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TECHNICAL NOTE Open Access
eVolver: an optimization engine for evolving
protein sequences to stabilize the respective
structures
Michal Brylinski1,2
Abstract

Background: Many structural bioinformatics approaches employ sequence profile-based threading techniques. To
improve fold recognition rates, homology searching may include artificially evolved amino acid sequences, which
were demonstrated to enhance the sensitivity of protein threading in targeting midnight zone templates.

Findings: We describe implementation details of eVolver, an optimization algorithm that evolves protein sequences
to stabilize the respective structures by a variety of potentials, which are compatible with those commonly used in
protein threading. In a case study focusing on LARG PDZ domain, we show that artificially evolved sequences have
quite high capabilities to recognize the correct protein structures using standard sequence profile-based fold
recognition.

Conclusions: Computationally design protein sequences can be incorporated in existing sequence profile-based
threading approaches to increase their sensitivity. They also provide a desired linkage between protein structure
and function in in silico experiments that relate to e.g. the completeness of protein structure space, the origin of
folds and protein universe. eVolver is freely available as a user-friendly webserver and a well-documented
stand-alone software distribution at http://www.brylinski.org/evolver.
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Background
In template-based protein structure modeling, sequence
profile-based threading and fold recognition approaches
[1] frequently fail to detect in the Protein Data Bank
(PDB) [2] structurally similar templates whose sequence
similarity to the target falls into the midnight zone [3].
This is due to the fact that the vast majority of midnight
zone pairs of proteins with similar structures are likely
the products of convergent or divergent evolution [4,5].
To address this problem, computationally designed pro-
tein sequences have been proposed to support fold rec-
ognition and homology searching [6-8]. Recently, we
demonstrated that using synthetic sequences artificially
evolved for the template structures rather than (or in
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reproduction in any medium, provided the or
addition to) wild-type sequences indeed improves fold
recognition rates [9]. These synthetic sequences provide
an orthogonal source of signal that could be advanta-
geously exploited in protein structure modeling. Here,
the critical component is an efficient engine that opti-
mizes amino acid sequences to stabilize the respective
structures. It needs to be effective, consistent with scor-
ing functions used in threading and fold recognition and
devoid of potential modeling artifacts, such as the
grouping of a particular type of residues.
In this communication, we describe recently developed

software, eVolver, which optimizes protein-like amino
acid sequences to stabilize the respective structures. In
previous large-scale benchmarks, it was shown to gener-
ate synthetic sequences, which despite their low (14% on
average) identity to the wild-type sequences have signifi-
cant capabilities to recognize native-like folds [9]. Here,
we focus on the details of software implementation and
usage, perform computational resource profiling, and
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discuss a case study using leukemia-associated RhoGEF
(LARG).

Findings
Scoring function for the evolution of synthetic sequences
The force field used by eVolver for sequence optimi-
zation combines several energy terms: a burial potential,
secondary structure preferences, a distant-dependent
contact potential, sequence profiles and anti-grouping
restraints, described in detail in [9]. The burial potential
uses a 7-state alphabet, BURIAL-Cβ-14-7, which ar-
ranges protein residues according to their exposure to
solvent and neighboring atoms [10]. Secondary structure
preferences were derived from the non-redundant CA
TH library [11] using a 7-state classification by STRIDE
[12]. As a distant-dependent statistical potential, eVolver
employs a protein conformation free energy score by
dFire [13], separately for Cα atoms and the side chain
centers of mass. The original dFire pseudo-energies are
linearly transformed to make these scores independent
of protein length. For a given target structure, sequence
profiles are derived from statistically significant (at a
TM-score of ≥0.4 [14]) structure alignments constructed
by Fr-TM-align [15] against either CATH [11] (domain
library) or PDB [2] (chain library). To improve the signal
to noise ratio in low-homology sequence profiles, we use
a 7-state residue classification by amino acid type (small
polar, large polar, negatively charged, positively charged,
hydrophobic, aromatic and histidine) [16]. Finally,
grouping artifacts are suppressed by Helmut Schmidt's
test of force-like runs, also known as the Pot statistics
[17]. This scoring term penalizes the artificial short-
range clustering of particular amino acid types. Our ini-
tial tests showed that using a scoring function lacking
anti-grouping restraints frequently leads to α-helices
overpopulated with clusters of alanine residues and β-
structures mainly composed of groups of isoleucine and
valine residues. The combined scoring function consists
of a linear combination of weighted pseudo-energy
terms. To maximize the accuracy, the weight factors
were optimized on a large dataset of native-like and
decoy sequences constructed for the CATH library [11].

Sequence optimization engine
Simulated Annealing Monte Carlo (SA) is a random
search technique, which exploits an analogy between
statistical mechanics of a metal cooling and freezing into
a minimum energy crystalline state and finding the mini-
mum of a multivariate function in general optimization
problems [18]. To efficiently explore the target sequence
space, eVolver uses a fast implementation of SA from
GNU Scientific Library [19]. The following cooling
scheme and SA parameters are used: N_TRIES = 200
(number of tries before stepping), ITERS_FIXED_T =
2000 (number of iterations for each temperature), K =
1.0 (Boltzmann constant), T_INITIAL = 5000 (initial
temperature), MU_T = 1.002 (damping factor for tem-
perature) and T_MIN = 0.005 (final temperature).
An important component of an SA code is the random

number generator, which is used to introduce random
perturbations in the control variables as well as to calcu-
late the Metropolis-Hastings acceptance criterion [20]. A
typical SA simulation by eVolver comprises >1.3×107 it-
erations, therefore the random number generator used
should have good spectral properties (a mathematical
measurement of randomness). eVolver employs a high-
quality random number generator MT19937, which is a
variant of the twisted generalized feedback shift-register
algorithm, also known as the “Mersenne Twister” gener-
ator [21]. The default seed used in eVolver reproduces
the original generator, which has passed the Diehard
suite of statistical tests for assessing the randomness
quality [22]. Moreover, the results are fully reproducible
across different operating systems and hardware ar-
chitectures. As a consequence of this high reprodu-
cibility, multiple runs are not needed for a given initial
sequence.

Input files for eVolver and output data
eVolver requires three input files: a single-chain target
structure in PDB format, a secondary structure assign-
ment by STRIDE [12], and a structure-based sequence
profile. The latter can be generated from structural ana-
logs by eprofile, a tool included in the eVolver software
distribution. The original benchmarking results for
eVolver were obtained using sequence profiles generated
by Fr-TM-align [15] at a TM-score threshold of ≥0.4 [9].
However, any other statistically validated structure align-
ment program can be used instead, e.g. CE [23], MAM-
MOTH [24], DALI [25], etc. We note that the webserver
requires only a target structure; the remaining files are
generated automatically. Moreover, two non-redundant
structure libraries are currently available for the con-
struction of sequence profiles: CATH [11] (domain li-
brary) and PDB [2] (chain library). In general, the former
should be used for single-domain targets, whereas the
latter can result in more sensitive sequence profiles for
multiple-domain targets.
SA simulations can start from either a native sequence

read from the input PDB file, a shuffled native sequence
that preserves the native sequence composition, or a
random protein-like sequence. The first two options are
useful in benchmarking calculations, whereas random
initial sequences, which are generated according to
amino acid frequencies provided by UniProtKB/Swiss-
Prot [26], are a good choice for real applications.
The main output from eVolver is a sequence artificially

evolved to stabilize the target structure in our force field.
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In addition, generated SA trajectories can be used to
visualize the progress of the simulated sequence evo-
lution. In Figure 1, we analyze a trajectory obtained for
topoisomerase II domain 5 from Saccharomyces cere-
visiae S288c [27] (PDB-ID: 3l4jA03, CATH classification:
3.90.199.10). At initial high-temperature stages of this
simulation, the fitness score fluctuates around a value of
1.0, which corresponds to a random score (Figure 1A).
Cooling the system down gradually decreases the accept-
ance ratio and, consequently, increases the overall fitness
score. At the end of simulation, the evolving sequence is
“frozen” into a maximum fitness of 2.16, which is likely
the global pseudo-energy minimum state. We note that
SA does not guarantee the success in finding a globally
optimal solution. Figure 1B shows that the fitness score
of evolving sequences is also well correlated with their
identities to the native sequence. Random sequences
generated at high temperatures have a sequence identity
to native of ~8%, which continuously increases and
reaches 30% for the final evolved sequence.

Profiling of computational resources
Particularly for large-scale applications of eVolver, it is
essential to estimate the resources needed for individual
Figure 1 Simulated Annealing trajectories generated by
eVolver for topoisomerase II domain 5. (A) Fitness score and (B)
the identity of evolving sequence to the native sequence are
plotted as a function of Monte Carlo step.
calculations with respect to the CPU time and memory
utilization. The resource profiling is performed on a
dataset of 180 proteins randomly chosen from the ori-
ginal eVolver benchmarking dataset [9]. These proteins
were selected to uniformly populate 9 bins with 20
structures in each bin; the bins evenly span the range of
the target sequence length between 50 and 500 residues.
The testing system is HP ProLiant SL250s Gen8, which
has 2 Intel Xeon E5-2670 8-core processors running at
2.6GHz and it is equipped with 64GB of memory.
Figure 2 shows the average ± standard deviation wall
clock and memory usage. For proteins shorter than 250
residues in length, eVolver typically completes within
1 hour, whereas proteins longer than 400 residues re-
quire up to 3 hours of CPU time. Furthermore, the
memory consumption by eVolver is only 6-8 MB, which
scales linearly with the target protein length. This very
small memory footprint is particularly appealing for
targeting cost-effective accelerators, such as Graphics
Processing Units (GPU) or Intel Many Integrated Cores
(MIC). In the future, we will develop a parallel version
of eVolver that can be deployed on heterogeneous high-
performance computing systems equipped with acceler-
ator cards.

Case study
As a proof of concept, we use eVolver to optimize a se-
quence that stabilizes the structure of the PDZ domain
of Rho guanine nucleotide exchange factor 12 (LARG,
PDB-ID: 2omjA). Figure 3A presents a snapshot of the
results page from the eVolver webserver, which shows
the optimized sequence evolved from a random protein-
like sequence as well as the SA trajectory. Next, we
additionally verify the quasi-stability of this evolved
sequence by using PSI-BLAST [28] to find in the PDB
[2] these proteins that produce significant alignments
with E-values <0.005. The results from PSI-BLAST
presented in Figure 3B show that the synthetic sequence
was correctly assigned to the PDZ superfamily. Further-
more, PSI-BLAST picked out 3 proteins from PDB that
produce significant alignments with the evolved se-
quence: 3k82A, 3i4wA and 1tp3A. All three structures
contain a PDZ domain. Structure alignments of these
proteins against 2omjA (Figure 3C) result in a TM-score
[14] (Cα-RMSD) of 0.74 (2.02 Å), 0.39 (4.48 Å) and 0.73
(2.28 Å), respectively. 3k82A and 1tp3A produce highly
significant structure alignment with a TM-score of >0.7,
whilst 1i4wA is at the TM-score significance threshold.
Note that these proteins were identified using the artifi-
cially evolved sequence, which was optimized to stabilize
the structure of 2omjA and share only 22% identity with
the wild type sequence. Yet, this sequence carries suffi-
cient amount of information to properly recognize struc-
tural analogs in the PDB.



Figure 2 Utilization of computing resources by eVolver. Average ± standard deviation (A) wall clock and (B) memory is plotted as a function
of the target protein length. Boxes end at the quartiles Q1 and Q3; a horizontal line in a box is the median. Whiskers point at the farthest points
that are within 3/2 times the interquartile range.

Figure 3 Synthetic sequence evolved to stabilize the PDZ domain. (A) Snapshot of the results from eVolver webserver, which shows the
final fitness score, the SA trajectory and the evolved sequence in FASTA format. (B) Output from PSI-BLAST obtained by using the evolved
sequence to query PDB. (C) Structure alignments of the top 3 PSI-BLAST hits (3k82A – yellow, 3i4wA – green, 1tp3A – blue) against the target
structure (2omjA – red); aligned regions are solid.
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Conclusions
We developed eVolver, a method for the optimization of
generic protein-like amino acid sequences to stabilize
the respective structures. An interesting, and potentially
useful in practical applications, feature of these artifi-
cially evolved sequences is their high capability to
recognize the correct protein structures using standard
sequence profile-based approaches to fold recognition.
eVolver is available as a user-friendly webserver as well
as a stand-alone software distribution, which can be in-
stalled locally in a high-performance computing environ-
ment to optimize amino acid sequences for large
datasets, e.g. template libraries or synthetic structures.
The former can be used to develop more sensitive
threading approaches; the latter are widely used in stud-
ies on the completeness of protein structure space [29]
as well as in research focusing on the origin of folds and
protein universe [30,31]. The effective procedure for the
design of a quasi-stable sequence for an arbitrary struc-
ture also provides a desired linkage between protein
structure and function in computer experiments. This
opens up areas for further exploration, which mostly re-
late to protein evolution, engineering and design as well
as the origins of biochemical function.
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