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Abstract

Background: Rational approaches for Metabolic Engineering (ME) deal with the identification of modifications that
improve the microbes’ production capabilities of target compounds. One of the major challenges created by strain
optimization algorithms used in these ME problems is the interpretation of the changes that lead to a given
overproduction. Often, a single gene knockout induces changes in the fluxes of several reactions, as compared with
the wild-type, and it is therefore difficult to evaluate the physiological differences of the in silico mutant. This is
aggravated by the fact that genome-scale models per se are difficult to visualize, given the high number of
reactions and metabolites involved.

Findings: We introduce a software tool, the Topological Network Analysis for OptFlux (TNA4OptFlux), a plug-in
which adds to the open-source ME platform OptFlux the capability of creating and performing topological analysis
over metabolic networks. One of the tool’s major advantages is the possibility of using these tools in the analysis
and comparison of simulated phenotypes, namely those coming from the results of strain optimization algorithms.
We illustrate the capabilities of the tool by using it to aid the interpretation of two E. coli strains designed in
OptFlux for the overproduction of succinate and glycine.

Conclusions: Besides adding new functionalities to the OptFlux software tool regarding topological analysis,
TNA4OptFlux methods greatly facilitate the interpretation of non-intuitive ME strategies by automating the
comparison between perturbed and non-perturbed metabolic networks. The plug-in is available on the web site
http://www.optflux.org, together with extensive documentation.
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Background
OptFlux [1] is an open-source software platform for Meta-
bolic Engineering (ME) based on the use of stoichiometric
models and constraint-based approaches to metabolic
modeling. It has been developed with the aim to expand
the user base of these methods beyond bioinformaticians
and expert researchers, being characterized by its user-
friendly interface. It supports several distinct methods for
important tasks in ME, such as model handling and im-
port/export, phenotype simulation of both wild-type and
mutant strains, strain optimization, model visualization
and pathway analysis.
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To ensure that it could easily be adapted and extended to
the user needs, both by its original and by third-party deve-
lopers, OptFlux possesses a modular component-based
architecture that allows an expansion of its functionalities
through the use of plug-ins. This article presents a software
tool, the Topological Network Analysis for OptFlux
(TNA4OptFlux), a plug-in that adds to OptFlux the cap-
ability of creating and performing topological analysis over
metabolic networks created from stoichiometric models.
One of the major advantages of this tool is the possibility of
using these tools in the analysis and comparison of simu-
lated phenotypes, namely those coming from the results of
strain optimization algorithms.
Indeed, one of the major challenges created by algo-

rithms that search for non-intuitive ME solutions, such
as gene knockouts, that improve the production of target
compounds, is the interpretation of the changes that
lead to overproduction. Often, one single gene knockout
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induces changes in the fluxes of dozens of reactions, as
compared with the wild-type, and it is therefore difficult
to evaluate the physiological differences of the in silico
mutant. This is aggravated by the fact that genome-scale
models per se are difficult to visualize, given the high
number of reactions and metabolites involved.
Metabolic systems are composed by chains of reac-

tions connected by shared metabolites. Consequently,
these systems can be intuitively represented as networks.
Indeed, the use of topological analysis over metabolic
networks is an important approach to the analysis of
metabolism, allowing the application of techniques from
the field of graph theory to the study of the metabolic
phenomena. The analysis of metabolism through the
lenses of graph theory led to the discovery that metabolic
networks share a similar architecture with other complex
networks, indicating that similar laws may govern com-
plex networks in nature and other fields. This, in turn,
allows the outputs from the analysis of large and well-
mapped non-biological systems to be used to characterize
the intricate interwoven relationships that govern cellular
functions. Within this context, metabolic networks have
been characterized as being scale-free, small-world, modu-
lar and hierarchical networks [2].
A number of tools have been proposed for network

analysis, spanning many tools that work with networks
from distinct fields (e.g. Pajek [3]) and others more spe-
cifically devoted to biological network analysis. Within
this last group, Cytoscape [4] has been emerging as the
most popular, incorporating in its core a large set of
features for network analysis and visualization and pro-
viding a development environment that allows its exten-
sion with specific plug-ins.
However, in spite of these existing tools, the field of

network-based topological analysis has been traditionally
separated from model-based phenotype simulation me-
thods and Metabolic Engineering efforts. An exception is
the area of pathway analysis, including the calculation and
analysis of Elementary Flux Modes (EFMs) [5], but due to
its complexity it can only be applied to small/medium
scale networks.
Thus, the main purpose of TNA4OptFlux was to pro-

vide a bridge between these two families of methods.
This feature distinguishes TNA4OptFlux from other pre-
vious work.

Core functionalities of OptFlux
OptFlux provides an extensive set of tools for ME experts
with user-friendly interfaces. It is able to create models by
importing data in different formats including flat files (in
an application specific format), CSV files, Systems Biology
Markup Language (SBML) and other application specific
formats (e.g. Metatool or Cell Designer). The models used
in the platform are stoichiometric models and therefore
include information on the set of reactions (their equa-
tions and reversibility), metabolites and, if available, gene-
reaction associations.
OptFlux includes operations to run in silico phenotype

simulations of the wild-type or mutant strains in different
medium conditions, using several methods. These include
the popular approach of Flux Balance Analysis (FBA) [6]
and its variants (e.g. Parsimonious FBA (pFBA) [7]), as
well as specific methods for the simulation of mutants.
These algorithms calculate the values for the fluxes over
the whole set of reactions in the model.
Users can also perform strain optimization, identifying

sets of reaction deletions (or gene deletions if gene-
reaction associations are available) that optimize a given
set of objective functions related with desired industrial
goals (e.g. the maximization of the production of a given
compound). The algorithms used in this task, single and
multiobjective Evolutionary Algorithms (EAs) or Simu-
lated Annealing (SA), typically return several solutions,
each consisting of a set of gene/reaction knockouts and
the flux values for the reactions in the model, provided by
phenotype simulation methods.

Network representation
TNA4OptFlux supports three types of networks that can
be generated from the same metabolic model. These
three types can be easily created with minimal human
input and the different configurations facilitate the ana-
lysis of network properties:

Reaction-compound networks
By default, a network is represented as a directed bipartite
graph (a type of graph that has two kinds of vertices and
where edges only connect vertices of different types).
Here, reactions and metabolites are represented as vertices
and the relationships of metabolite participation are given
by directed edges, which either start (in case of produc-
tion) or end (in case of consumption) in the reactions.
This is the most complex network type, but this added
complexity results in a graph that contains the maximal
amount of information. Also, it does not have the difficul-
ties associated with the other representations regarding
the calculation of paths [8].

Compound-compound networks
In this case, a network is represented by a directed graph
where vertices represent the metabolites and edges repre-
sent the reactions. Here, edges connect one metabolite to
another if a reaction consumes the first metabolite and
produces the second. This representation directly provides
information about relationships between compounds, but
it is not straightforward to use for path finding [8], be-
cause the paths found by search algorithms may have been
obtained by passing through edges that represent the same



Pinto et al. BMC Research Notes 2013, 6:175 Page 3 of 13
http://www.biomedcentral.com/1756-0500/6/175
reaction, thus resulting in mathematically correct but bio-
logically unfeasible paths.

Reaction-reaction network
This representation is similar to the previous one, but with
reactions represented by vertices and edges pointing from
reactions producing metabolites to reactions using them
as a substrate. This model is useful when the main point
of focus is the study of the relationships between the reac-
tions. However, it has similar problems for calculating
paths as the former one.
All the previous alternatives are based in directed

graphs. Reversible reactions in all of the three represen-
tations use parallel directed edges pointing in opposite
directions (Figure 1).

Creating, visualizing and exporting networks
Networks in TNA4OptFlux are always created based on
an existing metabolic model loaded in OptFlux and the
user can select one of the three types of networks de-
scribed in the previous section.
Regardless of the type, the metabolic networks obtained

are typically quite complex graphs with a large number
of vertices and edges. This is expected, since OptFlux typ-
ically works with genome-scale models that have a few
Figure 1 Illustration of the three types of network representation sup
thousand/hundreds of reactions and metabolites. Unfortu-
nately, this places these metabolic networks well beyond
the capability of even the most sophisticated current graph
layout algorithms. For this reason, TNA4OptFlux does not
implement a graphical visualization of the full network,
such as it is common in network analysis tools. Instead, a
set of tables is used to represent and characterize the net-
work, including data on the network structure and the
metadata associated with each vertex of edge.
While a visual representation of the full graph is not

supported, TNA4OptFlux offers users some visual support,
using the radial graph panel associated with a network.
Here, it is possible to select a vertex and the plug-in draws
a small graph with that vertex in the center and its neigh-
bors in the radius. The network can then be navigated by
clicking in one of the vertices in the radius, which redefines
the central vertex and redraws the graph. Additionally, if
for a given application visualizing only the immediate
neighbors is insufficient, the distance of the vertices con-
nected to the central vertex to be included in the graph
(which is by default 1) can be adjusted up to 5, creating
circles of growing radius. Illustrative examples are provided
in Figure 2.
TNA4OptFlux is capable of exporting networks into

several different kinds of file formats that are used by
ported by TNA4OptFlux.



Figure 2 Illustration of the radial graph panel that allows to visualize metabolic networks centred in a metabolite.
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other network analysis applications. This allows users to
complement the analysis conducted in this plug-in with
other functionalities present in other software tools.
Currently, the following main file formats are supported:

� XGMML format: An XML based network format,
capable of storing all themetadata present in a network,
facilitating the interchange between applications. The
support for XGMMLwas includedmostly for allowing
the visualization of variation networks in other
applications (see below), since unlike full metabolic
networks, these are typically composed by only few
independentmodules. Cytoscape [4] is among the
network analysis tools which support XGMML.

� Pajek [3] file format: Pajek is one of the most
complete applications for network analysis,
possessing a large number of methods of network
analysis and manipulation.
Topological analysis
Often, regardless of the system it represents, the topo-
logical analysis of a network is the first step in its study,
revealing interesting properties of its structure. So, natur-
ally, some topological analysis functionalities are provided
by TNA4OptFlux. The topological analysis tools included
are the degree analysis, the shortest path analysis and the
calculation of distinct rankings based on centrality metrics.

Degree analysis
The degree analysis functionality provides the user a table
view containing the degree of all vertices, discriminated by
in- and out-degree. It can also be used to identify the list
of neighbors of a selected vertex through a pop-up win-
dow, providing an idea of that vertex relative position in
the network. A global analysis is also provided in the form
of degree histograms (in table format). Finally, it calculates
the degree distribution, a simple metric that nonetheless
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has proven in the past to be essential for identifying meta-
bolic networks as scale-free [9].

Shortest path analysis
The determination of shortest paths can be used, for
example, to give an idea, in a metabolic network, of the
transformation an initial compound goes through until a
desired substance is obtained. The plug-in supports the
calculation of shortest paths between two selected vertices
and can also be used to determine all the other vertices
that a source vertex is connected to and the respective dis-
tances. Also, it includes a few global network metrics, such
as the network diameter (longest shortest path in the net-
work) and the mean shortest path calculated over all pairs
of connected vertices in the network. This last metric can
be useful to evaluate if the network can be called a small
world network, i.e. if the mean length of the paths is
smaller than what would be expected, a feature commonly
associated with metabolic networks [10].

Ranking algorithms
This plug-in also includes a number of ranking algo-
rithms, i.e. methods that provide a metric for each
vertex, allowing to rank them by their importance. The
most basic ranker is based on the degree of the vertices,
but three more elaborate methods have been included:
betweenness centrality (BC), closeness centrality (CC)
and the hubs and authorities method (also known as
Hyperlink-Induced Topic Search or HITS). The basic
idea behind the BC is that an important vertex will lie
on a high proportion of paths between other pairs of
vertices in the network, while the CC considers that an
important vertex is typically “close” to the other vertices
in the network [11]. The HITS algorithm [12] calculates
two different metrics for each vertex in a network: the
hubness and the authority, being an algorithm originally
developed to rate web pages based in their content.

Locating active vertices
A reaction-compound network in TNA4OptFlux has a
structure very similar to a Petri Net [13]. Taking inspir-
ation from this similarity, a functionality called the loca-
tion of active vertices was included in this tool. It uses
an algorithm that starts with a set of “seed” metabolites
(the active metabolites set) and from it determines the
full set of reactions that can be active when this set of
metabolites is present. This functionality works through
an iterative process that, at each step, adds the metabo-
lites that can be produced by the reactions in the model
by using the current set of active metabolites as sub-
strates. The reactions where all substrates are present in
the active metabolites set are added to the active reac-
tion set (which starts empty). The process continues
until no further metabolites can be added to the active
sets. The final result are sets of reactions which will be
active and of metabolites which will exist in the system
assuming an unlimited supply of the “seed” metabolites
and sufficient time for the reactions to occur.
This functionality can help users determine if some

metabolites are related with the production of other
seemingly unrelated metabolites. A practical use is to de-
fine as active a set of external metabolites representing
the components of the growth medium (nutrients) and
determining all metabolites that can be potentially pro-
duced based in these initial seed metabolites.

Filters
One of the difficulties of working with metabolic net-
works is the presence of the so-called ‘currency metabo-
lites’ (or ubiquitous compounds) such as ATP, NAD and
protons, which take part in a large number of reactions
[14]. However, despite their frequency, currency metabo-
lites often cannot be considered as valid intermediates
for path finding, or for that matter, for establishing
biologically meaningful network connections [8]. Thus,
currency metabolites are often removed from metabolic
networks before their analysis. However, since there is
no commonly agreed definition of currency metabolites,
often their removal is not as simple as it may seem. To
address this problem and other similar tasks, filtering cap-
abilities, which allow the removal of selected vertices based
in user defined criteria, were included in TNA4OptFlux.
The possible parameters for the removal of vertices include
among others: a user defined list, degree values and mini-
mum thresholds for the available ranking algorithms.
Since the degree is often the metric used to identify

currency metabolites, many of the filtering operations
are based in the degree, either by defining a degree
threshold for vertex removal or by permitting the re-
moval of the top n vertices with higher degree (where n
is an user defined value). All these filtering operations
can use either the value of degree or discriminate be-
tween out or in degree.

Linking network analysis and phenotype simulations
Besides the analysis of metabolic networks associated with
stoichiometric models, TNA4OptFlux has another more
ambitious objective: to serve as a bridge between model-
based and network-based analysis methods. Thus, a series
of methods for the integration of simulation results with
metabolic networks and processes for their subsequent
analysis have been developed, being presented in this
section.

Simulation filtering
In a typical phenotype simulation only a few of the meta-
bolic reactions will take place, i.e. have a flux different
from zero. This makes sense, since the bulk of the
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metabolism is composed by redundant or complementary
metabolic capabilities whose occurrence depends on the
conditions the organism is subject to and the available
substrates.
To this effect, network filtering features were added,

based on the results of phenotype simulation processes.
These methods take as inputs a complete metabolic
network (typically the original network created from the
model) and the results of a phenotype simulation (using
the same model), and output a sub-network containing
only the parts of the metabolism that are active on that
simulation. The obtained filtered network can be con-
sidered as a "snapshot" of the metabolism in the simu-
lated conditions. The process is composed of two steps
as follows:

1. The first step is to remove from the network all
vertices corresponding to reactions with a predicted
flux below a given threshold, considered to be
inactive reactions.

2. After removing inactive reactions from the network,
some vertices will be isolated from the rest of the
network. This happens with metabolites that were
only involved in reactions that were removed. These
vertices are removed from the network.

These results of the simulation filtering can be seen as a
"map", a sub-network containing all parts of the metabo-
lism that are predicted to be used in a given condition.
The study of the properties of this network can give
insights into the behavior of the cell and the mechanisms
involved in the metabolic responses in the conditions of
the simulation.
Network comparison
Besides the analysis of a single network, the plug-in
allows comparing the structure of different networks.
This feature can be especially useful when analyzing se-
veral networks obtained from simulations over the same
model. Some examples of fruitful application of this tool
are the comparison of mutant strains with selected gene
deletions versus wild-type strains, the comparison of
simulations from distinct environmental conditions, etc.
Most of the network comparison functionalities are

based in the provided network analysis metrics. These
are used to identify the differences between the net-
works, by calculating all desired analysis metrics of those
supported by the plug-in. To make a good use of com-
putational resources, when two networks are compared,
the plug-in checks which analysis metrics were applied
to both and uses those in the comparison. Thus, to have
a metric included in this comparison, the calculation
needs to be previously executed for both networks.
The results of a network comparison are presented as a
series of tables where the values of the metrics applied to
individual vertices and for the networks as a whole can be
observed. It should be noted that, when comparing net-
works, TNA4OptFlux assumes that vertices sharing the
same id and type represent the same entity. This assump-
tion is always true when the networks compared are
derived from the same model. Care should be taken when
comparing networks obtained from different models.
When a phenotype simulation is performed for a

model, flux values are kept in an object in the clipboard.
In this plug-in, we have added a feature that, while not
directly related to network analysis, can be of help in the
comparison of different simulation results and comple-
ment the topological analysis tools. This feature allows a
set of simulations to be selected and the results of the
comparison among them to be presented both as a table
and as bar plots that show the variation of flux values
(see Figure 3).

Variation networks
A variation network is obtained by comparing a pair of
networks obtained through simulation filtering, using
the same base network and simulation results obtained
under different conditions. The result is the creation of a
third network containing the elements that differed be-
tween the compared networks (i.e. the variations).
The idea is to identify the components of a given meta-

bolic system that change when the conditions inherent to
the simulations change. Assuming the dimension of these
variations to be significantly smaller than the networks
themselves, variation networks should be easier to visualize
and analyze than a full network.
The most important decision in this process is to select

how the variations between the networks should be identi-
fied, i.e. what criteria should be used to decide on the
components to be selected. Two methods are included in
TNA4OptFlux:

1. Exclusivity: this is the simplest method but it has
already proven useful in analyzing phenotype
simulation results [15]. The criterion used is based
on the identification of the exclusive reaction
vertices in each network, i.e. those existing in one of
the networks but not the other. After the
identification of these reactions, the respective
vertices are added to the variation network, together
with the vertices corresponding to metabolites that
they consume or produce, as well as the edges
connecting them.

2. Flux variation: this method was developed since it
was verified that methods based purely on network
topology can be, in some cases, insufficient to
capture more subtle metabolic flux variations. The



Figure 3 A bar plot of the drain reactions flux variations generated by TNA4OptFlux flux comparison feature for an example model.
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flux variation is based in the comparison of flux
values of the reactions present in both networks: if
the absolute value of the difference in fluxes exceeds
a user defined threshold (which can be an absolute
flux value or a percentage) then the vertex
corresponding to that reaction, as well as the ones
corresponding to the metabolites which participate
in it and the edges which connect them, are added
to the variation network.

These two methods can be used independently or
combined. After a variation network is created, it can
then be analyzed as any other network using any of the
tools available in the plug-in. There is, however, a point
in which variation networks differ from other networks:
they have metadata associated with their vertices identi-
fying why each vertex was added to the network (values
related to exclusivity, flux change, and flux values for
each of the reactions). These tags are saved with the rest
of the metadata when a variation network is exported into
an XGMML file and can be used to visualize the type of
variations associated with each vertex when using other
network analysis tools. Indeed, some visualization applica-
tions can change the appearance (e.g. form, color) of the
vertices based in these tags. For instance, in the case study
described next, these tags were used to customize the
color of the vertices when using Cytoscape [4] to visualize
the variation network.

Case studies
In order to evaluate the usefulness of the tools deve-
loped in this work on a practical example, we used a set
of strain optimization results previously obtained and
tried to analyse the mechanism behind a set of knock-
outs for the production of succinic acid (case study 1)
and glycine (case study 2) using E. coli as a host. Our
aim was to show that this plug-in can prove extremely
valuable, especially when combined with network visua-
lization software, such as Cytoscape.

Case study 1: succinic acid production with E. coli
Before beginning the analysis, a set of knockouts was se-
lected by the authors from optimization results obtained
using Optflux [16]. The set selected is reasonably com-
plex, it is not too obvious nor consists of too many knock-
outs. In Table 1, a brief description is given of the set of
knockouts elected as our case study 1. Apparently, there is
nothing in common between the reactions in the table,
and with the exception of succinate dehydrogenase, it is
difficult to relate the inactivation of these reactions to suc-
cinate production.
TNA4OptFlux allows to compare the flux distributions

between the mutant and the wild-type simulations and
extract relevant changes in the networks. Using the op-
tions available we can easily create a network and filter it
accordingly to the flux values obtained for the wild-type
or mutant simulations. Furthermore, we can also remove
currency metabolites, such as H+ or ATP using the filter-
ing functionality, in order to simplify the visualization of
the network.
Among all the features available, the creation of vari-

ation networks is particularly important in the analysis
of mutant phenotypes. This functionality allows the user
to extract from the network only the reactions that
change between two simulations (wild-type vs. mutant).
To analyse this case study, the first step was to simu-

late both the wild-type and selected mutant using pFBA
[5], one of the methods available in OptFlux. Then, we
filtered out the reactions with zero flux and removed
some of the currency metabolites (H2O, H+, AMP, ADP



Table 1 Set of knockouts and the corresponding chemical reactions used as case study

Reaction Stoichiometric equation

Serine hydroxymethyltransferase L-serine + tetrahydrofolate < = > glycine + 5,10-methylenetetrahydrofolate + H2O

pyridine nucleotide transhydrogenase H+
e + NADH + NADP+ = > H+

c + NAD+ + NADPH

Succinate dehydrogenase FAD+ + Succinate = > FADH2 + Fumarate

Transketolase I D-erythrose-4-phosphate + D-xylulose-5-phosphate
< = > D-fructose-6-phosphate + D-glyceraldehyde-3-phosphate
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and ATP) from the network, to simplify the graphical
representation. Then, we computed the variation net-
work between the wild-type simulation and the succinate
producing mutant. The options were set to include the
reactions exclusive to each simulation and the reactions
where the flux had changed above 2 mmol/gCDW.h
(~50% of the succinate production rate). The resulting
variation network was exported to an XGMMLfile and
within Cytoscape the visual parameters of the network
were customized to help in the analysis. Reactions ex-
clusive to the wild-type were painted in red, the ones ex-
clusive to the mutant in blue, with increased flux in the
mutant in green and with reduced flux in the mutant in
orange.
After generating the variation network, it was manu-

ally filtered to remove a few reactions known to have no
significance to the solution based in the available
Figure 4 Manually curated variation network between the wild-type a
type exclusive reactions are shown in red, the ones exclusive to the mutan
reduced flux in the mutant, respectively. Abbreviations: M_10fthf_c – 10-
M_6pgl_c- 6-phospho-D-glucono-1,5-lactone, M_f6p_c- D-Fructose-6-p
M_fadh2_c- Flavin adenine dinucleotide reduced, M_for_c- Formate, M
5,10-Methylenetetrahydrofolate, M_nadp_c- Nicotinamide adenine din
dinucleotide phosphate reduced, M_r5p_c- alpha –D-Ribose-5-phosph
Sedoheptulose-7-phosphate, M_ser_L_c- L-Serine, M_succ_c- Succinate
phosphate; R_FTHFD- formyltetrahydrofolate deformylase, R_G6PDH2r
hydroxymethyltransferase, R_GND- 6-phosphogluconate dehydrogena
phosphogluconolactonase, R_SSALy- succinate-semialdehyde dehydro
dehydrogenase, R_TKT1- transketolase.
knowledge about the system. The final result was the
network shown in Figure 4.
This simplified view allowed us to infer that NADPH

balance was the key factor behind succinate production.
Firstly, the deletion of Transketolase I causes a decrease
of flux through the pentose phosphate pathway, which
means that much less NADPH will be produced here.
Together with the inactivation of pyridine nucleotide
transhydrogenase, it creates a shortage of this metabol-
ite. In the figure, we can see that in order to compensate
for this shortage, the model predicts the use of succinate-
semialdehyde dehydrogenase, which produces succinate
while reducing NADP+ to NADPH in the process. In
order to promote the excretion of succinate outside of the
cell, it is also vital to inactive succinate dehydrogenase.
The final deletion was not as easy to understand, be-

cause through the analysis of the variation network there
nd the succinate producing mutant described in Table 1. Wild-
t are in blue, while green and orange show reactions with increased or
Formyltetrahydrofolate, M_6pgc_c- 6-Phospho-D-gluconate,
hosphate, M_fad_c- Flavin adenine dinucleotide oxidized,
_g6p_c- D-Glucose-6-phosphate, M_gly_c- Glycine, M_mlthf_c-
ucleotide phosphate, M_nadph_c- Nicotinamide adenine
ate, M_ru5p_D_c- D-Ribulose-5-phosphate, M_s7p_c-
, M_thf_c- 5, 6, 7, 8-Tetrahydrofolate, M_xu5p_D_c- D-Xylulose-5-
- glucose 6-phosphate-1-dehydrogenase, R_GHMT2- Serine
se, R_PGI- phosphoglucose isomerase, R_PGL- 6-
genase, R_SUCCt2b- succinate transporter, R_SUCD1i- succinate
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was no apparent connection to the mechanism described
above. Therefore, we tried to compare the distribution
of fluxes between the succinate producing mutant and the
triple mutant with an active Serine hydroxylmethyl-
transferase reaction (R_GHMT2). We repeated the pro-
cedure followed before and obtained the network shown
in Figure 5. The conclusion was that if only three of the
deletions shown in Table 1 are implemented, a NADPH
producing cycle is formed in the glycine production path-
way in order to compensate for the shortage of this me-
tabolite. This cycle is eliminated with the last knockout.

Case study 2: glycine production using E. coli
The workflow used for case study 2 was very similar to
the one reported above. Firstly, a set of knockouts (Table 2)
was chosen among the optimization results obtained by
the authors using Optflux and the genome scale model
iAF1260 [17]. Once again the objective was to select a set
with a reasonable number of deletions, whose interpre-
tation is not obvious.
At the first glance, only the deletion of the glycine cleavage

systems appears to be related to glycine accumulation. Since
the reaction consumes the target metabolite, it is logical that
its deletion is important to promote glycine accumulation.
However, the other deletions are quite diverse and extremely
difficult to interpret without a careful analysis of the flux
changes in the network.
Figure 5 Manually curated variation network between the succinate p
R_THD2) described in Table 1. Wild-type exclusive reactions are shown i
orange show reactions with increased or reduced flux in the mutant, respe
M_gly_c- Glycine, M_mlthf_c- 5,10-Methylenetetrahydrofolate, M_meth
adenine dinucleotide phosphate, M_nadph_c- Nicotinamide adenine d
Succinate, M_thf_c- 5, 6, 7, 8-Tetrahydrofolate; R_FTHFD- formyltetrah
hydroxymethyltransferase, R_GLYCL- glycine cleavage system, R_MTHF
5,10-methylene-tetrahydrofolate dehydrogenase, R_SSALy- succinate-
TN4OptFlux was used to create filtered networks for
each simulation (wild-type and mutant) as described for
case study 1. Again, the reactions exclusive to either simu-
lation and with values that changed above 2 mmol/gCDW.
h (80% of the glycine production rate) were included in a
variation network using the “create variation network”
functionality. The resulting network was exported to
Cytoscape and the nodes were colored as described for
case study 1. Since two of the deleted reactions were not
active on both simulations, they were added manually and
colored red to help the analysis of what is their role in the
flux redistribution. Finally, some nodes were removed by
manual curation of the network according to the user’s
know how and experience. The final result is shown in
Figure 6 and was used to interpret the mechanism behind
glycine accumulation in the mutant. From the figure, all
the changes in the network can be analyzed in an inte-
grated and user-friendly format, reducing the time of ana-
lysis when compared to the analysis of fluxes in a table
format.
Using this variation network, it was possible to quickly

conclude that two of the four deletions (Isocitrate lyase and
Phosphoenolpyruvate carboxylase) are related to oxaloa-
cetate metabolism, while the other two (Glycine cleavage
complex and phosphoribosylglycinamide formyltransferase
2) are located in the glycine and one carbon metabolism. A
careful analysis of Figure 6 showed that two anaplerotic
roducing mutant and the triple mutant (R_TKT1, R_SUCD1i and
n red, the ones exclusive to the mutant are in blue, while green and
ctively. Abbreviations: M_10fthf_c – 10-Formyltetrahydrofolate,
f_c- 5,10-Methenyltetrahydrofolate, M_nadp_c- Nicotinamide
inucleotide phosphate reduced, M_ser_L_c- L-Serine, M_succ_c-
ydrofolate deformylase, R_GHMT2- Serine
C- 5,10-methylene-tetrahydrofolate cyclohydrolase, R_MTHFD-
semialdehyde dehydrogenase, R_SUCCt2b- succinate transporter.



Table 2 Set of knockouts and the corresponding chemical reactions used as case study 2

Reaction Stoichiometric equation

Isocitrate lyase Isocitrate = > Succinate + Glyoxylate

Glycine cleavage (complex) Glycine + NAD+ + Tetrahydrofolate = > NH4+ + 5,10-Methylenetetrahydrofolate + NADH + CO2

Phosphoenolpyruvate carboxylase Oxaloacetate + Phosphate < = > Phosphoenolpyruvate + Bicarbonate

phosphoribosylglycinamide formyltransferase 2 5-phospho-ribosyl-glycineamide + Formate + ATP
< = > 5'-phosphoribosyl-N-formylglycineamide + ADP + Phosphate + H+

Pinto et al. BMC Research Notes 2013, 6:175 Page 10 of 13
http://www.biomedcentral.com/1756-0500/6/175
reactions of oxaloacetate, Isocitrate lyase (R_ICL) and Phos-
phoenolpyruvate carboxylase (R_PPC), were inactivated
and, therefore, another route for the regeneration of this
essential metabolite needed to be activated. That sequence
of reactions is clearly visible as a chain of blue nodes, ori-
ginating from formamido-carboxamide (M_fprica_c) and
culminating in the production of glyoxylate, which can be
converted to L-malate by malate synthase (R_MALS) and
then transformed into oxaloacetate. The reason for the
Figure 6 Manually curated variation network between the wild-type a
exclusive reactions are shown in red, the ones exclusive to the mutant are
reduced flux in the mutant, respectively. Abbreviations: M_10fthf_c- 10-F
Amino-1-(5-Phospho-D-ribosyl)imidazole-4-carboxamide, M_alltn_c- A
phospho-D-ribosyl)glycinamide, M_fprica_c- 5-Formamido-1-(5-phosph
D-ribosyl)glycinamide, M_glx_c- Glyoxylate, M_gly_c- Glycine, M_gly_e
Hypoxanthine, M_icit_c- Isocitrate, M_imp_c- IMP, M_ins_c- Inosine, M
M_mlthf_c- 5,10-Methylenetetrahydrofolate, M_oaa_c- Oxaloacetate, M
ribosylamine, M_ser_L_c- L-serine, M_succ_c- Succinate, M_thf_c- 5,6,7
(−)-Ureidoglycolate, M_xan_c- Xanthine, R_AICART- phosphoribosylam
allantoate amidohydrolase, R_ALLTN- allantoinase, R_GARFT- phospho
transformylase-T, R_GHMT2r- glycine hydroxymethyltransferase, R_GLY
via proton symport (periplasm), R_GLYtex- Glycine transport via diffus
lyase, R_IMPC- IMP cyclohydrolase, R_MALS- malate synthase, R_MDH-
cyclohydrolase, R_MTHFD- methylenetetrahydrofolate dehydrogenase
phosphoenolpyruvate carboxylase, R_PRAGSr- phosphoribosylglycinam
(Inosine), R_UGLYCH- Ureidoglycolate hydrolase, R_URIC- uricase, R_XA
redirection of M_fprica_c from one carbon metabolism to
oxaloacetate was to increase the flux in phosphoribosylami-
noimidazolecarboxamide formyltransferase (R_AICART),
which is responsible for the synthesis of one of the precur-
sors of glycine.
However, inactivating just R_ICL and R_PPC is not

enough to drive the model to excrete glycine. If only these
two reactions are deleted, some of the reactions in the
glycine biosynthetic pathway and one carbon metabolism
nd the glycine producing mutant described in Table 2. Wild-type
in blue, while green and orange show reactions with increased or
ormyltetrahydrofolate, M_accoa_c- Acetyl-CoA, M_aicar_c- 5-
llantoin, M_alltt_c- Allantoate, M_fgam_c- N2-Formyl-N1-(5-
o-D-ribosyl)imidazole-4-carboxamide, M_gar_c- N1-(5-Phospho-
- Extracellular Glycine, M_gly_p- Periplasmic Glycine, M_hxan_c-
_mal_L_c- L-Malate, M_methf_c- 5,10-Methenyltetrahydrofolate,
_pep_c- Phosphoenolpyruvate, M_pram_c- 5-Phospho-beta-D-
,8-Tetrahydrofolate, M_urate_c- Urate, M_urdglyc_c-
inoimidazolecarboxamide formyltransferase, R_ALLTAMH-
ribosylglycinamide formyltransferase, R_GART- GAR
CL- Glycine Cleavage complex, R_GLYT2pp- glycine transport in
ion, R_HXAND- hypoxanthine dehydrogenase, R_ICL- Isocitrate
malate dehydrogenase, R_MTHFC- methenyltetrahydrofolate
(NADP), R_NTD11- 5'-nucleotidase (IMP), R_PPC-
ide synthase, R_PUNP5- purine-nucleoside phosphorylase
ND- xanthine dehydrogenase.



Figure 7 Illustration of the SBBFS approach for shortest path calculation in metabolic networks (A) Using BFS, the shortest path
between A and B is {A, R1, B}, a non interesting path, since A and B are in the same side of reaction R1, so they will always be
consumed or produced together; (B) Using SBBFS, the shortest path between A and B will be {A, R2, E, R3, B}, a longer but biologically
meaningful path.
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(lower part of Figure 6) could be used as a cycle of
M_fprica_c production. Therefore, only when the Glycine
cleavage complex (R_GLYCL) and phosphoribosylglyci-
namide formyltransferase 2 (R_GART) are deleted, is
glycine produced as a by-product of M_fprica_c synthesis.
Since either of these reactions can be used to recycle
glycine, both deletions are required to promote glycine
excretion.
To sum up, after deleting the anaplerotic reactions for

oxaloacetate, another alternative is required to replenish
the pool of this metabolite. In the genome scale model a
chain of reactions originating from M_fprica_c can be
used for this purpose. With two additional knock-outs
(R_GART and R_GLYC), one in the glycine biosynthetic
pathway and another in the one carbon metabolism, it is
possible to couple glycine excretion to growth.

Implementation details
OptFlux is implemented in the Java language, over AIBench
[18], a software development framework originally from the
University of Vigo that eases the implementation of scien-
tific applications based on input-process-output workflows.
One of the major features of OptFlux is its modular

architecture that allows the easy integration of novel
components. This is normally achieved in the form of
new plug-ins developed to be easily installed and inter-
act with the core functionality of OptFlux. This created
an environment where the TNA4OptFlux plug-in could
be successfully developed, taking advantage on the
implemented features, the development methodology
(that follows the Model-View-Controller paradigm), the
Graphical User Interfaces (GUI) and their components
and the plug-in engine.
The development of this plug-in consisted in adding

new datatypes, allowing the representation of the data
objects from this work such as networks and analysis
results, operations over those data (mainly analysis tools)
and views (to allow visualizing networks and results).
The Java Universal Network/Graph Framework (JUNG)

library [19] for graph creation and analysis was used as a
basis for network operations within this plug-in.
In the structure provided by JUNG, a graph is repre-

sented in a way similar to its mathematical definition: a
graph object, g containing two lists, one for the edges, e,
and another for the vertices, v, together with the relation-
ships among them. A useful feature of JUNG is that any
kind of Java object can be used as an edge or a vertex.
Taking advantage of this capability, objects that can include
distinct metadata can be used as the elements of our net-
works. The JUNG library also includes implementations for
many of the graph analysis tools required for biological net-
work studies, easing the development of the application.

Algorithms for shortest path calculation
In most of the methods for topological analysis im-
plemented in the tool, the basis used were the algorithms
available from the JUNG library. A specific algorithm was,
however, needed for shortest path calculation. Indeed, the
above described approach to represent reversible reactions
causes some issues in the calculation of shortest paths be-
tween pairs of nodes. This problem consists in finding
paths between two metabolites. The inclusion of two edges
in opposite direction representing reversible reactions
opens the possibility of including in a given path the reac-
tion in which both metabolites participate as substrates or
products. Naturally, these paths are meaningless from a
biological point of view.
To address this issue a novel algorithm was developed,

called set-based breadth-first search (SBBFS). This is a
variation of the original breadth first search (BFS), by
adding the notion of edge sets, i.e. edges have an associ-
ated attribute called the set that is kept in the edge
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metadata. The process of path finding must obey the
condition that if a path enters a vertex through an edge
of a set, it must exit that node through an edge belong-
ing to the same set or an edge with no set. Figure 7 illus-
trates the approach followed providing an example.
With the SBBFS algorithm, if a metabolic network is

correctly built, it is possible to identify all valid shortest
paths from a selected vertex to all the vertices it is
connected to. It should be noted that since SBBFS must
store the paths and edge information, it is more memory
expensive than the normal BFS.

Conclusion
In this work, we propose to enrich the set of available
tools for Metabolic Engineering by including in the open-
source software platform OptFlux a new plug-in that
makes the bridge between, on one hand, the methods
based on stoichiometric models and constraints-based
phenotype simulation approaches, and, on the other, topo-
logical analysis of metabolic networks. The main driving
idea was to create tools that could help to understand and
describe the metabolic strategies followed by the strains
to achieve certain aims, both natural (e.g. production of
biomass) or imposed (e.g. overproduction of a compound
with industrial interest). Thus, the functionalities of the
proposed plug-in were designed to make easier the tasks
of analysing the results of phenotype simulation and strain
optimization methods. The proposed case studies illus-
trated some tasks where the proposed plug-in aided in
making life easier for the ME experts. TNA4 OptFlux
proved to be a valuable tool to help uncover non-obvious
mechanisms obtained from in silico simulations. When
used together with visualization software such as Cytoscape,
it reduced the time needed to understand how the redirec-
tion of fluxes leads to the accumulation of the target product.

Availability and requirements
The OptFlux software is made available in the home
page given below (current version is OptFlux 3). The
TNA4OptFlux plug-in can be installed from within
OptFlux through the interface for plug-in management.
A wiki page is also available, providing diverse documen-
tation both for OptFlux and for the plug-in.
More details:

– Software name: Topological Network Analysis
plug-in for OptFlux (TNA4OptFlux)

– Project site: http://www.optflux.org
– Direct link for plug-in documention: http://darwin.

di.uminho.pt/optfluxwiki/index.php/OptFlux3:TNA
– Operating system(s): Platform independent
– Programming languages: Java
– Other requirements: Java JRE 1.6.x, GLPK
– License: GNU-GPL, version 3
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