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Abstract

Background: Sequencing-by-synthesis technologies significantly improve over the Sanger method in terms of
speed and cost per base. However, they still usually fail to compete in terms of read length and quality. Current
high-throughput implementations of the pyrosequencing technique yield reads whose length approach those of the
capillary electrophoresis method. A less obvious question is whether their quality is affected by platform-specific
sequencing errors.

Results: We present an empirical study aimed at assessing the quality and characterising sequencing errors for high
throughput pyrosequencing data. We have developed a procedure for extracting sequencing error data from
genome assemblies and study their characteristics, in particular the length distribution of indel gaps and their relation
to the sequence contexts where they occur. We used this procedure to analyse data from three prokaryotic genomes

peptide sequence alignment.

model parameters.

sequenced with the GS FLX technology. We also compared two models previously employed with success for

Conclusions: We observed an overall very low error rate in the analysed data, with indel errors being much more
abundant than substitutions. We also observed a dependence between the length of the gaps and that of the
homopolymer context where they occur. As with protein alignments, a power-law model seems to approximate the
indel errors more accurately, although the results are not so conclusive as to justify a depart from the commonly used
affine gap penalty scheme. In whichever case, however, our procedure can be used to estimate more realistic error

Background

High throughput sequencing technology (HTST) has
been changing the landscape of biomedical research,
allowing for issues like genetic variation to be analysed at
a much higher resolution and lower cost [1]. However, the
accumulation of massive amounts of sequence data has
brought back to the spotlight old bioinformatics prob-
lems of string pattern matching and fragment assembly
which, although not completely solved, had been satis-
factorily dealt with in the context of traditional capillary
electrophoresis sequencing over the last years. The dif-
ficulties raised by HTST stem naturally from the sheer
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volume of data produced but also from their character-
istics, in particular the relative smaller read size and the
platform-specific sequencing errors.

Mainstream competing HTSTs offer different trade-offs
in terms of throughput, cost and sequence characteristics,
including read length and accuracy [2]. Common to them
all is the use of highly parallelised sequencing-by-synthesis
procedures that dispense with the laborious bacterial
clone library preparation in favour of specialised forms
of in vitro amplification of the single-stranded DNA
library templates. In the pyrosequencing methodology
[3] commercialised by Roche/454 Life Sciences through
their GS FLX™ platform [4] the process is carried out
in cycles during which a solution of each of the four
distinct deoxribonucleotide triphosphates (ANTP) is, in
turn, flowed into a substrate containing the immobilised
single stranded DNA template and the DNA polymerase.
The eventual polymerase-mediated incorporation of
complementary dNTPs to the template triggers a chain
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of reactions involving chemiluminescent enzymes also
present in the medium resulting in the emission of a
burst of light of intensity proportional to the number of
nucleotides added. This process is highly parallelised as
the solid-phase substrate (the PicoTiterPlate) is organ-
ised as an array of over a million and a half independent
spots, each corresponding to a well containing one bead
to which million copies of a same template molecule are
attached. The light emitted at each cycle and at each
spot is captured by a coupled digital imaging device,
producing a series of pictures which are processed by an
image-analysis program, giving rise to the flowgrams (the
pyrosequencing counterparts of Sanger chromatograms)
from which the identity of the templates can be inferred.

The GS FLX system yields reads a few hundred bases
long with an overall quality that has allowed for de novo
as well as reference-based resequencing projects to be car-
ried out successfully [5,6]. Nevertheless, like other HTSTs,
it cannot prescind from error modelling and correction
strategies. They remain indispensable in order to compen-
sate for the platform-specific sequencing artefacts and to
tell them apart from natural variability.

In the pyrosequencing method, the greatest source of
error corresponds to under or over-estimation of the
number of incorporated bases at each cycle because of
the noise in the luminescence signal. Actually, the sig-
nal intensity is translated into a numerical value (the
flow value) which roughly corresponds to the number
of incorporated bases. However this value can some-
times be ambiguous. For instance a flow value of 3.5
may corresponds to three or four incorporated bases?
It is the job of the base caller program to take care of
this uncertainty and call the correct number of bases.
Base callers like PyroBayes [7] use Bayesian methods to
calculate the maximum a posteriori (MAP) estimate for
the number of incorporated bases #n given a flow value
f, using prior probabilities for the homopolymer lengths
P(n) and the likelihood of the observed flow value given
the homopolymer lengths, P(f|n). These latter values are
estimated from alignments of test fragments to a ref-
erence sequence. PyroNoise [8] handles the problem of
flowgram noise in a similar fashion but considering a
data set of flowgrams (reads) as a whole. The method
is based on a ‘distance’ that reflects the probability that
a flowgram was generated by a given sequence. It then
considers the set of flowgrams as being generated by a
mixture model in which each component corresponds
to a different sequence and the mixing coefficients indi-
cate the relative abundance of the sequences in the set.
Then it uses an EM algorithm (using latent variables that
indicate which sequence gave rise to each flowgram) to
estimate the model parameters, thus obtaining the de-
noised set of sequences that most likely originated the
flowgrams.
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A few studies have been published which investigate the
sequencing error characteristics of GS FLX data through
the analysis of the sequence data. An early study by Huse
et al. [9] assessed the quality of reads of a PCR amplicon
library prepared from 43 reference templates containing
rRNA genes produced with the GS20 technology. The
observed overall error rate was of 0.49%, of which over
60% were insertion or deletions (indels) and 16% substi-
tutions. Errors were found to be evenly distributed within
each read but not among reads, with a very small percent-
age of low quality reads accounting for a large fraction
of the errors. This analysis was challenged on a recent
study by Gilles et al. [10] which considered reads obtained
from control DNA fragments over three runs of the GS
FLX Titanium protocol. They analysed the effect of sev-
eral variables on the error rate distribution, including
read length, the position of the error within the read,
homopolymer effects, and the physical position of the
bead on the PicoTiterPlate. Not only the mean error rate
was higher than the one reported by Huse et al.,, 1.07%,
but the conclusions also diverged in many important ways.
Gilles and collaborators observed that virtually 90% of the
reads contained errors (as opposed to only 18% observed
by Huse and coauthors) and that the errors were nonran-
domly distributed within these reads, with a degradation
towards the 3’ end. They observed a significant effect of
the other variables but found that none of them alone
accounted for the error rate distribution, suggesting that
the variation in the error rate resulted from higher order
interactions of the explanatory variables.

High-throughput pyrosequencing error characteristics
have also been studied with the aim of producing more
realistic simulators for this kind of data. Balzer et al. [11]
analysed a data set of bacterial sequences to derive an
empirical model for the error distribution. By aligning
the (trimmed and quality-filtered) reads to the reference
genomic sequences, they could associate flowgram values
to actual homopolymers of length up to 5 and fit these val-
ues to Gaussian distributions. The noise in the flowgram
values is accounted for by the variance of these distribu-
tions. This sample variance was found to increase with the
homopolymer lenght but also, for the same length, with
the position within the read, confirming the findings of
Gilles et al. This lead to the development of a flowgram
simulator using ten different empirical distributions cor-
responding to adjacent windows covering 200 flow cycles.
A refinement of this simulator was presented in a sub-
sequent paper [12], in which Balzer et al. simulate PCR
amplification errors at a rate estimated by analysing ‘sub-
peaks’ of flowgram values over the integer values adjacent
to the correct value. McElroy et al. [13] propose a sim-
ulator capable of generating sequences akin to GS FLX
reads. In order to do so, the software uses the result of the
alignment of a set of reads to a reference genome in order
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to build an empirical model for the errors. This model
takes into account the nucleotide type, the position in the
read, and the sequence context in which the errors occur
by considering the three bases preceding the error and
the base following the error. The analysis of a 454 data
set containing aligned plasmid control sequences revealed
average error rate figures inline with previous studies,
but with a very limited positional effect. Homopolymer
effects were also reported based on the analysis of the
most common sequence error contexts.

Despite the aforementioned efforts to understand the
error distributions of GS FLX data, no model is yet estab-
lished as a standard. Application-specific error models
are generally employed for some flexibility in the use of
the reads, whether in de novo or resequencing applica-
tions. This usually amounts to scoring local alignments
between a read and some other reads in the data set
or a reference sequence, allowing for mismatches, inser-
tions and deletions according to certain penalty schemes.
A read may be classified as erroneous (and hence dis-
carded) if its best alignment score deviates significantly
from an exact match score. Most read alignment algo-
rithms use an affine error model which penalises insertion
or deletion (indel) gaps by attributing a fixed cost to a
gap initiation and then a fixed cost to each additional gap
position. This approach is simple to interpret and bene-
fits from efficient quadratic-time dynamic programming
implementations [14] but, due to the nature of pyrose-
quencing, it is debatable whether this uniformity is faithful
to the underlying phenomena. Indeed, most studies seem
to confirm that errors in long homopolymers are more
common and so should be less heavily penalised. One
could argue whether a convex penalty model, in which
gap costs increase, for instance, according to a logarith-
mic function, would me more appropriate. Such models
have already been successfully shown to fit biological
sequence alignment data [15] and sub-cubic implementa-
tions of the corresponding optimal alignment algorithm
exist [16].

In this study, we aimed at analysing the quality of the
reads produced by the GS FLX instruments. Apart from
assessing the overall sequencing error rates, our spe-
cific objective was to test whether the ubiquitous affine
model is suitable for modelling high-throughput pyrose-
quencing errors, in comparison with a convex error sat-
uration model used, for instance, in protein sequence
alignment. Likewise, we analyse whether the length of
the gaps could be influenced by the length and compo-
sition of the homopolymer in which they occur, which
could motivate the use of a more specific model. Our
procedure uses plain sequence data and can be used by
users of most read mappers to estimate sensible values
for the parameters corresponding to the costs of errors of
various kinds.
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Methods

The problem of modelling the errors of a specific sequenc-
ing platform can be approached at many different levels
of abstraction since each step of the process is prone to
introduce errors. In the GS FLX automated sequencing-
by-synthesis procedure, the prevalent type of error relates
to the size of homopolymers. These errors can occur,
for instance, because of an insufficient supply of free
dNTPs at a given cycle, leading to an incomplete exten-
sion of a homopolymer stretch. On top of those basic
chemical-level issues, there is the problem of captur-
ing and interpreting the weak and noisy luminescent
signals to determine the exact number of incorporated
bases, which becomes particularly hard as the length of
the homopolymer grows. Taking into account errors at
the lowest levels requires comprehensive and specialised
knowledge and control over the process which are usually
inaccessible to end users and even bioinformatics special-
ists. Typically the lowest level data available are the SFF
files containing the flowgrams. Some methods approach
the issue of sequencing errors at this level by analysing
data ‘in the flowspace’ [7,8,11,12].

The GS FLX pipeline includes conservative filters to
rule out ambiguous spots, which usually results in a sig-
nificant decrease in the number of useable reads, from
about 1.6 million to a few hundred thousands. Despite
that, one can still expect some errors to make it through to
the sequence level, specially in genomes containing long
homopolymers. Here we propose to tackle the problem
at this level, which makes the method more universally
accessible, even when the flowgrams are not available.
Conceptually, our approach consists in comparing the
reads produced by the instrument with the actual tem-
plate sequences to count the number of sequencing errors
of a few distinct types, and then fitting the values to an
empirical model that reflects some basic knowledge about
the ‘mechanics’ of the sequencing procedure.

Data preparation

An important step when building an empirical model for
a given phenomenon is to obtain a data set of faithful and
descriptive observations of a sufficiently large number
of its occurrences. In our case, and at the abstraction
level we work, i.e. the sequence level, the ideal data set
would be composed of alignments between the template
sequences and the obtained reads which could char-
acterise each reading error event having occurred. For
example, an alignment ig?gg would tell us that the first
and fourth bases of the template, respectively A and C,
were correctly read, whereas the two consecutive G’s were
misinterpreted as one single copy and the final T was
misread as C. In practice, though, we usually have only the
readouts produced by the machine (maybe at different
detail levels: raw image, signal intensity, sequence). We
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thus need to somehow infer the most plausible alignments
from the available data, using also some knowledge about
the sequenced samples and the underlying sequencing
technology.

Our data set construction strategy, depicted in Figure 1,
stands upon two concepts: redundancy (coverage) and
homology (conservation). Starting with the flowgram files
(SFF) produced by the sequencer, we use an automatic
de novo genome assembler to reconstruct the original
genome. This results in an ACE file that describes how a
certain number of contigs are formed from a patchwork of
the original reads (or pieces of them). During the assem-
bly, a minimum overlap is required between reads so that
they can be stitched together. Consequently, every posi-
tion of a contig is ‘covered’ by multiple overlapping reads.
This redundancy is usually regarded as an indicator of
the veracity of the assembled contigs, the idea being that
errors eventually introduced in some reads are unlikely to
be consistently reproduced over the other reads covering
the same region.

At this point, we have an initial collection of matches of
reads against the assembled contigs. Concretely, from the
ACE file we extract a set of alignments {(C;, R;)} between
pieces of contigs, C;, and reads, or pieces of reads, R;. As
part of the assembly process, the reads can be padded so
that they fit together, meaning that some positions of a
given R; or C; may actually be gaps ‘-’ We then distinguish
four cases concerning individual columns of an alignment
as follows. An alignment column ;, forx,y € {A,G,C, T}
means that the base x at that position was read as y. If

SFF files

Assembler

ACE file

Normalisation
and extraction

A
Normalised
contigs

Pairwise comparison

(Blistn)

Assembled vs reference
genome matches

L Homology ﬁlteré

Bona fide
alignments

A

Normalised
alignments

Reference
genome

Figure 1 Data set construction workflow. Data set construction
workflow.
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x = y then no error occurred, whereas if x # y then we
have a substitution error. An alignment column * means
that the base x of the contig (template) was skipped, i.e.,
not sequenced. We call this a deletion error. Similarly, an
alignment column | means that y was introduced by error
in the read. We calfthis an insertion error. Finally, we can
have an ill-defined column _, which may happen because,
as said, the template is covered by multiple reads and we
can have some of those reads with an insertion error at a
given position and the others without this error. Neverthe-
less, these latter will also have a ‘-’ padded at that position
in order to comply with the former. For example, in the
situation

Contig : AAGGCC-GTTGCGGC
R1 :AAGGCC-GTT
R2: GGCC-GTTGCG
R3: CCCGTTGCGGC

the read R3 has an extra C at its third position with respect
to the other reads, and so a ‘-’ is inserted in the corre-
sponding positions of the other reads. To correct this, we
need to normalise the pairwise read-contig alignments,
which essentially corresponds to removing these gap-only
columns. After this step, we have a set of normalised
alignments {(C, R})}.

Although a reasonable level of redundancy (coverage)
confers some credibility to the obtained contigs, we take
a further step to ensure that they do correspond to
the actual sequences of the template molecules before
taking their alignments into account. For this purpose,
we look for homologous regions in the genome G of a
closely related species, which we take as input. For each
normalised alignment (C;,R;), we use BLASTN to find
matches of C in G, using minimum identity and max-
imum e-value cutoffs of I and Enax, to determine
whether the hit corresponds to a sufficiently conserved
region to be trusted. If C; passes this homology filter, then
we regard (C}, R)) as a bone fide alignment. To summarise,
our contention is that, if the obtained contigs are homol-
ogous to sequences of a close, independently sequenced
genome, then they must be real. Moreover, since they
result from a multiple alignment of reads, then these align-
ments, and hence the sequencing events they represent,
are also assumed to be faithful.

Model evaluation

Two desirable (and possibly conflicting) properties of an
empirical error model are first, that the model be capable
of explaining well the observed errors and, second, that
the model be simple enough to be useful in practice. The
first property usually requires some kind of intuition and
basic knowledge about the underlying process so that the



da Fonseca et al. BMC Research Notes 2013, 6:25
http://www.biomedcentral.com/1756-0500/6/25

model can be crafted to capture its essential characteris-
tics. However, the more information we add to the model,
the more likely it is to become too complex and to overfit
the data. Ideally, we would like to keep it simple enough so
as to have convenient analytical and computational prop-
erties, which may imply using known functional forms
even at the cost of some accuracy.

It has already been reported that the most common
sequencing errors in the GS FLX platform are insertions
and deletions, with substitutions being much less fre-
quent [9]. To assess the relative abundance of the different
insertion and deletion (indel) gap lengths, we extracted
the length of each observed gap from the alignment data
and adjusted these values to two model distributions as
follows.

In the first model, we assume that each position con-
tributes equally to the overall probability of the gap.
Put another way, the ratio between the probabilities of
two consecutive gap lengths is constant. This is what is
assumed by many tools (e.g. [17,18]), which use linear (or
affine) functions to score the alignments. In this model,
the probability for an observed gap to have length exactly
k=1,2,...is given by

PGl X =k Bl= g1 - B), (1)

where 0 < 8 < 1 is the contribution of each position.
Since (1) is a geometric distribution, we refer to this as the
geometric model.

To contrast with the widespread geometric model, we
considered fitting the data to a Zipfian distribution, which
has the form

g
Py[X =kio]l= LIL = Ck™ 7, (2)
> 1/

where o > 0 is the parameter that controls the shape, L
is set to the maximum gap length and C = (ZL=1 1//°)7 1
is a normalising constant. The Zipfian distribution has
already been successfully employed to model indel gap
lengths in other contexts [15] and it is used to derive
convex scoring functions for the alignments [19].

Table 1 Data sets
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In order to compare the adequacy of the two models, we
obtain maximum likelihood estimators for each of them
with respect to the gap length data x = (x1,...,xn), that
is, /§ (x) and & (x). We then measure the overall discrep-
ancy between the observed frequencies of each gap length
and its maximum likelihood prediction by computing the
Pearson’s 2 statistic

L

X2(x) =Y (O — Ex)*/Ex (3)

k=1

where Oy is the observed number of gaps of length &
and Ej is its expected number of occurrences, given by
N - Plk; B] and N - P[k; 6], for the geometric and Zip-
fian models respectively. The bigger the value of x?(x)
the poorer the fit, since this value is a sum of squared
residuals.

The indel errors in the massively parallel pyrosequenc-
ing technique arise mainly due to the lack of precision
in the conversion of the luminescence signal. It has been
reported that this tends to be aggravated as the length
of the homopolymer corresponding to the signal grows
since a linear correspondence between signal intensity
and sequence length cannot be assured beyond a certain
number of bases [5]. To check to what extent this is indeed
a problem in practice, we separate the gaps by homopoly-
mer context. We define the context of a gap as follows. Let
us consider the general form of a homopolymer deletion
gap (the insertion case is analogous), that is

..xi...xj xj+1...xk xk+1...xs...

..yi...yj S yk+1...ys...’

where the sequence of identical non-gap symbols xj;1 =

= x; = «a have been deleted. The left flank of
the context of this deletion is defined as the maximal
sequence of matches withx; = y; = --- = % = y; =
«. Similarly, the right flank of the context is defined as
the maximal sequence of matches with xx11 = yr41 =
-~ = % = ys = o. Notice that either part may be
empty. Then, the overall context of this gap of lengh k — j
is the homopolymer x; - - - x;. Hence, for example, in the

Data id. Sequenced organism Reference organism Nb. of reads Avg. read length
(Data source) (Data source)

MH M.hyopneumoniae 7422 M.hyopneumoniae 7448 83,084 247nt
(LNCC - Additional file 1) (GenBank: NC_007332)

SA S.aureus USA300 S.aureus MSHR1132 267,970 269nt
(SRA: SRR000892) (Genbank: NC_016941.1)

SP S.pneumoniae CDC1873-00 S.pneumoniae G54 169,176 262nt

(SRA: SRR001327)

(Genbank: NC_011072.1)

Data sets used in this study. We use the shorthand ids MH for Mycoplasma hyopneumoniae, SA for Staphylococcus aureus and SP for Streptococcus pneumoniae.
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Table 2 Assembly data

Dataid. = Assembler Nb. of Assembly N50 /N80
contigs size

MH Newbler 102 981,106 27,323/10,189
Celera 282 1,011,888 10,963 /4,287

SA Newbler 66 2,971,290 143,335/56,013
Celera 691 3,162,318 52,376 /17,400

sp Newbler 178 2,223,061 30,556/ 18,166
Celera 671 2,331,216 15,133 /6,442

Genome assemblies data summary. ‘Assembly size’ corresponds to the overall
sum of the lengths of the contigs. The N50 (respectively N80) value corresponds
to the largest contig length L such that the contigs of length > L contain at least
50% (resp. 80%) of the bases in the assembly.

alignment z_a:g??gng?gégé?, the gap contexts, from left to

right, will be AA, CCCCC, AA, T, GG and T.

We perform two-sample Mann-Whitney tests for each
pair of contexts to determine if their gap lengths come
from the same distribution. Incidentally, these tests also
serve to determine if there are significant differences
in the gap lengths according to the composition of the
contexts.

Results and discussion

We illustrate this discussion with the results of the analy-
ses performed on three data sets, summarised in Table 1.
To avoid an eventual instrument-specific bias, we used
data obtained from different sites. The MH sequenc-
ing was carried out at the LNCC, in Brazil. The SA
and SP reads were obtained from the SRA, as indicated
in Table 1, the sequencing data being provided by the
WUGSC and the JCVI, respectively, both in the USA.
Since we were interested in assessing the error charac-
teristics of the GS FLX platform, our analyses considered
the assemblies produced by the GS De Novo Assembler
[4], commonly referred to as Newbler, which is pro-
vided as the ‘official’ platform software. Because of the
alignment data construction strategy discussed above and
illustrated in Figure 1, the analysis will be, in principle,
assembler-specific. The fact that we use only assembled
fragments that match a reference sequence obtained inde-
pendently will hopefully mitigate this influence of the

Table 3 Alignment data summary
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assembler tool. However, in order to check the robustness
of our conclusions, we also performed the analyses with
the Celera WGS assembler, which has been successfully
adapted to work with GS FLX data [20]. All assemblies
were produced with Newbler version 2.3 and Celera WGS
assembler version 7.0 with default parameters.

The results of the assembly step are summarised in
Table 2. Although the overall assembly sizes are very sim-
ilar, we see that Newbler consistently produced fewer
contigs. Not only it yielded less contigs, but the N50/N80
statistics also favour Newbler over the WGS-assembler.
That said, we note that those global properties of the
assemblies are only of relative importance to our analysis
because we care only about the local alignment informa-
tion. The ACE files containing the automatic assemblies
were processed according to the pipeline described in
‘Methods; with Iy and Epax set to 0.8 and 0.01 respec-
tively. The number and average length of the extracted
alignments, both the intermediate candidate alignments,
obtained after normalisation, and the final bona fide ones,
are shown in Table 3. For the analyses, we pooled together
all these data, resulting in an a global data set of 332,189
alignments spanning 82,837,778 positions for Newbler,
and 259,384 alignments spanning 70,835,968 positions for
the WGS assembler.

First, we examine the overall characteristics of the
extracted errors. Table 4 summarizes the exact match
occurrences. We group these occurrences by homopoly-
mers since the actual sequencing occurs one homopoly-
mer at a time. We include here only exact matches
between homopolymers that are not in the context of
a gap (see Methods). We notice that the matches con-
centrate on homopolymers of length up to 7-8, not only
because they are easier to sequence but mainly because
they are much more abundant. For Newbler, the exact
match alignments cover 97.78% of the total aligned posi-
tions, and for the Celera assembler, 93.52%, which indi-
cates a very low sequencing error rate in general, and in
particular when the official assembler is used, a testimony
of the very conservative filters applied by this platform.

The substitution errors are summarised in Table 5. We
have observed 665,969 substitutions for Newbler which
account for only 0.08% of the total positions. For the

Data id MH SA SP

Assembler Newbler Celera Newbler Celera Newbler Celera
Nb. of candidate alignments 84,376 77,058 269,693 209,626 172,436 119,367
Cand. alignments avg. length 242 299 257 266 242 259

Nb. of bona fide alignments 79,135 73,535 108,718 84,692 144,336 101,157
Bona fide alignments avg. length 245 300 258 266 245 259

Alignment data characteristics for /min= 0.8, Emax=0.01.
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Table 4 Homopolymer exact match occurrences

Newbler
1 2 3 4 5 6 7 8 9 10 11 12
A 10112299 3780060 1394445 591882 250066 94484 27007 4569 498 61 10 9
C 9275676 1932907 270496 54226 8510 1239 175 6 0 0 0 0
G 9325002 1918715 273077 51062 7796 1026 115 10 0 0 0 0
T 10114600 3747686 1369516 584450 260939 101704 33958 6960 802 88 37 18
13 14 15 16 17 18 19 20 21 22 23 24
A 10 4 3 7 1 2 0 1 0 0 0 1
C 0 0 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0 0 0 0 0
T 21 11 4 2 4 1 0 2 0 0 0 0
Total match positions: 80,998,946
Celera
1 2 3 4 5 6 7 8 9 10 11 12
A 8266460 3097760 1128372 492925 215277 82702 26304 4552 651 79 38 24
C 7527051 1547142 217848 43078 6786 876 113 0 0 0 0 0
G 7443144 1495949 212552 41896 6191 882 147 20 0 0 0 0
T 8322275 3084911 1146793 502731 224735 89882 29349 5634 423 55 32 25
13 14 15 16 17 18 19 20 21 22
A 15 12 16 5 1 1 3 0 0 1
C 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0 0 0
T 48 12 1" 8 6 2 2 1 0 0

Total match positions: 66,248,219

Homopolymer exact match occurrences. The row indicates the base of the homopolymer and the column indicates its length. Thus for example, there were 7796
exact match alignments of GGGGG in the Newbler data set, and only 111 of TTTTTTTTTTTTTTT in the Celera assembler data set.

Table 5 Base substitutions

Newbler

A C G T
A 0 (0%) 74588 (11.2%) 63823 (9.58%) 92787 (13.93%)
C 26505 (3.98%) 0 (0%) 49970 (7.5%) 41064 (6.17%)
G 23442 (3.52%) 48670 (7.31%) 0 (0%) 51326 (7.71%)
T 53587 (8.05%) 72148 (10.83%) 68059 (10.22%) 0 (%)

Total substitutions: 665,969
Celera

A C G T
A 0 (0%) 314368 (9.48%) 298435 (9%) 454647 (13.71%)
C 215248 (6.49%) 0 (0%) 155494 (4.69%) 220471 (6.65%)
G 214762 (6.48%) 155015 (4.67%) 0 (0%) 214063 (6.46%)
T 449989 (13.57%) 310634 (9.37%) 312819 (9.43%) 0 (0%)

Total substitutions: 3,315,945

The cell at row x and column y indicates the number of occurrences of the alignment column ¥ in the data set, that is, the number of times the base x was substituted
by y. Close to this number, in parentheses, is the percentage of the value relative to the total number of substitutions.
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Celera assembler, this absolute proportion was signifi-
cantly higher, at about 4.6%. This, combined with the
observation of the alignment lengths of Table 3 indicates
that the WGS assembler privileges longer reads and is
more permissive as for substitutions, which is not surpris-
ing given its Sanger sequencing origins. With Newbler,
although the substitution error rate is very low in absolute
terms, if we regard the number of substitutions relative to
the overall number of errors (including indels), we have
that they account for about 50% of the total number of
errors in this data set (665969/(665969+389063+287991)),
which is quite significant, although in comparison this
is a lower proportion than what is observed in other
technologies [21]. With the Celera assembler, substitu-
tions account for over 77% of the errors, again possibly
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due to its excessive tolerance towards mismatches. We
observe a bias towards C/G substitutions relative to
A/T (~ 22% vs. ~ 12% in Newbler, and ~ 27% vs. ~ 9%
in Celera).

Next, we examine the number of indel errors per con-
text, which are illustrated in Figure 2(a). We notice that the
absolute number of insertion gaps decreases with the size
of the context, which is not surprising, given the relatively
lower number of large contexts themselves. Indeed, if we
compute the ratio between the number of occurrences of
a given homopolymer as an indel context and the number
of its exact match alignments, we observe a clear ten-
dency for the chance of having a gap in a homopolymer to
increase with its length, as can be seen in Figure 2(b). Data
shown in Figure 2 concern the Newbler assembler. The
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equivalent graphics for the WGS assembler reveal qualita-
tively similar patterns and can be found in the Additional
file 2.

The distribution of gap lengths is illustrated in Figure 3,
which shows the histograms of the lengths of insertion
(left) and deletion (right) gaps for both Newbler (top)
and Celera assembler (bottom). As it can be seen, there
is a dominant abundance of gaps of size one and the
histograms are somewhat evocative of a power-law distri-
bution. We notice that the Celera gaps tend to be smaller
in average, again in line with its Sanger sequencing origins.

We wanted to compare the approximations of the
gap length data with Geometric and Zipfian models, as
explained in Methods. In order to visually compare the
fits of these models, we plotted the residuals in the two
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scenarios using both the Newbler and WGS assembler
data. This information is summarised in Figure 4 which
shows the value of the Pearson’s x? statistic for the max-
imum likelihood fits of the insertion and deletion gap
lengths for each context. The graphics show that the Zip-
fian sums of squared residuals (yellow bars) are up to a few
orders of magnitude smaller than the Geometric (green
bars) ones (notice the log scale of the graph), thus evidenc-
ing the fact that the Zipfian approximation is much closer
to the actual distribution of gap lengths for any context
(which is also suggested by the best fit curves in Figure 3).
However, despite this difference, the X2 goodness-of-fit
tests do not allow us to claim that the Zipfian is the
right approximation, with P-values varying haphazardly
depending on the context, and often being not significant
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Insertion: chi square statistics
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bars correspond to the contexts listed in the usual order A1, C1, G1, T1, A2, C2, G2, T2,...

enough to support the null hypothesis (see Additional files
2 and 3 for the full results).

The next question to be addressed is whether there
are significant changes in the gap length distributions
according to the context. We tested whether the insertion
and deletion gap lengths come from the same distribu-
tion for each pair of contexts using both the Newbler
and WGS assembler data. To help us establish a pattern
and to circumvent the lack of data which may render the
test approximations imprecise, we summarised this infor-
mation by performing the same kind of test, this time
grouping the contexts by length. The graphics in Figure 5
display the results of these tests (for the full results, see
Additional files 2 and 3) for every pairwise combination
of insertion (left) or deletion(right) context length. In the
cell with coordinates (i,j), we have the test of the null

hypothesis that the insertion/deletion gap lengths with
contexts of length i and j come from the same popula-
tion, against the alternative hypothesis that they do not
come at the significance level @ = 0.01 (two-tailed test).
If the null hypothesis is rejected (indicating different dis-
tributions) the cell is filled in red. Otherwise, it is filled
in green. A blank cell indicates that the test could not be
performed, typically because of the lack of data (the main
diagonals are, of course expected to be green). The results
show a majority of red cells, particularly in the upper left
parts of the triangles, which correspond to smaller con-
texts, for which the abundance of data makes the test more
meaningful. In fact, if we consider only contexts of length
up to 8 (longer contexts have very few occurrences), we
have almost exclusively red cells. The lower parts of the
triangles correspond to the cases in which the contexts
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if the null hypothesis is rejected at the significance level &« = 1%, or in green otherwise.

are longer and hence the difference between their lengths
relatively smaller, and for which there is much less data.
These factors make the tests in those cases less accurate.
Overall, these tests seem to confirm an influence of the
context, in particular of its length to its corresponding gap
lengths.

Conclusion

We have presented an empirical study aimed at char-
acterising the sequencing errors occurring in massively
parallel pyrosequencing technology. We have devised a
procedure to generate data sets of bona fide alignments
in which these sequencing errors are represented as mis-
matches and gaps. We evaluated general patterns of inci-
dence of the substitutions and indel errors, and more
specifically the distribution of the indel lengths and the
influence of the sequence context to this length. Inspired

by previous work on biological sequence alignments [15],
we have compared a geometric model of gap length dis-
tributions to a Zipfian model. The geometric model is
assumed by many state-of-the-art read mapping tools, e.g.
[17,18], which score gaps according to an affine function
of their lengths. In these schemes, each additional gap
position is penalised with a fixed amount. Our results
suggest that this affine model is not the most realistic
when it comes to pyrosequencing errors because it fails
to approximate the observed gap lengths distribution and
it disregards the sequence context. However, the Zip-
fian approximation, albeit more accurate, also failed to
show a significantly better fit as to justify that we aban-
don the efficient dynamic programming local alignment
procedures of the affine model in favour of more spe-
cialised and hence more computationally intensive gap
penalty schemes. Our experiments have shown that the
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conservative filters applied by the GS FLX platform do
enforce a high sequence quality, as demonstrated by the
very low rates of error per base. We postulate, however
that, for 454 pyrosequencing data, the procedure that we
have implemented to carry out this study can still offer a
viable alternative for the estimation of realistic parameters
for alignment scoring functions in a principled manner, in
contrast to arbitrary values often used by many tools in an
ad hoc fashion.

Availability of supporting data

Additional files, including supporting data and source
code for the software used in this study (Additional
file 1), as well as the complete results (Additional files
2 and 3), are available from our supporting website
http://kdbio.inesc-id.pt/~pgsf/pyroseq_err.

Additional files

Additional file 1: Compressed archive containing the source code (in
Shell script, Python and R) and the analysed data sets (ACE and
FASTA files).

Additional file 2: Full results of the experiments for the Celera WGS
assembler.

Additional file 3: Full results of the experiments for the Newbler
assembler.
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