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Abstract

external stimuli.

relationships.

Background: The relationships between gene expression and nuclear structure, chromosome territories in
particular, are currently being elucidated experimentally. Each chromosome occupies an individual, spatially-limited
space with a preferential position relative to the nuclear centre that may be specific to the cell and tissue type. We
sought to discover whether patterns in gene expression databases might exist that would mirror prevailing or
recurring nuclear structure patterns, chromosome territory interactions in particular.

Results: We used human gene expression datasets, both from a tissue expression atlas and from a large set
including diverse types of perturbations. We identified groups of positional gene clusters over-represented in gene
expression clusters. We show that some pairs of chromosomes and pairs of 10 Mbp long chromosome regions are
significantly enriched in the expression clusters. The functions of genes involved in inter-chromosome
co-expression relationships are non-random and predominantly related to cell-cell communication and reaction to

Conclusions: We suggest that inter-chromosomal gene co-expression can be interpreted in the context of nuclear
structure, and that even expression datasets that include very diverse conditions and cell types show consistent

Keywords: Chromosome territory, Gene expression, Cluster analysis, Nuclear structure

Background

Ever since genome-wide gene expression datasets became
available, regularities and similarities in gene expression
profiles have attracted attention [1]. Although typical
operons are a feature characteristic of bacteria, operons or
operon-like gene groups are found in many eukaryotic
lineages [2]. More generally, several studies have shown
co-expression of neighbouring genes in eukaryotes, from
yeast to humans [3,4]. These positionally co-expressed
genes included tissue-specific genes [5,6] and house-
keeping genes [7]; however, as reviewed by Hurst and
colleagues [8], it is a general phenomenon. It has also been
established that positionally-clustered co-expression units
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are conserved in mammalian evolution [9]. The first
genome-scale report of the genomic clustering of co-
expressed genes in humans came from the “transcriptome
map” by Versteeg and colleagues [10]. It showed that
many human genes that are highly expressed were
clustered in genomic domains (“ridges”), 5 — 15 Mbp wide.
Ridges were gene-rich and contained both housekeeping
genes and highly expressed genes, active only in certain
tissues [11]. In contrast to ridges, there are gene-poor
regions of similar size enriched with genes that have low
expression [12]. Fluorescent in situ hybridization (FISH)
experiments demonstrate that ridges are in general located
closer to the nuclear centre than anti-ridges [12].

Various reasons for local gene co-expression in
eukaryotes have been identified, including the presence
of close paralogues and the existence of bi-directional
promoters [3]. Yet, even after allowing for these factors,
local co-expression remains and chromatin structure is
suspected to be an important factor [8]. A recent analysis
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[13] suggests that the “human gene co-expression land-
scape” is functionally relevant and includes house-keeping
genes, tissue-specific genes, and specific pathways.

The three-dimensional organization of chromosomes
in the human interphase nucleus is relevant for gene
regulation, yet it is far from being fully understood.
Chromosomes can be divided into domains of open
chromatin, where genes are preferentially expressed, and
domains of closed chromatin, where they are not [5]. In
the eukaryotic nucleus, each chromosome is confined to
a discrete region called a chromosome territory [14]. For
a long time there has been a debate as to whether chro-
mosomes are separate or intermingled [15-17]. This has
recently been resolved as a result of several elegant
high-throughput studies elucidating nuclear structure,
as exemplified by Noble and co-workers [18] who
succeeded in building a three-dimensional model of
the yeast genome. The validity of the chromosomal
territory concept has also been recently demonstrated
by Dekker and co-workers who mapped long-range
chromosomal interactions in two human cell types
[19]. Also, a trend for specific inter-chromosomal
associations between co-regulated genes in human
erythroid cells has been reported [20]. Areas of inter-
mingling enable interchromosomal interactions and
may imply interchromosomal rearrangements. Such
intertwining of specific chromosome pairs in human
lymphocytes correlates with the chromosome trans-
location frequency in those cells [21]. The presence of
“transcription factories”, i.e. regions of enhanced tran-
scriptional activity, [20,22-24] in the intertwined re-
gions and the effect of changed transcription on the
inter-chromosomal interactions suggests that these
events strongly influence chromosome organization in
mammalian cells [21]. Furthermore, interchromosomal
interactions can occur via extended chromatin loops.
Such contacts between different chromosomal loci are
called chromosome kissing [25,26]. Some of these
contacts may occur because of preferred chromosome
neighbourhoods and because of the transcriptional
machineries shared, others may be related to specific
regulatory functions [25]. Kissing events have been
shown to be involved in both gene silencing and gene
enhancing [27].

Chromosome territories (CT) may occupy preferred sub-
nuclear positions and have a complex three-dimensional
shape [28]. Their positioning is non-random and heterol-
ogous CT groupings are favoured [28]. Regional gene
density has been suggested to be the decisive parameter
determining the radial positioning of chromatin in the
human nucleus [29]. Although some chromosome
arrangement principles hold over different cell lines
[12], tissue-specific organization of chromosomes has
been shown in mouse cells [30]. Small groups of
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chromosomes do form various types of spatial clusters
in different tissues; also, relative distances between
pairs of chromosomes depend on the tissue [30]. A
recently demonstrated mechanism of genome reor-
ganization within the nucleus involves the movement
of chromosomal regions relative to the nuclear lamina
during differentiation of embryonic stem cells [31].
This reorganization is related to activation of tran-
scription [31].

There are reports that a higher order organization of
genes between and within chromosomes is constrained
by transcriptional regulation in Saccharomyces cerevisiae
[32]. Results of a transcriptional regulatory network
analysis of this organism illustrate that a majority of the
transcription factors tend to preferentially regulate their
targets on one or only a few chromosomes. Several tran-
scription factors have a strong preference for regulating
genes in specific regions on the chromosomal arms, and
most transcription factors tend to prefer to bind targets
clustered positionally within a specific chromosome
region [32]. It has been suggested recently that three-
dimensional organisation preferences may even be con-
served in evolution [33].

While the patterns of the three-dimensional orga-
nization of the chromosomes in the nucleus are not
solved, the involvement of several chromosome structure
features influencing the organisation (e.g. gene density
or chromosome size) has been suggested. Assuming
constrained positions of chromosomes and the influence
of chromosome - chromosome interactions on gene
expression, we were looking for patterns of chromosome
position within groups of genes with similar expression
patterns. More than a decade ago, Cohen et al. intro-
duced chromosome correlation maps [3]. We follow in a
similar spirit. Recently, also Woo et al. studied expres-
sion correlation in several genomic datasets, human and
mouse [34]. They found pervasive co-expression, both
local and long-range. Our approach differs from that of
Woo et al. by not focusing on correlations, but rather on
expression clusters and the presence of pairs and larger
groups of distant genomic regions (also inter-chromosomal
ones) within the clusters. Also, we strived to find functional
significance in the observed long-range co-expression.

Gene expression microarrays offer a powerful tech-
nique for the exploration of the molecular biology of the
cell [1]. For example, gene expression clustering has
been used for classification and clinical outcome predic-
tion in disease [35] or for elucidation of functional and
regulatory gene modules [36]. In this study, we have
analysed two large and diverse tissue microarray gene
expression datasets using two different clustering
methods. First, we found groups of positional clusters
appearing more often than could be deemed random
within expression clusters. Second, we found an en-
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hanced presence of specific chromosome pairs and
chromosome region pairs in the expression clusters.
Third, we analysed functional properties of inter-
chromosomal region pairs enriched in the expression
clusters.

Results

The aim of this study was to explore relationships
between human gene expression and gene position in
the genome. We analysed two types of gene expression
microarray data of different origins. The datasets in-
cluded many different human tissues (see Methods). The
analyses involved three main steps:

1. Defining gene co-expression clusters to be used in
further study — groups of genes with similar
expression profiles (expression patterns across sets
of samples).

2. Finding patterns in genome positions for genes
belonging to such co-expression clusters:

a) Finding groups of positional clusters within
co-expression clusters. We examined whether
genes from one co-expression cluster form
positional clusters in the genome. In addition, we
examined whether there are pairs or groups of
such positional clusters within a co-expression
cluster.

b) Finding pairs of genome regions (for whole
chromosomes and for 10 Mbp-wide regions) that
contain more genes belonging to the same
co-expression cluster than expected by chance.

3. Analyses of functional annotation enrichment for
groups of co-expressed genes from particular
genomic regions.

Gene co-expression clusters

Genes belonging to one co-expression cluster exhibit
similar expression profiles. Expression profiles may
involve many tissues and many experimental conditions.
We decided to use tissue-wide expression profiles in
order to obtain functionally relevant groupings of genes
that function together, so called transcription modules.
Keeping in mind that nucleus architecture may differ
between tissues, by selecting profiles across many tissues,
we focused on patterns that are more likely not to be
tissue-specific. We analysed two data sets of different
origins. A clustering method suited to each data type was
chosen. The NeMo data [37] is a collection of microarray
data sets from different experiments involving various
types of perturbations. That includes various tissues and
cell lines, diseases, chemical treatments, chemical expos-
ure levels. The graph-based clustering method employed
by Yan et al. [37] enables selection of transcription
modules from such a dataset. NeMo transcription
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modules are groups of genes that form co-expression clus-
ters in multiple datasets generated under different condi-
tions. The second dataset, the Symatlas dataset, is an atlas
of measurements from different tissues performed in one
broad experiment [38]. To calculate expression correla-
tions, tissue-wide profiles are taken into account. We used
hierarchical clustering with correlation as a distance meas-
ure to obtain co-expression clusters from this data. The
sizes of gene co-expression clusters obtained using both
clustering methods are similar. Clusters obtained by the
two different approaches differed (a) in the total number
of clusters, (b) in the number of genes in all clusters
considered together and (c) in the fact that clusters from
NeMo data overlap in contrast to the clusters from
Symatlas data. Thus, there are 222 clusters containing
together 2578 genes for Symatlas data and 4727 clusters
containing together 716 genes for NeMo data (see
Methods). These two datasets and the different clustering
methods used resulted in finding potential transcription
modules of various structures.

Finding patterns in genome positions for genes
belonging to such co-expression clusters: the genomic
positions of genes from the same co-expression cluster
are not random

The existence of chromosomal territories, as described
in the literature, prevents interaction of many chromo-
somes together at the same time. Only genes from a few
chromosomes can be in close proximity at the same
time. Although long loops with active or inactive genes
are also observed, they have not been recognised as a
massive event. We analysed the number of chromo-
somes represented in one co-expression cluster. The ob-
served numbers are lower than in the situation when
gene positions are assigned randomly (see Figure 1),
albeit this trend does not reach significance. The low
number of chromosomes in one co-expression cluster is
partly the result of the tendency of co-expressed genes
to be positioned in close proximity on a chromosome.
Such positional gene clusters have been observed in dif-
ferent organisms and with a gene expression similarity
calculated in many different ways [2]. For this study, the
number of positional clusters within co-expression
clusters in both datasets studied is significantly higher
than when gene positions are assigned randomly. In
Symatlas data, there are 71 positional clusters, while
with randomised positions the average number is 28.5
(significant difference, permutation test p-value below
10™). In NeMo data this number is 173, while the aver-
age for randomized positions equals 47.2 (p-value below
10™). The tendency of co-expressed genes to be in prox-
imity can also be observed without applying definitions
of positional clusters. As can be expected from the
literature [2], the distances between the positions of
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genes within one co-expression cluster are lower than in
a randomised situation, or pairs of nearby genes occur in
the expression clusters more often than expected by
chance (see Figure 2).

Finding groups of positional clusters within co-expression
clusters that occur more often than expected by chance

Besides looking at positionally clustered genes in a single
chromosome region, we checked to determine if there
was more than one such positional cluster within one
co-expression cluster. A group of positional clusters was
defined as two or more positional clusters that could
belong to different chromosomes or to distant regions of
the same chromosome. In all co-expression clusters, the
number of groups of positional clusters was 17 and 108
for Symatlas and NeMo, respectively. This is significantly

more than for randomised gene positions (see Methods):
averages 2.7 (p-value below 10%) and 19.2 (p-value
below 10™*) for Symatlas and NeMo data, respectively.
We also checked to see if the higher than random
numbers of groups of positional clusters within one co-
expression cluster were the result of a higher than
expected number of positional clusters in general. For
this comparison, the assignment of each positional
cluster to a co-expression cluster was randomised (see
Methods). The number of groups of positional clusters
in non-randomised data is higher in comparison to cases
of positional clusters spread among co-expression clus-
ters randomly, namely for Symatlas: 17 (real data) vs 9.9
(randomised), p-value 0.002 and for NeMo data: 108 vs
91.1, p-value 0.01. We observe a significantly higher-
than-expected number not only of positional gene

Symatlas

}_A

Gene pairs from the same co-expression cluster

100

Distance between genes [Mbp]

200

150

Figure 2 Distances in sequence between genes from the same co-expression cluster. Dots - Symatlas (top) and NeMo (bottom) data.
Bars - randomised data with SD shown. The number of inter-chromosomal gene pairs within one co-expression cluster is 163 (compared to an
average 26.81 +- 5.26 in randomised data) and 214 (compared to an average 2342 + - 5.28 in randomised data) for Symatlas - and NeMo
data, respectively.
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clusters but also of groups of such positional clusters
within one co-expression cluster.

The structure of groups of positional clusters

The average number of genes in a positional cluster is
2.4 (standard deviation, SD 0.7) and 2.5 (SD 0.8), in
Symatlas data and in NeMo data, respectively. The average
number of positional clusters within one co-expression
cluster is 2.3 (SD 0.9) in Symatlas data and 2.5 (SD 1.1) in
NeMo data. These numbers are low. The results of this
analysis indicate clusters with few genes rather than large
regions of the genome that contain many genes. Positional
clusters are found in regions with varied local gene
density. We checked to see if positional clusters from one
co-expression cluster are characterised by similar gene
density. Densities of genes within one group of positional
clusters from the same co-expression cluster were
compared to gene densities from all groups of positional
clusters considered together. For each group of positional
clusters, the standard deviation of gene densities (counted
in genes per 1 Mbp) was calculated and the mean of all
standard deviations was taken. The mean standard
deviation is 8.7 (SD 5.3, Symatlas data) and 10.4 (SD 6.6,
NeMo data). The average and standard deviation of gene
densities from all positional cluster groups considered
together was calculated as well. The average gene density
for Symatlas data is 35.6 (SD 23.1, values ranging from 6
to 114); and for NeMo data it is 29.2 (SD 20.2, values from
5 to 80). The mean standard deviation for all groups
relative to the standard deviation of all gene densities
taken together is relatively low, 38% (8.7 vs. 23.1) and 51%
(104 vs. 20.2) for Symatlas and NeMo data, respectively
(see dotted and red lines in Figure 3). Genes from the
same co-expression cluster show gene-density similarity.
The differences of gene densities for pairs of genes from
the same co-expression cluster were compared to such
differences in a randomised situation, i.e. with gene posi-
tions assigned randomly (see Methods). The lower differ-
ences in gene-density are observed not only when we take
into account all gene pairs from the same co-expression
cluster but also when we count only those pairs that con-
tain genes from different chromosomes. Gene pairs from
the same co-expression cluster but from different chromo-
somes usually have similar local gene densities compared
to pairs of genes with randomised positions (see Figure 4).
Thus, the tendency of similarity in gene density of co-
expressed genes is observed. It is not related to similarity
in the gene density of genes located close to each other on
the chromosome sequence.

Finding pairs of genome regions: genes from some
regions in the genome are often strikingly co-expressed
We also determined if some chromosomes are repre-
sented in one co-expression cluster more often than
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Figure 3 Standard deviations of gene densities [genes/Mbp]
within groups of positional clusters. Groups of positional clusters
are defined as positional clusters belonging to the same
co-expression cluster. SD was calculated for gene densities from
each group of positional clusters separately (dashed lines indicate
the mean SD) and for gene densities from all positional clusters
together (red lines). Symatlas (top) and NeMo (bottom) data.

expected. For each pair of chromosomes, we counted
pairs of genes that belong to those chromosomes and
are found in one co-expression cluster. To obtain a ref-
erence, we repeated the procedure for the same clusters
but with randomised gene positions and compared the
counts. In both datasets there are pairs of chromosomes
that often appear in one co-expression cluster (Table 1).
These pairs depend on expression modules extracted
from the datasets; hence, they are not identical for both
datasets (see Figure 5). Significance of a pair of chromo-
somes co-occurring in co-expression clusters was esti-
mated by Z-score calculation and permutation tests,
whereby gene positions were randomised (see Methods).
Here, “appearance” means observing a pair of chromo-
somes with significance that is more than 3 standard
deviations. The number of chromosomes that frequently
appear with a given chromosome varied between chro-
mosomes. Some chromosomes have many such partner
chromosomes that they often appear with. In the NeMo
dataset, chromosomes 15, 20 and 17 have the largest
number of partner chromosomes, while in the Symatlas
dataset none of the chromosomes are distinct (see
Figure 5). Some groups of genes associated with
particular chromosomes are co-expressed with each
other. We found those groups by hierarchical cluster-
ing with the matrix of chromosome pair co-occurrence
significance used as the similarity matrix (see Methods).
Chromosomes 9, 12, 15, 17, 20, 22 are grouped together
in the NeMo data. In the Symatlas dataset, there are two
groups: chromosome 15 with 21 and chromosome 4 with
20 (Additional file 1). Both chromosomes 17 and 22
have high overall gene density (see Additional file 2).
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Chromosomes 20, 12 and 15 have a medium overall gene
density. Chromosomes 15 and 21 are achrocentric chro-
mosomes, i.e. their short arms contain rDNA that is a part
of the nucleolus (see Additional file 2).

Besides taking into account whole chromosomes, we
checked if there are chromosome regions associated
with genes that are often found together in one co-
expression cluster. The chromosomes were divided into
10 Mbp regions of fixed length. The procedure for
assessing significant pairs of regions with co-expressed
genes was the same as for the whole chromosomes.
Indeed, there are pairs of regions from which genes are
significantly often co-expressed, called here partnering
regions (see Figure 6). Partnering regions are those pairs
of regions that have co-expression significance above a
cut-off, 3 or 5 standard deviations. These are both
regions from the same chromosome, but distant in
sequence, and regions from different chromosomes. For
example, there are striking “smudges” of such regions
for the NeMo dataset and chromosomes 4, 6 and 20.
Interestingly, there is a wide variation between the num-
bers of partner regions for a single genomic region. In
both datasets, we see some prominent regions that have
many partners from different chromosomes. These

Table 1 Pairs of chromosomes that often appear in one

co-expression cluster

NeMo 17-20, 15-20, 12-20, 9-15, 9-20, 15-17, 12-15, 20-22, 15-22, 6-6,
9-17, 4-20, 15-15, 7-15, 12-17, 4-15, 10-15, 17-22

Symatlas  4-4, 20-20,4-20,19-19, 15-21,16-16

The difference between the number of occurrences in non-randomised and
randomised data is at least 3 standard deviations. The pairs of chromosomes
are presented in order of descending significance.

regions are not identical for both datasets and are easily
visible only for NeMo data (see Figure 6). We looked
into “focus regions” that have the largest number of
partnering regions (constituting around 4% of all 10
Mbp genomic regions defined in this study). Those
regions together with their chromosome positions can
be found in Additional file 3. Only a few chromosomes
have such regions in both datasets. Among them, chro-
mosomes 4 and 20 appear particularly interesting. In
both datasets studied, they have significant partnering
regions that are not the same but are close to each
other. Also, region 233 from chromosome 14 is a re-
gion that has significant partnering regions in both
datasets. To better understand cases of regions having
many partner regions, a closer investigation of regions
81 - 89 from chromosome 4, region 233 from chromo-
some 14 and regions 283 - 287 from chromosome 20
was performed.

Analyses of functional annotation enrichment

In order to gain an insight into the possible functional
role of the co-expressed region pairs, for each of these
“focus regions”, its genes together with genes from
partnering regions found in the dataset were used as
queries in functional term enrichment analysis (see
Methods). Genes from Symatlas data from region 87 and
its partnering regions are most significantly enriched in
functional annotation terms: plasma and extracellular
space (resulting from the presence of genes such as
serpins, apolipoproteins, and fibrinogens). Also, genes
from Symatlas data from region 285 are most signifi-
cantly enriched in the term extracellular space resulting
from the presence of genes such as cystatins. Groups of
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Figure 5 Chromosome pairs from which genes are found together in one co-expression cluster. Square colours correspond to the
frequency of observation of genes from a pair of chromosomes within the same co-expression cluster. The upper triangle colours indicate the
number of standard deviations between co-expression gene pair counts for real and randomised data, the lower triangle — p-value (0.05
threshold for each one-tailed test). Chromosome order is by chromosome size (top) or chromosome gene density (bottom). Symatlas data (left),

genes related to the extracellular annotation term for
regions 87 and 285 and their partner regions do not
overlap (see Additional file 4). Genes from NeMo data
from regions 82, 84, 89, 233, 283, 285, 287 and their
partner regions (each region together with its partnering
regions is analysed separately) are enriched by the cell
cycle phase functional annotation term and related
terms (see Additional file 4).

Further, genes from all significant pairs of regions (see
Figure 6) were used together as one query gene set in
functional term enrichment analysis. Thus, queries
included genes from regions which significantly often

appear together in one co-expression cluster. Cut-offs
of 3, 5 or 10 standard deviations were applied (see
Additional file 5). The most significant functional an-
notation terms related to Symatlas genes are the
extracellular region, signalling, secreted, and for the
highest significance cut-off also chemokine activity.
Most significant terms related to NeMo genes are
related to cell cycle, chromosome, histone, also the
MHC protein complex and the immunoglobulin C1-
set domain.

Besides the analysis of pairs of expression-correlated
regions, functional analysis of groups of positional
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correspond to the frequency of observation of genes from a pair of genomic regions within the same co-expression cluster The upper triangle
colours indicate the number of standard deviations between co-expression gene pair counts for real and randomised data (cut-off 3, 5 or 10
standard deviations), the lower triangle — p-value (0.05 threshold for each one-tailed test). Symatlas data (top), NeMo data (bottom).
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10

clusters located in the same co-expression cluster was
performed. The query gene set included genes from all
such groups of positional clusters taken together. Not
surprisingly, the same functional terms appeared that
had previously been recognised for significant pairs of
chromosome regions. In the NeMo dataset, we see func-
tional terms related to immunological response due to
the presence in the co-expressed groups of positional
clusters of human leukocyte antigen (HLA), collagen,
complement component (CIR, CI1S), and chemokine
(CXCL9, CXCL11) genes. In the Symatlas dataset, func-
tional terms related to the HLA complex and the group
of cytochromes (‘hydroxylation of lipid; ‘biosynthesis of
steroid hormone’ terms) are recognised. Also, terms
such as extracellular, signal, secreted are also present for
the NeMo dataset (see Additional file 6).

Discussion

It has to be borne in mind that our approach has limita-
tions. One of them is the complex relationship between
co-expression and co-regulation. Common regulation of
gene expression may result in correlated expression, but
also in expression anticorrelation, or expression correl-
ation with a time- or dosage-dependent delay [39]. In
our approach, we consider only positive expression
correlation, although the NeMo approach also includes
positive correlation over a subset of conditions.

Using large sets of gene expression data, we have
discovered patterns of co-expression of genes associated
with different regions in the human genome, including
those distant in sequence or located on different
chromosomes. A cluster of co-expressed genes is ty-
pically spread on a lower-than-expected number of
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chromosomes. Also, co-expressed positional gene clus-
ters are observed. They most often contain 2-3 genes. In
the same co-expression cluster, more than one such pos-
itional cluster is often found. Decreased distances between
genes from one chromosome in the same co-expression
cluster were observed. Positional clusters in co-expression
clusters come from places in the genome of varied local
gene density. However, the local gene densities of genes
from positional clusters within a co-expression cluster
vary less than the local gene densities of genes from all
positional clusters. Genes from the same co-expression
cluster show a local gene density similarity that is not a
result of positioning in the same region of the genome.
Some pairs of chromosomes often appear together in
one co-expression cluster. The pairs are not identical in
terms of the different approaches of obtaining transcrip-
tion modules. For the NeMo dataset, not only pairs but
also groups of chromosomes with co-expressed genes
were recognised. These are chromosomes 9, 12, 15, 17,
20, and 22. The genome was also investigated in the
context of expression with a higher resolution. Pairs of
10 Mbp regions associated with genes that are often co-
expressed were found. Some, but a minority of such sig-
nificant pairs of regions are identical for both datasets.
Some 10 Mbp regions were recognised to contain genes
that co-express with genes from many different regions
in the genome and from various chromosomes. The
regions that have many co-expressed partner regions are
not spread among all chromosomes. In both datasets,
they are located on chromosomes 1, 3, 4, 5, 9, 14, 15, 20,
but for both datasets they are not the same regions. In
some cases they have similar chromosome positions.
Functional annotations elucidated for the groups of
genomic regions associated with co-expressed genes
point to biological processes that may underlie the long-
distance expression correlations observed in this study.
The sets of functional annotations enriched in co-
expressed genes from groups of such genomic regions
differ markedly between the two datasets analysed. For
the NeMo dataset, which includes very diverse cell types
and very diverse perturbations, functional terms appear
that are related to basic cellular functions and nuclear
protein genes, e.g. cell cycle. For the Symatlas dataset,
which consists of tissue atlas data, functional terms ap-
pear that are related to extracellular functions and extra-
cellular protein genes, e.g. cell-cell signalling. In general,
co-expression may often be related to a particular cell
type and perturbation. In this study, the long-distance
co-expression relations for genomic regions elucidated
are probably robust enough to appear despite the
expression correlation signals being ‘diluted’ as a conse-
quence of various conditions and cell types. Thus, the
most notable long-distance co-expression among various
normal tissues is related to between-tissue differences in
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cell-cell signalling, while the most notable long-distance
co-expression among datasets including various external
stimuli is related to basic cell cycle regulatory functions.
The over-representation of groups of positional clusters
in co-expression clusters suggests that the co-expression
clusters observed may be in part related to chromosome
territory contacts.

Conclusions

Using simple permutation tests, we have shown that
long-distance gene co-expression relationships can be
elucidated that may be functionally relevant. Such rela-
tionships may or may not be related to the nucleus
structure, yet also other factors and phenomena may be
the underlying reasons. Comparison with experimental
data on the three-dimensional structure of the nucleus
that are beginning to become available [40] will enable
an answer to be found to the question as to whether
such long-distance gene co-expression is directly related
to nucleus structure.

Methods
Co-expression clusters (transcription modules)

1. NeMo data: The first group of co-expression
clusters used in this study was derived by Yan et al.
[37] by means of a graph-based method [37]. The
authors applied their graph-based method to 105
human microarray datasets and identified 4727
potential transcription modules, activated under
different subsets of conditions (see Additional file 7).
The clusters together contain 716 genes
(see Additional file 8). The number of genes in
clusters ranges from 7 to 20 (average 10.7 with a
standard deviation of 2.9). The high quality of
clusters was supported by transcription factor
binding ChIP-chip experiments, analysis of
putative transcription factor binding sites and
functional homogeneity analysis [37].

2. Symatlas data: We also used an alternative way of
identification of co-expression clusters. The dataset
results from an experiment conducted on 79 human
samples from different tissues, organs and cell lines
[38]. This gene atlas represents the normal
transcriptome. The gene expression profiles were
clustered by means of agglomerative hierarchical
clustering with the average linkage method
(UPGMA). Pearson Correlation was used as a
distance measure. The clusters were obtained by
cutting trees at a level closest to leaves while
maximizing the number of clusters containing
between 7 and 30 genes. Thus, cluster sizes were
kept comparable with the sizes of clusters from the
NeMo approach. The upper limit of the cluster size
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was set at 30 genes in order to increase the number
of clusters obtained (see Additional file 9). The
Symatlas clusters together contain 2578 genes
(see Additional file 10). We have also tried to
obtain clusters by hierarchical clustering with
single and with complete linkage algorithms. In
both cases, only very few clusters of size between
7 and 30 genes were obtained (2 and 8
respectively), and consequently these last
algorithms were not used here.

Positional clusters

The genomic positions of genes in each co-expression
cluster were clustered by average-linkage hierarchical
clustering method. The genes more distant than 1 Mbp
were considered as belonging to separate positional
clusters.

Groups of positional clusters

By a group of positional clusters we call more than one
positional gene cluster found within one co-expression
cluster.

Randomised samples, significance estimation

For each gene in a co-expression cluster, we chose a ran-
dom genomic position from among the positions of all
such genes. We determined the statistical significance of
a value by permutation analysis (10000 permutations),
using a Z-score threshold of 3. Since the distributions
analysed need not be normal, P-values were also calcu-
lated from the permutations with a significance thresh-
old of 0.05 for each tail analysis.

Randomisation of positional clusters

Each co-expression cluster was considered as a group of
positional clusters and positionally separate genes that
could not be assigned to a positional cluster. The num-
ber of such items (separate genes and positional clusters)
in all co-expression clusters was kept constant but items
were assigned to the co-expression clusters randomly
(10000 times). After each randomisation, the number of
groups of positional clusters within co-expression clus-
ters was counted.

Gene density, genomic windows

Gene density was calculated as the number of genes
within a genomic region, divided by the length of the
genomic region [Mbp]. Local gene density was calcu-
lated over a 1 Mbp window size, and overall gene
density over whole chromosome length. Chromosome
lengths and gene content were determined based on
NCBI Build36.2 (see Additional file 2). For certain ana-
lyses, chromosomes were divided into non-overlapping
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10 Mbp genomic regions, starting from the beginning of
each chromosome.

Co-expressed genes from pairs of genomic regions

We considered two types of the genomic regions: whole
chromosomes and 10 Mbp-wide chromosome fragments
and used them in separate analyses. For each pair of
genomic regions, we counted the number of gene pairs
from those regions (with each gene coming from a
different region) that occur in one co-expression cluster.
The measure of significance for a pair of regions is the
difference between the gene pair count for real and
randomised data (see Randomised samples section
above) expressed as the number of standard deviations.

Clusters of chromosomes associated with co-expressed
genes

UPGMA (Unweighted Pair Group Method with Arith-
metic Mean), and complete and single linkage hierarch-
ical clustering was performed. The similarity measure
was calculated as 1 — (x+ |min(x)|)/(|max(x)| + |min
(x)|) + eps; eps=0.1; where x is the difference in the
number of occurrences of a pair of chromosomes in the
same co-expression cluster between real and randomised
data, expressed as the number of standard deviations.
The cut-off used is 3 standard deviations. The clusters
below the cut-off obtained for the Symatlas data using
complete, average and single linkage clustering are the
same. In clustering of the NeMo data, the four chromo-
somes (9, 15, 17, and 20) in the cluster below the cut-off
are the same for the three types of linkage. Chromo-
somes 12 and 22 are slightly above the cut-off only in
complete linkage clustering. In single linkage clustering,
besides chromosomes 9, 12, 15, 17, 20, 22, chromosomes
4,7, 10 are also below the cut-off.

Functional analysis

We used DAVID 6.7b tool [41] to analyse the signifi-
cance of frequent occurrences of several categories of
functional annotation terms in sets of genes. The follow-
ing functional term categories were explored: OMIM
DISEASE, SP PIR KEYWORDS, GOTERM BP ALL,
GOTERM CC ALL, GOTERM MF ALL, KEGG PATH-
WAY, EC NUMBER, PFAM. The measure of signifi-
cance of a term is the p-value with Bonferroni
correction for multiple tests, the p-value cut-off used
was 0.05. Terms are considered if they are represented
by at least two genes. As the background gene set to the
analysis, all the genes from the co-expression clusters
for a given expression dataset were used.

Scripts
For all the analyses, dedicated Python scripts were
written, unless otherwise stated.
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Additional files

Additional file 1: Average linkage hierarchical clustering trees of
chromosomes that contain genes often co-expressed with each
other. Similarity measure depends on the number of occurrences of
genes from a pair of chromosomes in the same co-expression cluster
between non-randomised and randomised data, expressed as the
number of standard deviations (see Methods). Clusters above the cut-off
that equals three standard deviations are shown in red.

Additional file 2: Chromosome gene density table. Chromosomes
ordered by overall gene density. Achrocentric chromosomes marked.

Additional file 3: Regions with the highest number of co-expression
partners. Top 4% of regions (for different significance cut-off) that have
the highest number of partners. Partnering regions are those pairs of
regions from which genes are significantly often co-expressed.

Additional file 4: Functional annotations of genes from selected
regions. Significant functional annotation terms connected to genes
from regions 81 - 89 (chr 4, q22.1-q34.1)), 233 (chr 14, g21.3) and

283 - 287 (chr 20, p12.3-q13.13) and their partnering regions. Genes from
each region considered, together with genes from its partnering regions
are separate queries in functional term enrichment analysis

(see Methods).

Additional file 5: Functional annotation of genes from all
significant pairs of regions together. Significant functional annotation
terms connected to genes from significant pairs of regions for Symatlas
and NeMo data.

Additional file 6: Functional annotation of genes from groups of
positional clusters in the same co-expression cluster. The query gene
set included genes from all such groups taken together for Symatlas
data, and for NeMo data separately.

Additional file 7: NeMo co-expression clusters. Each row includes
Entrez Gene Identifiers of genes belonging to the same co-expression
cluster.

Additional file 8: NeMo genes. All genes from the NeMo co-expression
clusters used. Entrez Gene ID, 10 Mb region number, chromosome
number information.

Additional file 9: Symatlas co-expression clusters. Each row includes
Entrez Gene Identifiers of genes belonging to the same co-expression
cluster.

Additional file 10: Symatlas genes. All genes from the Symatlas
co-expression clusters used. Entrez Gene ID, 10 Mb region number,
chromosome number information.
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