XN

i¼1
ei ; �eN ¼ 1=Nð Þ

XN

i¼1
�eRi ; MSB ¼ 1=Nð Þ

XN

i¼1
�eRi � eið Þ2.
and is generally larger than that of kCV in absolute value
for Δ = 3. These results are consistent for configurations
with n=20 (see supplementary material, Additional file 1:
Table S1 and Additional file 2: Table S2). For p = 5, the
same pattern is shown in Table 3 for the MSB for Δ = 3,
but the reverse is shown for Δ = 1, i.e., the MSB is larger
for BCV, where the negative

―

BIAS of BCV is very pro-
nounced. Thus, the variation of BCV, as measured by
SD(BIAS) is indeed reduced compared to kCV, although
a price is paid in terms of increased

―

BIAS . Again, the
E)
―

VAR SD(VAR) MSB
―

BIAS SD(BIAS)

96 0 0 0.00688 0.00540 0.08281

38 0 0 0.00227 0.00311 0.04760

27 0.00587 0.00162 0.01486 −0.11250 0.04693

67 0.00160 0.00082 0.00145 −0.02055 0.03208

19 0 0 0.00291 −0.00202 0.05390

10 0 0 0.00080 −0.00056 0.02822

54 0.00308 0.00074 0.00491 −0.06054 0.03529

80 0.00075 0.00031 0.00066 −0.01180 0.02278

60 0.00126 0.00036 0.00585 0.00929 0.07598

27 0.00039 0.00019 0.00213 0.00697 0.04568

68 0.00579 0.00113 0.01371 −0.10758 0.04622

63 0.00173 0.00078 0.00128 −0.01606 0.03202

64 0.00049 0.00012 0.00251 0.00219 0.05003

09 0.00010 0.00005 0.00075 0.00094 0.02735

27 0.00305 0.00041 0.00451 −0.05737 0.03488

72 0.00076 0.00026 0.00060 −0.01020 0.02239
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results for equal and unequal covariance matrices are
consistent (see supplementary material, Additional file 3:
Table S3 and Additional file 4: Table S4).
The individual values of (ēRi − ei) that contribute to

―

BIAS
and SD(BIAS) for two different simulation conditions are
plotted in Figures 1 and 2 for each of N = 1000 simulations.
Figures 1a and 1b are for BCV and kCV, respectively, for
p=1, n=50 and Δ = 1, from Table 2. Figures 2a and 2b rep-
resent corresponding plots for p=5 from Table 3. Figure 1
represents one of the best configurations for BCV com-
pared to kCV while Figure 2 represents one of the worst
scenarios. As the figures show, the individual estimates of
the true conditional error, ei, are extremely variable across
the 1000 simulations. The variance of BCV is indeed less
than that of kCV, but the negative bias of BCV can be sub-
stantial as the dimensionality of the feature space increases.
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and Σ1 = Σ2 = I.
Why there is large variation in general
The large variation shown in Figures 1 and 2, along with
the correspondingly large values of SD(BIAS) in Tables 2
and 3 for both kCV and BCV, are consistent with results
of Efron and Tibshirani ([9], Tables Three to eight on
pages 554-556) and Molinaro et al. ([7], Tables One and
Four on pages 3304 and 3305), both of whom showed
large standard deviations and, in some cases, large values
of bias, for the classifiers and error estimation methods
they studied. In fact, Efron and Tibshirani [9] noted that
none of the methods correlates very well with the condi-
tional error rate on a sample-by-sample basis. This lack
of correlation in the present investigation, reflected by
the large values of SD(BIAS), appears to be partly due to
a problem with the way the true classification error is
defined and estimated. As mentioned in the
kCV10
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SD(BIAS) for each of N = 1000 simulations with p=5, n=50,Δ = 1,
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Figure 3 The mean relative bias for each of the twenty simulation configurations in Tables 2 and 3 and in Additional file 1: Table S1,
Additional file 2: Table S2, Additional file 3: Table S3 and Additional file 4: Table S4, where each point is the average of N = 1000

values,
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Introduction, the problem appears to be that the quan-
tity purportedly being estimated, the true misclassifica-
tion error of the trained classifier conditional on the
training set, is defined as a single fixed quantity for a
given set of data.

Possible alternative approach for estimation of SD(BIAS)
It does not seem logical to take the misclassification
error as a fixed quantity and then use cross-validation to
estimate it, because the true conditional error for any
classifier trained using only part of the data within a
cross-validation is not the same as the true conditional
error of the classifier trained on the complete set of data,
i.e., the quantity to be estimated. This leads to an
inflated estimate of SD(BIAS). Although it might prove
to be computationally prohibitive, it seems more logical
to define and calculate a true conditional error for each
training set within each of the k partitions of a cross-val-
idation, say eijr (i = 1,. . .,N;j = 1,. . .,k;r = 1,. . .,R) and
then obtain a corresponding estimate, êijr . Each differ-
ence, êijr � eijr , would represent an estimate of the
expected bias in estimating a true conditional error so
defined. So, even though the conditional error itself
would change from partition to partition, one could still
obtain a sample of estimates of the bias in estimating
such an error. The variation among these bias estimates
would be expected to be less than that represented by
SD(BIAS) in Tables 2 and 3 and reflected in Figures 1
and 2 with the customary method, because a source of
variation heretofore not taken into account would be
eliminated. This “more logical” approach provides
insight into how the variation in the bias is artificially
inflated when one attempts to use cross-validation to
estimate a single, fixed “true conditional error” of a
trained classifier. Attempting to estimate the elusive true
conditional error is not recommended. Instead, a classi-
fier’s generalization error in predicting future observa-
tions is the error that should be estimated, and is the
error for which cross-validation is well-suited.

Average bias estimates Are representative
On the other hand, even though individual-run biases
are likely overstated because of the inflated variance
when defined in terms of a fixed true conditional error,
nevertheless, the average bias,

―

BIAS , calculated in the
customary way ought to be representative of the average
bias that would be reflected if the “more logical” method
described above were used. For this reason, plots like
Figure 3 of Efron and Tibshirani [9] of the average rela-
tive bias in terms of the expected true error are useful
for comparing error estimation methods, even though
the individual true conditional errors defined the usual
way may not be estimated with precision. Figures 3a to
3d mimic Figure 3 of Efron and Tibshirani [9]. The plot-
ted points are values of

―

BIAS=�e; which is equivalent
to (ēN − ē)/ē, for each of the twenty simulation
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Figure 4 The mean relative bias expressed as
―

BIAS==SDðBIASÞð Þ for each of the twenty simulation configurations in Tables 2 and 3 and in
Additional file 1: Table S1, Additional file 2: Table S2, Additional file 3: Table S3 and Additional file 4: Table S4
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configurations in Tables 2 and 3 and supplementary ma-
terial Additional file 1: Table S1, Additional file 2: Table
S2, Additional file 3: Table S3 and Additional file 4:
Table S4, where each point is the average of N = 1000
values like those plotted in Figures 1 and 2. For example,
the open triangles plotted in Figure 3a and 3c corres-
pond to Figures 1 and 2, respectively. These figures show
a consistent, but modest, positive relative bias for kCV
and a consistent, sometimes large, negative relative bias
for BCV. In particular as shown in Figure 3, as the
sample size increases, differences in relative bias be-
tween kCV and BCV decrease for both p=1 and p=5.
This agrees with the result of a numerical experiment by
Davison and Hall [15] with p=3 and n=(20, 40, 80) in a
comparison of bootstrap and LOOCV estimates of dis-
crimination error. Even so, the relative bias of BCV in
Figure 3 for p=5 is still substantially negative when
n=100. For p=3, Davison and Hall [15] observed a simi-
lar decrease in disagreement between the methods
as the distance between populations increased. For p=5,
Figure 3 also shows that effect going from Δ = 1 to Δ = 3.
Impact of BCV being negatively biased
The negative bias of BCV, i.e., underestimation of the
true error, can be explained by the fact that the probabil-
ity that a test sample appears in the training set is 1-(1-1/
n)n ≈ 0.632. Borrowing the words of Efron and Tibshirani
[9] to describe this phenomenon, BCV “uses training
samples that are too close to the test points, leading to
potential underestimation of the error rate.” It is import-
ant to note that the bootstrap methods of Efron and Tib-
shirani do not include test points in the training set.
The substantial negative bias of BCV means that BCV

tends to underestimate the classification error on aver-
age. While the direction and magnitude of the bias of a
cross-validation method might not matter a great deal if
the performances of several competitive classification
procedures are being compared, it definitely matters
if the error rate of a specific classification procedure
is of interest. Substantial negative bias, translating to
underestimation of the true misclassification error, would
be a serious concern. To expound on the sizable negative
bias of BCV, Figure 4 shows plots of

―
BIAS=SD BIASð Þ for

the same simulations as Figure 3. Applying the rule of
thumb of Efron and Tibshirani [16] to bias estimation,
the horizontal reference lines at 0.25 in each panel repre-
sent thresholds of acceptable relative bias. For p=1, both
kCV and BCV satisfy the threshold, except for one
instance where BCV exceeds the threshold slightly when
n=20. However, for p=5, BCV always exceeds the threshold
while kCV is always below the threshold. When Δ = 1, all
four BCV relative biases exceed 1, i.e., they are more than
four times the 0.25 threshold. Alternatively, a relative-bias
plot could be constructed using averages of the components

of the MSE by plotting the ratio―BIAS=
ffiffiffiffiffiffiffiffiffi―
VAR

p
. This would

show the same general result as Figure 4, but would be less
pronounced because of the propensity for increased

―
VAR of

BCV compared to kCV for estimating individual e(ei = 1,. . .,
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N) (Tables 2, 3) due to the positive covariance induced by
with-replacement sampling with the BCVmethod.

Assessing reproducibility of error estimates
Because both BCV and kCV can be repeated multiple
times, as they have been in the present simulation study,
they can give information on the reproducibility among
repeated cross-validations. The values of―MSE, SD(MSE),
―VAR and SD(VAR) in Tables 2 and 3 provide such infor-
mation on the reproducibility of BCV and kCV from
CV-run to CV-run. When kCV is used in practice,
where there is only a single set of training data, either

VAR or
ffiffiffiffiffiffiffiffiffiffi
VAR

p
is the commonly reported value along

with the average error, �eR ¼
XR

r¼1
ê r=N , or its comple-

ment, the average accuracy [1,5]. Because the purpose of
cross-validation is to assess a classifier’s ability to
generalize outside the training set, the variation from
CV-run to CV-run is an important measure of
performance. Note that even though the present prob-
lem may be ill-defined such that the average biases
for individual simulation runs are exaggerated, the
values of

―

VAR are unaffected and correctly reflect
the degree of reproducibility of the generalization
error estimate.

Fair comparison requires equalization of number
of trainings
In this study, there were 100 to 500 repetitions of each
method (1000 to 5000 retrainings) in order to put BCV
and kCV on the same footing with respect to the
number of retrainings of classifiers [9,11]. This is many
more repetitions than the ten or twenty repetitions
normally done with kCV10. Although nowadays CPU time
is relatively inexpensive, 100 to 500 repetitions may be ex-
cessive. On the other hand, although the BT632 method of
Efron and Tibshirani [9] did not perform as well overall as
BCV in the study of Fu et al. [10], it did show competitive
behavior in some cases. It seems likely that, if the number
of retrainings were equalized while employing the econom-
ical algorithm of Efron and Tibshirani [9], the competitive-
ness of BT632 evaluated in terms of average squared bias
and its component parts would improve. As Kim [11]
Table 4 Results for the microarray example

Method n ē a ēN
―

MSE SD(MSE)

LOOCV 50 0.2363 0.2404 0.0056 0.0077

BCVn 50 0.2363 0.1726 0.0104 0.0070

kCVn/2 50 0.2363 0.2418 0.0056 0.0074

BCVn/2 50 0.2363 0.1736 0.0102 0.0069

kCV10 50 0.2363 0.2454 0.0057 0.0070

BCV10 50 0.2363 0.1772 0.0098 0.0066

a�e ¼ 1=Nð Þ
XN

i¼1
ei ; �eN ¼ 1=Nð Þ

XN

i¼1
�eRi ; MSB ¼ 1=Nð Þ

XN

i¼1
�eRi � eið Þ2.
reported recently, the BT632+ method based on 50
bootstraps performed better than 5 repetitions of
kCV10 in terms of average squared bias for a pruned
tree classifier, although it, too, had a downward bias.
Microarray example
We evaluated the performance of kCV and BCV in pre-
dicting prognosis based on the gene expression profiles
of breast cancer patients previously reported by van’t
Veer and colleagues [17,18]. The van de Vijver et al. [17]
study consisted of 295 patients with stage I or II breast
cancer, and patients’ prognosis and gene expression data
are publicly available at http://microarray-pubs.stanford.
edu/would_NKI/explore.html. While the dataset con-
tained a 70-gene prognosis profile, we chose to perform
our evaluation of kCV and BCV using only 5 genes
based on a simple gene selection procedure using a t-
statistic with adjusted p-values [19]. In the study of Fu
et al. [10], the authors chose 5 genes that were most
highly correlated with the patient’s prognosis. As noted
in Fu et al. [10], such gene selection procedure is prone
to bias. However, the purpose of this evaluation is not
gene selection. Furthermore, in practice only a small
subset of genes is often of clinical interest.
Following the steps taken in Fu et al. [10] for compari-

son, the subsequent steps were carried out: (1) take a
random sample S of size n = 50 with half of the patients
having good prognosis and half having poor prognosis,
(2) train a QDA classifier based on the random sample S
and compute its true conditional error rate based on the
proportion of times the trained classifier misclassified
the remaining samples, (3) for each random sample S,
estimate the true conditional error for LOOCV, CVn/2,
CV10, BCV, BCVn/2, and BCV10, (4) calculate their
MSE, variance and bias, (5) repeat over 1000 simulation
runs and calculate the mean and standard deviation of
the MSE, variance, bias and MSB.
The results presented in Table 4 and Figure 5 are con-

sistent with our simulation results in Table 3 for Δ = 1.
More specifically, the MSB is larger for BCV and the
negative

―

BIAS of BCV is evident. Figure 5 certainly
demonstrates that BCV is less variable, but as previously
―

VAR SD(VAR) MSB
―

BIAS SD(BIAS)

0 0 0.0056 0.0042 0.0746

0.0037 0.0013 0.0067 −0.0636 0.0517

0.0003 0.0001 0.0053 0.0055 0.0729

0.0037 0.0011 0.0065 −0.0627 0.0511

0.0007 0.0003 0.0050 0.0091 0.0704

0.0037 0.0010 0.0061 −0.0591 0.0508

http://microarray-pubs.stanford.edu/would_NKI/explore.html
http://microarray-pubs.stanford.edu/would_NKI/explore.html
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noted, this advantage is negated by the considerable bias
and overall MSB. Furthermore, given this microarray ex-
ample data, the

―

MSE and
―

VAR for the BCV methods
are higher than the corresponding quantities for the
kCV counterpart.

Conclusions
Cross-validation is a widely accepted and sound prac-
tice for estimating the generalization error of a classi-
fier. Of course, for small data sets with high-
dimensional predictors, especially for p > n, the vari-
ation among cross-validated error estimates can be
large. For methods like BCV and kCV that can be
replicated, it is generally accepted that cross-validation
should be repeated 10 to 30 times to account for vari-
ation. However, using cross-validation to estimate the
fixed misclassification error of a trained classifier con-
ditional on the training set is problematic and should
not be attempted. Although Monte Carlo simulation
of this estimation exercise can correctly represent the
average bias, it will overstate the variance of the bias.
For the low-dimensional conditions simulated in the
present study, kCV showed a consistent, but modest,
positive bias. Conversely, BCV showed a consistent,
and sometimes substantial, negative bias, which was
much more pronounced for p=5 than for p=1. In-
creasing the complexity of the simulation to
incorporate higher dimensions would only magnify the
effect. The bias of BCV is too high a price to pay for
its reduced variance; k-fold CV is recommended.

Additional files

Additional file 1: Table S1. Simulation results for p = 1, Σ1 = Σ2 = I(1),
N = 1000.
Additional file 2: Table S2. Simulation results for p = 5, Σ1 = Σ2 = Ι(5),
N = 1000.

Additional file 3: Table S3. Simulation results for p = 1, Σ1 = Ι(1),
Σ2 = 2Ι(1), N = 1000.

Additional file 4: Table S4. Simulation results for p = 5, Σ1 = Ι(5),
Σ2 = 2Ι(5), N = 1000.
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