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Abstract

activate protease-activated receptor-2 (PAR-2).

might affect the binding and cleavage of PAR-2.

cleavage and subsequent activation of PAR-2.

Background: Salmon trypsin is shown to increase secretion of the pro-inflammatory cytokine interleukin (IL)-8 from
human airway epithelial cells through activation of PAR-2. Secretion of IL-8 induced by king crab trypsin is observed
in a different concentration range compared to salmon trypsin, and seems to be only partially related to PAR-2
activation. This report aim to identify differences in the molecular structure of king crab trypsin (Paralithodes
camtschaticus) compared to salmon (Salmo salar) and bovine trypsin (Bos taurus) that might influence the ability to

Results: During purification king crab trypsin displayed stronger binding capacity to the anionic column used in
fast protein liquid chromatography compared to fish trypsins, and was identified as a slightly bigger molecule.
Measurements of enzymatic activity yielded no obvious differences between the trypsins tested. Molecular
modelling showed that king crab trypsin has a large area with strong negative electrostatic potential compared to
the smaller negative areas in bovine and salmon trypsins. Bovine and salmon trypsins also displayed areas with
strong positive electrostatic potential, a feature lacking in the king crab trypsin. Furthermore we have identified 3
divergent positions (Asp'*®, Arg®**, and Tyr**) located near the substrate binding pocket of king crab trypsin that

Conclusion: These preliminary results indicate that electrostatic interactions could be of importance in binding,

Keywords: King crab trypsin, Molecular modelling, Protease-activated receptor-2, Electrostatic interaction

Background

Trypsin is a known activator of protease-activated recep-
tor (PAR)-2 [1,2]. Receptor activation by proteases is
achieved by proteolytic cleavage of the N-terminal
sequence. This cleavage unmasks a new amino terminus
that serves as a tethered ligand that binds to conserved
regions in the body of the receptor, resulting in the initi-
ation of signal transduction [3]. Exogenously applied
synthetic peptides based on the sequence of the tethered
ligand are also capable of activating PARs by directly
binding to the body of the receptor. To date, four PARs
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have been cloned and characterized; PAR-1, PAR-2,
PAR-3, and PAR-4. PARs have emerged as important
receptors in airway inflammation and allergy, and PARs
are expressed in all cell types that participate in the in-
flammatory response of the lung; epithelial cells, mast
cells, macrophages, infiltrated neutrophils and eosino-
phils, fibroblasts, smooth muscle cells, endothelial cells,
lymphocytes, and neurons [4,5].

Our previous work has confirmed that purified salmon
trypsin increase secretion of the pro-inflammatory cyto-
kine interleukin (IL)-8 from human airway epithelial
cells through activation of PAR-2 [6]. Secretion of cyto-
kines from the airway epithelium contributes to an
inflammation response and can be induced by both en-
dogenous and exogenous proteases [3]. Based on the
knowledge that occupational airway symptoms are fre-
quently presented by workers handling different species
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of fish and crustaceans [7-15], we have tested several types
of seafood trypsins in our cell based assays. This in order
to investigate possible initiation of signal transduction
connected to inflammation processes in human airway
epithelial cells [6,16]. During purification of numerous fish
trypsins (Atlantic salmon [Salmo salar], sardine [Sardinops
melanostictus), anchovy [Engraulis japonicus], jacopever
[Sebastes schlegelii], yellow tail [Seriola quinqueradiatal,
spotted mackerel [Scomber australasicus] ) and trypsin
from the king crab (Paralithodes camtschaticus) by fast
protein liquid chromatography (FPLC), we observed that
king crab trypsin bound stronger to the anionic column
compared to the fish trypsins we purified.

Molecular size, conformation and electrostatic potential
will influence on a molecule’s ability to bind and interact
with signalling partners. To bind tightly, the ligand must
possess a shape and a charge distribution that are comple-
mentary to the target receptor [17,18]. In the molecular
complex formed, attractive van der Waals and electro-
static (charge-charge) interactions are made across the
binding interface. While the van der Waals interactions
are relatively non-specific and small in magnitude, the
electrostatic (charge-charge) interactions are highly spe-
cific and act over a significantly longer range. A small
chemical change as conversion of one amino acid from L-
to D- form or substitution of amino acids can inactivate
the molecule, as the receptor may fail to bind the altered
form or bind it less efficiently. The nature of the inter-
action between two signalling partners will influence upon
downstream signalling pathways following molecular in-
teraction leading to activation and transmission of the
molecular signal (full or partial agonists) or inactivation
without signal transduction (antagonists) [19].

We decided to explore the observed divergence between
king crab and fish trypsins further. Purified salmon, sar-
dine, bovine and king crab trypsins were evaluated by their
ability to hydrolyze a chromogenic substrate (DL-BAPNA)
and molecular modelling was executed of salmon, bovine
and king crab trypsins for comparison of molecular struc-
ture and possibly identification of important amino acids
in the trypsin — PAR-2 interaction.

Methods

Materials

Na-Benzoyl-p; -arginine 4-nitroanilide hydrochloride (DL-
BAPNA) and trypsin from bovine pancreas (T7309) were
purchased from Sigma-Aldrich, MO, USA. Purified salmon
trypsin was kindly provided by Dr. Nils Peder Willassen
and Dr. Ronny Helland (University of Tromsg). King crab
trypsin was manufactured by Dr. Galina N. Rudenskaya
(Moscow State University), and the sardine trypsin
was supplemented by Dr. Hideki Kishimura (Hokkaido
University).

Page 2 of 7

Protein determination

The protein concentration was determined with a Nano-
Drop ND-1000 spectrophotometer (Thermo Scientific)
using the Protein A280 determination module.

Fast protein liquid chromatography (FPLC)

All purification steps were carried out at 0-4°C. The freeze
dried trypsins prepared according to Rudenskaya et al.
[20], Kislitsyn et al. [21], and Kishimura et al. [22] were
re-suspended in 25 mM TrisHCI, pH 7.5 and applied to a
1.5 ml benzamidine-sepharose 6B column equilibrated
with 25 mM TrisHCl, 10 mM CaCl,, 500 mM NaCl, pH
7.5. Bound trypsin was eluted using 120 mM benzamidine
and collected in 1.5 ml fractions. All fractions with en-
zymatic activity measured by the serine protease assay
(DL-BAPNA) were pooled and dialyzed against 25 mM
TrisHCl, 10 mM CaCl,, pH 7.5 at 4°C over night using
10K Slide-A-Lyzer dialysis cassettes from Pierce, IL, USA.
The following day the benzamidine purified trypsins were
applied to a 1 ml Resource Q ion exchange column equili-
brated with 25 mM TrisHCl, 10 mM CaCl,, pH 7.5 and
the enzymes were eluted with 1 M NaCl using a 7.5% gra-
dient for 10 fractions (total of 5 ml) followed by a linear
gradient rising to 100% in 20 fractions (total of 10 ml).
Fractions corresponding to the observed peaks were tested
for enzymatic activity and pooled before dialysis as de-
scribed previously.

SDS-PAGE

After purification the trypsins were run on a sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) (4-12% NUPAGE; Invitrogen) and stained with
SilverQuest™™ Silver Staining Kit (Invitrogen) for verifi-
cation of their purity.

Protease activity determination

The enzymatic activity of the purified trypsins was deter-
mined by a serine protease assay where the hydrolyzation
of a chromogenic substrate (DL-BAPNA) was measured
spectrophotochemically by the increase in absorbance at
405 nm at room temperature or 37°C for the length of
10 min. The substrate was diluted in substrate buffer
(25 mM TrisHCI, 10 mM CaCl,, 2% (v/v) DMSO, pH 8.1)
and used at a final concentration of 0.5 mM. The activity
was measured in a total volume of 250 pl (10 pl of enzyme
and 240 pl of diluted substrate) in clear, 96 well trays with
flat bottom (BD Falcon, NJ, USA). The results were
expressed as units (U)/ml [23], and one unit of activity
was defined as 1 pumol substrate hydrolyzed per minute
using an extinction coefficient of 8800 M'cm™ [24]. The
calculations were made using the following formula: Unit :
dA/dt x 1/(e x optical path length x 10% x Vi, where
dA/dt=rate of absorbance change and e = extinction
coefficient.
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Molecular modelling

A homology model of king crab trypsin (Paralithodes
camtschaticus; TREMBL accession code: Q8WR10_
PARCM) was built by using ICM3.5 [25] and the crystal
structure of Atlantic salmon trypsin (pdb code: 1hj8) as
a structural template. The homology model of king crab
trypsin, the structures of Atlantic salmon trypsin (pdb
code: 1hj8) and bovine trypsin (pdb code: 1s0r) were
superimposed on the thrombin-PAR-4 structure (pdb
code: 2pv9; [26]). The backbone of the catalytic site resi-
dues in the trypsins were superimposed with the cor-
responding residues of the PAR-4-thrombin complex. A
model of the N-terminal fragment of human PAR-2
(Gly*-Val®®) was build and superimposed on top of the
corresponding PAR-4 segment in the crystal structure of
the thrombin-PAR-4 complex. Electrostatic potentials
were calculated on the molecular surfaces of the model
and structures of the trypsins.

Results

SDS-PAGE

King crab trypsin is reported to be in the size range of
23 — 29 kDa (Kislitsyn et al., [21]; Rudenskaya et al.,
[20]). Our results from SDS-PAGE reveal a protein in
the 28 — 29 kDa range (Figure 1) compared to sardine
trypsin at 24 kDa [22] (Figure 1), and salmon trypsin at
23,7 — 25 kDa [23,27].

Effect of temperature on enzymatic activity

The effect of temperature on the enzymatic activity of
four different trypsins (bovine, salmon, sardine, and king
crab) was examined using the substrate DL-BAPNA at
room temperature and 37°C. As depicted in Figure 2,
the total enzymatic activity of all trypsins decreased with
lowered protein concentration. Comparing the enzyme
activities at room temperature showed that salmon and

1 2 3 4 5 6 Da
' -—38
---- - —28

. —17

Sardine Anchovy King crab

Figure 1 Purified king crab trypsin differs in size from purified
sardine trypsin. 250 ng of purified king crab and sardine trypsin
were run on a SDS-PAGE gel and stained with silver staining for
detection. The result shows that purified king crab trypsin (lane 7
and 8) is a slightly bigger molecule residing in the 28 — 30 kDa area
compared to the purified sardine trypsin (lane 3 and 4) at 24 — 25
kDa. Additional purified fish trypsins tested (anchovy (lane 5 and 6),
yellow tail, jacopever, spotted mackerel (not shown)) displayed
similar size as purified sardine trypsin. Lane 1, 2 and 10 contain
protein standards, respectively 10 pl SeeBlue®,10 ul Mark 12™, 16 pl
SeeBlue®. Lane 9 is empty.
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Enzyme activity

King crab 37°C
King crab RT

Salmon 37°C
Salmon RT

Bovine 37°C
Bovine RT
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Sardine 37°C
Sardine RT

i
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Figure 2 Protease activity. The enzyme activity of purified king
crab, sardine, salmon, and bovine trypsin was determined by a
serine protease assay conducted at room temperature (RT) and 37°C.
The protease activity was measured in solutions with increasing
protein concentration and results given as mUnits (mU)/ug protein.
Total volume of the reaction was 250 pl consisting of 10 pl of
purified enzyme and 240 pl of substrate (DL-BAPNA) diluted in
substrate buffer. For the measurements at 37°C the substrate buffer
was incubated at 37°C for the appropriate time prior to use and the
temperature adjusted to 37°C in the chamber of

the spectrophotometer.

sardine trypsin exhibited higher enzyme activity (11.3
and 8.34 mU/ug, respectively), as compared to king crab
and bovine trypsin (2.26 and 2.38 mU/pg), using enzyme
solutions with a protein concentration of 90 pg/ml. All
trypsins showed an increased enzymatic activity when
increasing the temperature to 37°C (Figure 2). The puri-
fied king crab trypsin showed the most pronounced in-
crement with a 29% rise in enzymatic activity at the
highest protein concentration, compared to 19.3% in the
bovine trypsin, 18.1% in the purified sardine trypsin, and
15.2% in the purified salmon trypsin. The mean rise in
enzymatic activity was 20.6% for the purified king crab
trypsin, 17.7% for the bovine trypsin, 15.9% for the puri-
fied sardine trypsin, and 9.6% for the purified salmon
trypsin. As for the total enzymatic activity, the degree of
increment was also reduced with lowered protein con-
centration for all trypsins.

Molecular modelling shows differences in the protein
structure of the king crab trypsin compared to salmon
and bovine trypsin
The surface of king crab trypsin has a large area with
strong negative electrostatic potential (Figure 3a). The
surface of bovine trypsin has smaller areas with strong
negative potential, in particular around Asp'’' at the
catalytic site, and also areas with strong positive electro-
static potential (Figure 3c).

Comparison of the homology model of king crab tryp-
sin with the structures of Atlantic salmon and bovine
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d Cleavage site in N-terminal domain

*
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SLIGKVDGTSHVTGKGV

PARA4 KSSDKPNﬂS
PARZ GTNRSSK

Arg244

f # Consensus .L..#.#PI#5...C...Y....I...M¥CAGH#.GGKD.CQGDSGGP##C....... L.
bovine_trypsin_‘l VLKCLKAPILSDSSCKSAY-P TSNMFCAGY LEGGKDSCQGDSGGPVVCSGK----LQ
salmon_trypsin_1 KLQCLNIPILSYSDCNNSY - P! TNAMFCAGY LEGGKDSCQGDSGGPVVCNGE-~--L0Q

DDSMICAGVPQGGKDACQGDSGGPLACSDTGSPYLA

kingicrabitrypslnil LLK-VTMPIVSDADCRASYGE.
1

# Consensus G#VSWG.GCA....PGVY..VH.#..Wk.......

bovine trypsin 1 GIVSWGSGC GVYTKVCNYVSWIKQTIASN

salmon_trypsin_1 GVVSWGYGC. GVYAKVCIFNDWLTSTMASY

king_crab_trypsin_1  GIVSWGYGC GVYCEVAYYVDWVLANSS--
244 247

Figure 3 Molecular modelling of king crab, salmon, and bovine trypsin. a - c: Electrostatic surfaces of (A) king crab trypsin (homology
model), (B) bovine trypsin (pdb code: 150r), and (C) Atlantic salmon trypsin (pdb code: 1hj8). The most electropositive potential is shown in blue,
whereas the most electronegative potential is shown in red. The PAR-2 agonist peptide is displayed in green ribbon. d: The N-terminal fragment
of PAR-4 and PAR-2, Arg at the cleavage site (shaded), *: a conserved positive charged residue in tethered peptides. e and f: The location of 3
binding site residues in the king crab trypsin model that corresponds to different residues in the bovine and Atlantic salmon trypsin (shaded
boxes in the structural alignment). Asp'®® in king crab trypsin corresponds to Met'”® in Atlantic salmon and GIn'>® in bovine trypsin; Arg”** in the
king crab trypsin corresponds to Glu??" in Atlantic salmon and GIn'® in bovine trypsin; and Tyr**’ in king crab trypsin corresponds to Asn®** in
Atlantic salmon trypsin and to Lys*®® in bovine trypsin.

trypsin suggested that at least 3 divergent positions are  trypsin corresponds to Asn®** in salmon trypsin and to
located near the substrate binding pocket (Figure 3d):  Lys*°* in bovine trypsin.

Asp'®® in king crab trypsin corresponds to Met'”® in the

Atlantic salmon trypsin structure and to GIn'*® in the Discussion

bovine trypsin structure; Arg>** in king crab trypsin cor- A recent study by Ramachandran and co-workers [28]
responds to Glu**! in Atlantic salmon trypsin and to reports the ability of PAR-2 to exhibit functional selec-
GIn'® in bovine trypsin; while Tyr**’ in king crab tivity where the proteolytically revealed tethered ligand
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(TL) sequence(s) and the mode of its presentation to the
receptor (tethered vs. soluble) can confer biased signalling.
Thus, PAR-2 can signal to multiple pathways that are dif-
ferentially triggered by distinct protease-revealed tethered
ligands. Differential signalling depending on the activating
ligand (termed “agonist-biased signalling” or “functional
selectivity”) are also reported for other G protein-coupled
receptors [29-32]. The exact factors that lead to activation
of different signal pathways during binding of agonist to
and cleavage of PAR-2 are unknown. Molecular modelling
of the human PAR-1 has revealed various electrostatic,
steric, and hydrophobic interactions between receptor and
the antagonist used in docking studies [33]. Some residues
identified as main points for electrostatic interactions have
previously been reported as important in site directed mu-
tagenesis studies for PAR-1 function and activity (Asp>>®
and Glu®Y) [34]. It is tempting to speculate that functional
selectivity is a result of different capacity in the agonists to
bind at these various interaction points.

Furthermore, the positive Arg® in the agonist peptide is
from receptor chimera studies in PAR-1 suggested to
interact with the negative Glu*® in the second extracellu-
lar loop of PAR-1 during receptor activation [35,36]. Since
these amino acids are conserved in PAR-2 an Arg’-Glu®*
interaction might operate in recognition of the PAR-2
agonist peptide SLIGRL by the receptor. Changing this
residue in the PAR-2 agonist peptide (the positive Arg’ in
SLIGRL to a neutral alanine or a negative glutamatic acid
creating SLIGAL or SLIGEL) markedly reduces the pep-
tides' potency to cause intracellular Ca** signalling [37].
The Al-Ani study [37] indicate that changes in the net
charge of interacting amino acids influence on activating
capacity; a result that may be due to interference with
electrostatic interactions.

Differences in IL-8 secreting potential and NF-kB activa-
tion have been identified for salmon and king crab trypsin.
Both effects are coupled to PAR-2 activation, but only
partly for the king crab trypsin [6,16]. Molecular modelling
shows that the surface of king crab trypsin has a large area
with strong negative electrostatic potential compared to
the smaller areas of bovine and salmon trypsins. In ad-
dition, these latter trypsins also display areas with strong
positive electrostatic potential, a feature lacking in king
crab trypsin. Because of the lack of a full amino acid se-
quence of the sardine trypsin molecule we were not able to
do any modelling of and comparison with sardine trypsin.

The modelling of bovine, salmon, and king crab tryp-
sin suggests that at least 3 divergent positions are lo-
cated near the substrate binding pocket and might affect
the binding of substrate to PAR-2:

1) The negative Asp'®® in king crab trypsin
corresponds to the neutral Met'”” in salmon trypsin
and the neutral GIn'*® in bovine trypsin.
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2) The positive Arg*** in the king crab trypsin
corresponds to the negative Glu**! in salmon trypsin
and the neutral GIn'*® in bovine trypsin.

3) The neutral Tyr** in king crab trypsin corresponds
to the neutral Asn*** in salmon trypsin and to the
positive Lys** in bovine trypsin.

It is possible that the positive Arg®® and/or positive
Lys®* of PAR-2 may interact differently with the binding
pocket in the three trypsins. Because of differences in the
electrostatic potential it is possible that PAR-2 might bind
weaker to king crab trypsin than to other trypsins due to
repulsive interactions between the positive Lys**/ Arg®® in
PAR-2 and the positively charged Arg*** in king crab tryp-
sin. This residue corresponds to a negative amino acid
(Glu®®) in salmon trypsin and a neutral amino acid
(GIn'*) in bovine trypsin. Zhang and co-workers [38]
have recently documented that long-range electrostatic in-
teractions presumably play an important role in aligning
the PAR-2 N-terminal polypeptide with the activating pro-
tease (factor VIla (FVIIa)) domain during binding and
subsequent activation of PAR-2. By molecular simulations
they show that positive amino acids in the proximity of
the cleavage site of PAR-2 (Arg!, Lys**, and Arg™®) are lo-
cated close to negatively charged residues on the binding
pocket surface of FVIIa, whereas the negatively charged
Asp™ and Glu® are close to positively charged FVIIa resi-
dues. Although cell-based control studies were not con-
clusive (antibodies blocking possible PAR-2 interacting
residues in the FVIIa molecule resulted in inhibited tissue
factor (TF)-FVIIa signalling through PAR-2, while charge
reversal mutations in FVIIa (positive Arg®® to negative
Glu®? and positive Arg®* to negative Glu®*) did not sig-
nificantly inhibit PAR-2 activation), we can not eliminate
the possibility that electrostatic interactions in specific re-
gions guide substrate orientation under physiological con-
ditions. However, the specific FVIla Arg®* — PAR-2 Glu*®
interaction seems not to be essential for PAR-2 activation
by TF-FVIIa.

The measurement of enzymatic activity at different
concentrations both at room temperature and 37°C
using DL-BAPNA as substrate yielded two separate but
similar patterns among the four types of trypsins tested,
with bovine and king crab trypsin in the lower area and
the fish trypsins in the higher area. During the purifica-
tion process the bovine trypsin behaved like the fish
trypsins with regards to the binding capacity, giving rise
to an inconsistency as it had similar enzymatic activity
as the king crab trypsin. On the other hand, binding of
trypsins to the N-terminal end of PAR-2 for cleavage
and subsequent receptor activation might behave diffe-
rent from the binding and cleavage of the substrate in
the serine protease assay, giving rise to differences in
agonist potential in cell based assays.



Larsen et al. BMC Research Notes 2013, 6:281
http://www.biomedcentral.com/1756-0500/6/281

These preliminary results indicate that electrostatic in-
teractions can be of importance in binding, cleavage and
subsequent activation of PAR-2, and that difference in
electrostatic charge in residues at key interacting positions
may result in altered potency of the agonist in question.
However, more extensive molecular modelling of the
entire PAR-2 together with docking studies of different ag-
onists and functional binding assays (Isothermal Titration
Calorimetry, Fluorescence Resonance Energy Transfer) to
independently quantify the binding capacity of all the
trypsins to PAR-2 peptide would be highly interesting.
Mutations of key amino acids or generation of chimeric
trypsins to investigate the structure and activity relation-
ship, along with cell based assays, are necessary to identify
essential residues that might influence upon functional
selectivity.

Conclusion

The results indicate that electrostatic interactions could
be of importance in binding, cleavage and subsequent ac-
tivation of PAR-2 and differences in electrostatic charge in
residues at key interacting positions may result in altered
potency of the agonists in questions.
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