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Abstract

Background: Colonization of the nasopharynx by Streptococcus pneumoniae is considered a prerequisite for
pneumococcal infections such as pneumonia and otitis media. Probiotic bacteria can influence disease outcomes
through various mechanisms, including inhibition of pathogen colonization. Here, we examine the effect of the
probiotic Lactobacillus rhamnosus GG (LGG) on S. pneumoniae colonization of human epithelial cells using an

in vitro model. We investigated the effects of LGG administered before, at the same time as, or after the addition of
S. pneumoniae on the adherence of four pneumococcal isolates.

Results: LGG significantly inhibited the adherence of all the pneumococcal isolates tested. The magnitude of
inhibition varied with LGG dose, time of administration, and the pneumococcal isolate used. Inhibition was most
effective when a higher dose of LGG was administered prior to establishment of pneumococcal colonization.
Mechanistic studies showed that LGG binds to epithelial cells but does not affect pneumococcal growth or viability.
Administration of LGG did not lead to any significant changes in host cytokine responses.

Conclusions: These findings demonstrate that LGG can inhibit pneumococcal colonization of human epithelial cells
in vitro and suggest that probiotics could be used clinically to prevent the establishment of pneumococcal carriage.
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Background

Streptococcus pneumoniae (the pneumococcus) is a Gram-
positive bacterium that causes serious diseases such as
pneumonia, meningitis and acute otitis media. Pneumo-
coccal diseases are a leading cause of childhood morbidity
and mortality worldwide, affecting more than three million
children under the age of five, and causing an estimated
826,000 deaths in this age group each year [1]. The disease
burden is especially high in developing countries [1].
Pneumococcal colonization of the nasopharynx is often
asymptomatic, occurs early in life, and is considered a
prerequisite for development of pneumococcal disease

* Correspondence: paullicciardi@mcri.edu.au

Equal contributors

'Pneumococcal Research, Murdoch Childrens Research Institute, Royal
Children’s Hospital, Parkville, VIC, Australia

“Allergy and Immune Disorders, Murdoch Childrens Research Institute, Royal
Children’s Hospital, Parkville, VIC, Australia

Full list of author information is available at the end of the article

( BiolMed Central

[2]. In high-risk populations, pneumococci can colonize
the nasopharynx within the first few weeks of life [3].

Pneumococcal conjugate vaccines (PCV) provide pro-
tection against the serotypes most prevalent in pediatric
invasive disease [4]. However, developing countries have
a substantial burden of invasive disease from non-vaccine
serotypes, and serotype replacement is likely to be more
important in these settings [5]. In addition, access to
these vaccines is limited in resource-poor countries and
colonization often occurs before the first dose of PCV,
typically given at two months of age. Early life strategies
to reduce or prevent colonization and carriage are
urgently needed, particularly in populations with high
rates of pneumococcal disease.

Probiotics are defined as “live microorganisms which
when administered in adequate amounts confer a health
benefit on the host” [6]. They can influence host micro-
biota and play a role in disease prevention [7]. Probiotics
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such as Lactobacillus and Bifidobacterium species are
widely used in food products or as food supplements
and have been extensively studied in the gastrointestinal
tract [8]. Probiotics are believed to benefit the host
through several mechanisms including i) inhibition of
colonization by pathogenic microorganisms [9], ii) modu-
lation of host immune responses [10] and iii) improve-
ment of epithelial cell barrier integrity [11].

Although less is known about the effects of probiotics
in the respiratory tract, evidence that they could be used
to prevent disease in this context is mounting [12,13].
For example, lactobacilli have been shown to protect
against pneumococcal infection in mice [14-16], and in-
hibit the invasion of group A streptococci in vitro [17].
In humans, administration of a probiotic drink containing
Lactobacillus rhamnosus GG (LGQ), Bifidobacterium
lactis sp B420, Lactobacillus acidophilus 145, and
Streptococcus thermophilus reduced nasal colonization
by Gram-positive pathogens in adults [18]. These studies
suggest that some probiotic species can reduce pneumo-
coccal colonization, potentially serving as a safe and cost-
effective complementary strategy to immunization. Here
we describe the effects of the probiotic LGG on pneumo-
coccal colonization using an in vitro adherence assay.

Results

Optimization of the pneumococcal adherence assay

As pneumococcal isolates can vary substantially in growth
and adherence properties, we selected five pneumococcal
isolates representing four serotypes with different clinical
characteristics and origins (Table 1). All five isolates had
similar growth kinetics: the mid-log phase was determined
to be at five hours post-inoculation and stationary phase
was reached between 12 to 15 hours post-inoculation
(data not shown). The optimal multiplicity of infection
(MOI), defined as the maximum dose of pneumococci
that could be added without inducing cytopathic effects,
was determined to be ten pneumococci per epithelial cell
(data not shown).

Isolates were tested for their ability to adhere to and
invade epithelial cell monolayers. After three hours incu-
bation, adherence ranged from less than 1% (PMP41) to
approximately 48% (PMP558) of the inoculum (Table 2).

Table 1 Pneumococcal isolates used in this study

Isolate Serotype* Clinical category Origin
PMP843 19F Colonising USA
PMP558 6B Colonising Fiji
PMP812 5 Invasive Bangladesh
PMP6 (ATCC 6305) 5 ND ATCC
PMP41 3 Colonising Fiji

* by the Quellung reaction.
ND: Not defined.
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Table 2 Adherence and invasion of pneumococcal
isolates

Isolate Serotype % Adherence % Invasion

Mid-log Stationary Mid-log Stationary
PMP843 19 F 234 +£249 193+ 146 <001 <0.01
PMP558 6B 481 +£246 32+21* 001 +£0009 <001
PMP812 5 438 +193 150+203 09=+16 01+02
PMP6 5 31+13 1.1+£02 0.01 £ 0.007 <0.01
PMP41 3 003+003 06£10 <0.01 <0.01

Mean and standard deviation of adherence and invasion of pneumococcal
isolates at mid-log and stationary growth phase, expressed as percentage of
the inocula. n>3 for all data except PMP6 in stationary phase (n=2). *
Significant difference between mid-log and stationary phase (P = 0.016).

Adherence was variable, particularly for PMP843 at
the mid-log phase (234% + 249%, n=8). Due to the
low adherence of PMP41, this isolate was not included
in subsequent assays. No significant differences were
found between the adherence of mid-log and station-
ary phase isolates, except for PMP558 (P = 0.016), and
so the mid-log phase was selected for use in the ad-
herence assay. Invasion levels were less than 1% for all
isolates (Table 2), indicating that the vast majority of
cell-associated pneumococci recovered were present on
the cell surface.

An examination of pneumococcal adherence kinetics
revealed that adherence occurred rapidly, with more than
10* CFU/ml adherent bacteria detected by eight minutes
after inoculation for all isolates examined (Figure 1). The
rate of adherence slowed after 60 minutes; at this point
adherence had reached a mean of 86.0% (95%CI: 84.9,
87.0) of the maximum for the four isolates, using log
transformed data.

Effect of LGG on pneumococcal adherence

To investigate the effect of LGG on pneumococcal
adherence, we tested a high dose (4.8 x 10" CFU; 95%CI:
3.9 x 107, 5.8 x 10”) and low dose (4.8 x 10° CFU; 95%CI:
3.9 x 10°% 5.8 x 10° CFU) of LGG, corresponding to a 66:1
and 6.6:1 ratio of LGG: pneumococci, respectively. LGG
was added to the cells at one hour before (pre-addition),
with (co-addition), or one hour after (post-addition) the
pneumococci. Heparin, which blocks pneumococcal ad-
herence to cell surface glycosylaminoglycans [19], was
used as a positive control. The high dose of LGG signifi-
cantly inhibited adherence of three pneumococcal iso-
lates (PMP843, PMP558, and PMP6) in the pre-addition
assay (Figure 2A), all four isolates in the co-addition
assay (Figure 2B), and two isolates (PMP558 and PMP6)
in the post-addition assay (Figure 2C). The inhibitory
effect of the higher dose of LGG was greater when ad-
ministered before or at the same time as pneumococci:
when data for all four isolates were pooled, % adherence
was 46.5 + 24.1 for the pre-addition assay, 35.4 + 17.5
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Figure 1 Time-course of pneumococcal adherence to epithelial
cells. Cells were inoculated with 7.2 x 10° CFU (95%Cl 5.8 x 10°,
8.7 x 10° CFU) and the number of adherent pneumococci measured
over three hours. Mean =+ SD for four pneumococcal isolates are
depicted (n=2).

for co-addition, and 77.0 + 15.2 for post-addition
(P<0.0001). The low dose of LGG only significantly
inhibited adherence of PMP843 in the pre-addition assay
(Figure 2A) and PMP558 in the post-addition assay
(Figure 2C).

Mechanistic studies

To examine the mechanism(s) by which LGG inhibits
pneumococcal adherence, we tested whether LGG ad-
heres to epithelial cells and may potentially compete for
binding. Following a three hour incubation with a 3.8 x
107(95%CI: 1.5 x 107, 6.1 x 10) inoculum, 11.7 + 1.4%
of LGG adhered to the cells. The adherence of LGG was
not affected by the presence of heparin (12.9 + 0.6%;
P>0.05). Co-culturing pneumococci for three hours with
high or low doses of LGG in the absence of epithelial
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cells had no effect on pneumococcal growth (data not
shown). To determine if soluble compounds present in
the assay media could affect pneumococcal adherence,
assay media was collected from epithelial cells incubated
with LGG alone or LGG with pneumococci for three
hours and filtered to remove bacteria, cells and debris.
These cell-free supernatants did not significantly inhibit
pneumococcal adherence in subsequent assays (Table 3).
To investigate if LGG could inhibit pneumococcal ad-
herence by modulating the host cytokine response, we
measured a panel of cytokines and chemokines (IL-1,
TNF-a, IL-6, and IL-8) in the cell-culture supernatants
of the pre-addition adherence assay of PMP6 and PMP843.
Only IL-6 and IL-8 were present in detectable levels, and
neither was affected by the presence of LGG (Figure 3).

Discussion

To assess whether the probiotic LGG could prevent
colonization of S. pneumoniae in vitro, we tested its
effect on the adherence of four pneumococcal isolates
using an in vitro adherence assay. A fifth isolate, PMP41
(a serotype 3 strain), was excluded from the study due
to low adherence. This was not unexpected given that
serotype 3 is heavily encapsulated, which can result in
low adherence [20]. Results demonstrated that LGG in-
hibits pneumococcal adherence in vitro. Inhibition was
most effective when LGG was added at a dose approxi-
mately 60-fold higher than pneumococci before pneumo-
coccal adherence has been established.

Mechanistic studies demonstrated that LGG binds
to epithelial cells, suggesting that LGG could prevent
pneumococcal adherence either through steric hindrance
or competition for binding sites. Heparin did not affect
LGG adherence to epithelial cells, indicating that LGG
does not compete for binding to glycosylaminoglycans.

>
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Figure 2 Effect of LGG on pneumococcal adherence to epithelial cells. Pneumococcal adherence was determined when incubated with
medium alone (Pnc), or with medium containing 100 U/ml heparin (Heparin), or ~5 x 10° CFU LGG (LGG low), or ~5 x 107 CFU LGG (LGG high)
added one hour before (A), concurrently (B), or one hour after adding pneumococci (C). One-way ANOVA revealed significant differences in
adherence levels (P < 0.05) for all isolates except PMP812 (serotype 5) in the post-addition assay. For each isolate, Bonferroni's post-test was used
to compare heparin, LGG low, and LGG high to Pnc: *, P < 0.001; #, P < 0.05. Data are mean + SD (n=3).
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Table 3 Effect of culture supernatants on pneumococcal
adherence

Isolate Serotype Supernatants*

LGG LGG + Pnc
PMP843 19F 1034 + 10.3% 858 £ 1.6%
PMP558 6B 794 + 26.5% 95.5 £ 12.0%
PMP812 5 127.6 + 40.7% 140.1 + 25.6%
PMP6 5 69.0 + 43.0% 1781 £ 26.9%

* Culture supernatants were obtained from wells in the cell adhesion assay
that contained epithelial cells incubated with LGG alone (LGG), or together
with pneumococci isolate (LGG + Pnc). Supernatants were filtered and added
to wells in a separate adherence assay to measure their effect on the
adherence of the corresponding pneumococcal isolate. Data were normalized
to control (pneumococcal adherence when no supernatants added).

n=2, P>0.05.

However, LGG could compete for binding to other
molecules such as fibronectin and collagen, as both S.
pneumoniae and Lactobacillus species have been shown
to bind to these molecules [21-24]. Some probiotics
are known to produce secreted compounds with anti-
bacterial activity on other species [25,26]. Co-culture
experiments indicated that LGG does not have any
direct effect on pneumococcal growth or viability, nor
did secreted products present in culture media impact
pneumococcal growth or adherence.

Several studies have reported increased secretion of
inflammatory mediators IL-6 and IL-8 following expos-
ure to pneumococci, both in vitro and in vivo [27-30].
LGG can modulate host cell production of IL-6 [31,32]
and IL-8 [33,34] following exposure to pathogens or
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microbial antigens, such as flagellin, both in vivo and
in vitro. Therefore, we hypothesized that exposure to
LGG would reduce IL-6 and IL-8 production by epithe-
lial cells. However, S. pneumoniae did not increase IL-8
or IL-6 secretion by epithelial cells, and other inflamma-
tory cytokines and chemokines were undetectable. These
data suggest that the inhibition of S. pneumoniae adher-
ence to epithelial cells in this study was not due to LGG
modulation of IL-6 or IL-8 production by epithelial cells.
The lack of effect on cytokine secretion could be due to
the relatively short incubation time or lack of co-
stimulation. Marriott et al. [35] recently demonstrated
that co-culture of pneumococci-primed macrophages,
or supernatants from these cultures, with A549 epithe-
lial cells significantly elevated IL-8 secretion, but not
when pneumococcal bacteria were added to A549 cells
alone, suggesting a critical role for epithelial-macrophage
interactions in this response. Although not statistically sig-
nificant, the reduction in IL-8 levels in the heparin-treated
samples observed in our experiments (Figure 3C and 3D)
is likely due to binding of IL-8 by heparin [36,37].

Clinical studies investigating the impact of LGG
administration on the incidence of otitis media and
respiratory tract infections have reported variable out-
comes. Rautava et al. found that infants who were given
formula supplemented with LGG and Bifidobacterium
lactis had a lower relative risk of otitis media and recur-
rent respiratory infections compared to infants given pla-
cebo [38]. Administration of an LGG-containing probiotic
mixture to women during the last month of pregnancy
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Figure 3 Effect of LGG on epithelial cytokine production. Concentrations of IL-6 and IL-8 in culture supernatants of untreated epithelial cells
(epithelial) or epithelial cells incubated with pneumococci (Pnc), pneumococci with 100 U/ml heparin (Heparin); or~5 x 10° CFU LGG (LGG low),
or ~5 x 10" CFU LGG (LGG high) added one hour prior to the addition of pneumococcal isolates PMP843 (serotype 19 F) (A and €) and PMP6
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and to infants (who were given the probiotic mixture in
combination with galactooligosaccharides) for six months
after birth was associated with a reduction in infant re-
spiratory infections, although no difference in otitis media
was observed [39]. Hosjak et al. found that LGG reduced
the risk of respiratory and gastrointestinal infections in
hospitalized children [40], whereas in children attending
day care, LGG treatment reduced the relative risk of upper
respiratory tract infections but did not affect lower re-
spiratory tract or gastrointestinal tract infections [41]. Few
clinical data on the effects of probiotic treatment on
nasopharyngeal carriage of respiratory pathogens are avail-
able. Oral administration of an LGG-containing probiotic
mixture reduced nasal colonization of Gram-positive path-
ogens in adults [18] but did not affect nasopharyngeal
carriage of S. pneumoniae in otitis-prone children [42].
Furthermore, nasal delivery of Lactobacillus rhamnosus
(strain LB2) did not affect the nasopharyngeal carriage
of S. pneumoniae in children with secretory otitis media
[43]. LGG may provide a more systemic benefit, as
lactobacilli have been shown to possess immunomodu-
latory and vaccine adjuvant properties [44,45]. However,
a probiotic known to colonize the respiratory tract, such
as Streptococcus salivarius [46], may be more likely to
prevent colonization of respiratory pathogens.

Conclusions

The principal finding from our study is that the pro-
biotic LGG can reduce adherence of pneumococci to
epithelial cells in an in vitro model. As LGG was effect-
ive in inhibiting adherence in the pre- and co- addition
assays but less so in the post-addition assay, our data
suggest that it would be more effective as a preventative
strategy. Our findings support the notion that probiotics
can be used as an additional strategy to prevent pneumo-
coccal colonization and hence disease in early life. How-
ever, more research is needed to increase understanding of
the mechanisms of probiotic action and identify what
strategies (type of probiotic, mode, dose, and timing of
administration) may be most effective in clinical settings.

Methods

Bacterial strains, cells and culture conditions

The pneumococcal isolates used in this study are de-
scribed in Table 1. Bacterial isolates were obtained from
our own culture collection or provided with permis-
sion from investigators from previous ethically-approved
research. As no new sample collection or animal experi-
ments were performed as part of this study, no additional
ethics approval was required. Lactobacillus rhamnosus
strain GG (LGG) was obtained from Dicoflor capsules
(Dicofarm, Italy). Pneumococci and LGG were cul-
tured on horse blood agar (HBA; Oxoid, Australia)
and de Man, Rogosa and Sharpe (MRS) agar (Oxoid,
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England) supplemented with 0.5% L-cysteine, respect-
ively. For the adherence assay, pneumococci and LGG
were cultured in Todd-Hewitt broth (Oxoid, England)
supplemented with 0.5% yeast extract (Oxoid, England)
or MRS broth (Oxoid, England), respectively. The hu-
man epithelial cell line CCL-23 was utilized (American
Type Culture Collection, USA). Cells were maintained
in modified Eagle’s medium (MEM) (Thermo Scientific,
USA) supplemented with 10% fetal bovine serum (Thermo
Scientific, Australia), 2 mM L-glutamine and 20 mM 4-(2-
Hydroxyethyl)piperazine-1-ethanesulfonic acid. The con-
centration of fetal bovine serum was reduced to 5% for the
adherence assays. Bacteria and epithelial cells were grown
at 37°C and in 5% CO, for maintenance and all assays.

Adherence assay

Epithelial cells were seeded overnight at 1.5 x 10> cells /ml
in a 24-well tray (Nunc, Denmark). The cells were then
washed with prewarmed PBS and 500 ul MEM added.
S. pneumoniae isolates were grown to mid-log phase,
centrifuged at 1820 x g, and resuspended in 0.85% NaCl
to a concentration of approximately 1 x 10° CFU/ml. A
10 pl inoculum containing 7.2 x 10° CFU (95%CI 5.8 x
10 8.7 x 10° CFU) was added to the epithelial cells.
PBS was used as a negative control and 100 U/ml hep-
arin (Pfizer, Australia) was used as a positive control
for blocking pneumococcal adherence. All assay condi-
tions were performed in duplicate wells. The tray was
centrifuged at 114 x g for five minutes and then incu-
bated for three hours at 37°C, after which the medium
was removed and the cells were gently washed three times
with pre-warmed PBS to remove non cell-associated bac-
teria. Cells were lysed with 0.1% digitonin (Sigma-Aldrich,
Australia) and viable counts of pneumococci were ob-
tained by serial dilution and duplicate plating on HBA.
Pneumococcal adherence was calculated as the percent of
the original inoculum recovered at the end of the assay.
LGG adherence was determined in a similar manner
except that the samples were plated on MRS agar. To
measure pneumococcal invasion, after the three hour
incubation period, the culture medium was removed and
the cells washed and incubated for another two hours
with media containing 5 pg/ml penicillin and 100 pg/ml
gentamicin to kill extracellular bacteria. The antibiotic-
containing medium was then removed, after which the
epithelial cells were lysed with digitonin and the num-
ber of CFU/ml determined. To determine the effect of
LGG on pneumococcal adherence, LGG was added at
4.8 x 10" CFU (95%CL 39 x 10, 58 x 10”) or 4.8 x
10° CFU (95%CTI: 3.9 x 10° 5.8 x 10° CFU) one hour before
(pre-addition), at the same time as (co-addition) or one
hour after (post-addition) pneumococci were added.
Adherence is reported as percentage of adhering bac-
teria normalized to the ‘pneumococcal-only’ control (no
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heparin or LGG). Cell-free culture supernatants were
prepared by collecting assay media after the 3 h incuba-
tion step, removing debris by centrifugation at 1820 x g
for 3 min before passing resultant supernatants through
a 0.22 pm pore size syringe filter (Millipore).

Detection of cytokines and chemokines by multiplex

bead array

Concentrations of IL-1B, TNF-a, IL-6, and IL-8 were de-
termined in epithelial cell culture supernatants follow-
ing a three hour pneumococcal adherence assay using a
multiplex method. Beadmates consisting of Beadlyte anti-
cytokine beads and matched anti-cytokine biotinylated
reporters were used according to the manufacturer’s proto-
col (Millipore, USA). In brief, 25 ul of bead preparation
were incubated with 50 pl of standards, controls and sam-
ples in a 96 well plate overnight with shaking at 4°C. All
culture supernatant samples were assayed undiluted in
duplicate. The plate was washed twice and incubated for
one hour at room temperature with 50 ul/well of detec-
tion antibodies, prior to a 30 minute incubation with
50 ul/well of streptavidin-phycoerythrin reagent. The
plate was then washed twice and beads re-suspended in
100 pl/well sheath fluid before reading on a Luminex 200
Bio-analyzer (Luminex Corporation, USA). The lower limit
of detection for all cytokines/chemokines was 0.13 pg/ml.
Data analysis was performed using the LuminexIS 2.3 soft-
ware (Luminex Corporation, USA).

Statistical analyses

Data were analysed using GraphPad Prism version 5.04
for Windows (GraphPad Software, USA). All data are
presented as mean + standard deviation (SD) unless other-
wise specified. One-way analysis of variance (ANOVA)
with Bonferroni’s post hoc test was used to analyze differ-
ences between groups for all data except comparisons of
mid-log versus stationary growth in adherence and invasion
levels, in which case the Mann—Whitney test was used. All
experiments were performed on at least three separate
occasions, except where otherwise indicated. P < 0.05
was considered significant for all analyses.
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