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Abstract

computational background.

computational insights.

Background: Bench biologists often do not take part in the development of computational models for their
systems, and therefore, they frequently employ them as “black-boxes”. Our aim was to construct and test a model
that does not depend on the availability of quantitative data, and can be directly used without a need for intensive

Results: We present a discrete transition model. We used cell-cycle in budding yeast as a paradigm for a complex
network, demonstrating phenomena such as sequential protein expression and activity, and cell-cycle oscillation.
The structure of the network was validated by its response to computational perturbations such as mutations, and
its response to mating-pheromone or nitrogen depletion. The model has a strong predicative capability,
demonstrating how the activity of a specific transcription factor, Hcm1, is regulated, and what determines
commitment of cells to enter and complete the cell-cycle.

Conclusion: The model presented herein is intuitive, yet is expressive enough to elucidate the intrinsic structure
and qualitative behavior of large and complex regulatory networks. Moreover our model allowed us to examine
multiple hypotheses in a simple and intuitive manner, giving rise to testable predictions. This methodology can be
easily integrated as a useful approach for the study of networks, enriching experimental biology with
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Background

The fate of cells in response to changing signals is deter-
mined through regulatory networks [1]. The components,
i.e. genes and proteins, are identified by experimental tools
which also reveal interactions between these components.
Computational modeling of these networks can help in
elucidating their structure and properties, identifying
missing components (designated nodes in computational
models), and distinguishing between optional hypotheses
regarding interactions (edges) between nodes. Computa-
tional models can be roughly described as either continu-
ous, dynamic ones, or logical/Boolean ones [2-6]. The
continuous models (either stochastic or employing differ-
ential equations) are detailed, yet are often computation-
ally infeasible on a large scale, and require data such as
kinetic constants or concentration levels, which are often
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unavailable. The Boolean models, on the other hand, are
computationally efficient, but their expressive power is
rather limited [7,8].

A richer, substantially more expressive yet computa-
tionally efficient logical approach, which is an extension
of Boolean models, is a discrete transition model [7,8].
In the model suggested by Rubinstein et al. [7], each
node assumes a non-negative initial state, which reflects
its activity level at the onset of simulation. Regulation
effects are represented by weighted edges, where positive
or negative weights reflect activation or repression, re-
spectively. Moreover, the effect of an edge can be subject
to regulation by other nodes, reflecting essential depend-
encies between components. A uniform transition rule de-
termines simultaneously how nodes' states change over
time (which is also discrete). This model was applied for
the study of entry into meiosis in budding yeast (an 8 node
network), demonstrating the transient and sequential
expression of its two master regulators [7]. Moreover, it
was successfully used to discriminate between optional

© 2013 Rubinstein et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.


mailto:ykassir@tx.technion.ac.il
http://creativecommons.org/licenses/by/2.0

Rubinstein et al. BMC Research Notes 2013, 6:311
http://www.biomedcentral.com/1756-0500/6/311

Page 2 of 13

Tl ttres | ¥
o L —
=P ( C1b5/Cdk

i~ - i @

L I_T L,
— @02ca) ——t—> (s | = |

Figure 1 (See legend on next page.)
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the construction of the network are given in Methods.

Figure 1 A Schematic view of the cell-cycle in S. cerevisiae. A. G1 and G1/S phases, B. S-phase, and C. G2 to anaphase. For simplicity we
used this code to distinguish between the following: positive regulators — white ovals, negative regulators — gray ovals. Oval shapes with a
dashed outline represent nodes with a constitutive state of 9 or whose initial state was 9. White diamonds represent regulators whose regulation
appears in another part of the figure. Rectangles represent cellular events (white) and checkpoints (gray). Positive edges — arrows, negative
edges - lines with bars, dependency edges — gray arrows from a node to an edge. Self-edges represent negative auto-regulation. Details on

hypotheses, revealing missing regulatory elements that
were subsequently identified using experimental tools [7].

In the present work, we refine our discrete model [7]
by generalizing its state transition function. The
resulting model is rich enough to describe the oscillatory
behavior of the cell-cycle in the budding yeast S.
cerevisiae (a much larger 66 node network); to distin-
guish among several optional hypotheses regarding a
specific transcriptional regulator, Hcm1; and to predict
the condition required for traversing START (restriction
point) [9].

Results

Construction of the S. cerevisiae cell-cycle network

We used the budding yeast cell-cycle as a paradigm for a
complex biological regulatory system. Figure 1 shows a
schematic representation of this network. For details see
Methods. The network includes 67 nodes which repre-
sent important components (i.e. RNA, proteins, cellular
events) required for proper transitions between all cell-
cycle phases. Redundant gene functions were repre-
sented in our network each by a single element. A
checkpoint was modeled by a node whose level is in-
duced by a specific regulator, but its ability to activate
some other element depends on the absence of that
regulator (Figure 2). For instance, the DNA replication
checkpoint (cPS) is activated by S-phase, and it pro-
motes metaphase only in the absence (completion) of
S-phase [10] (Figure 1B).

The discrete transition model exhibits oscillatory
(periodic) and sequential behavior

The initial states assigned to the nodes reflect a single
cell at early G1 (see details in Methods). In general, a
simulation goes on until either a steady state or an infin-
ite loop is reached. Our simulation demonstrated oscilla-
tion, accurate and sequential progression through
S-phase, entry into metaphase (M), and exit from meta-
phase (anaphase, A) (Figure 3A). Figure 3A shows two
cell-cycles, but identical oscillations occurred infinitely
(data not shown). Our simulation revealed the sequential
and periodic expression of the G1, G1/S, S and M-phase
cyclins, namely, CIn3, Clnl, CIb5, and Clb2 (RNA and
proteins) and their activities (when in complex with
Cdkl) (Figure 3A), as expected from experimental
results (reviewed in [11,12]). Periodic and timely

expression was also evident for all transcription factors
that regulate the cell-cycle (Additional file 1), in agree-
ment with experimental data. [13]. This validates the
network structure and parameters.

We used our model to predict the behavior of cells in
the absence of specific regulators (Figure 3). Gene dele-
tion was simulated by excluding outgoing edges of the
deleted genes. DNA replication depends on CDC6,
which is essential for preRC formation [14]. Our simula-
tion predicts that exclusion of CDC6 will result in
cell-cycle arrest prior to S-phase entry (Figure 3C), in
agreement with reported data [15]. Cdc6 is loaded on ori-
gins at telophhase [16,17]. Indeed, when the initial states
of CDC6 RNA and protein were 9, reflecting the normal
level at early G1 cells, cell cycle arrest prior to DNA rep-
lication was not immediate, and occurred only at the
subsequent cell cycle (Figure 3B). This is in agreement
with the results reported when unsynchronized cdc6-ts
cells were shifted of to the non-permissive temperature
[18]. Note that these cells showed the expected transient
expression and activity of the cyclins and their
corresponding Cdks, and then arrested without these
cyclins (Figure 3, B and C. In B cells reached a steady
state without cyclins at step 105). Excluding CLB2
(representing CLB1 and CLB2) outgoing edges predicted
an arrest after completion of DNA replication, prior to
entry into M-phase (Figure 3D). In accord, experimental
results demonstrated that Cdk/Clb1,2 are indeed re-
quired for entry into M-phase [19]. Exclusion of CDC20
resulted in a cell-cycle arrest prior to entry into ana-
phase, with high levels of Clb2 (Figure 3E). This predic-
tion was confirmed, as CDC20 is required [in a complex
with APC/C [20]] for exit from metaphase [21]. Since
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Figure 2 A representation of a biological checkpoint. The
positive state of node C is a condition for A to activate the
checkpoint node. The activation of B depends on the absence of C.
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Figure 3 Simulation of the network under normal conditions of wild type and mutant strains. A. wild-type. B. and C. cdc6A. The initial
states of CDC6 and Cdc6 are either 9 (B) or 0 (C). D. clb2A, E. cdc20A. In A oscillations continued infinitely, whereas in B-E simulation reached
steady state and all steps are shown.

Clb2/Cdk is required to activate Cdc20 [22], its exclu-
sion also caused an arrest with high levels of Clb5
(Figure 3E) whose degradation depends on Cdc20 [23].
In conclusion, the simulations of the various mutants
gave rise to predictions that were confirmed by wet
experiments.

Cell-cycle commitment
Entry into the cell-cycle depends on external and in-
ternal signals. Within G1 there is a specific point desig-
nated START or restriction point, after which cells
become committed to the cell-cycle, and will complete it
even in the absence of a signal [9]. In order to examine
how single cells, at different cell-cycle stages, respond to
perturbations, we conducted simulations with initial
nodes’ states that were reached in various intermediate
steps of the normal conditions simulation. These initial
states represent cells in G1, G1/S, S, M and A. We
wished to use our model to determine how cells respond
to a-factor or nitrogen depletion, and either arrest im-
mediately in G1, or following completion of a cell-cycle.
Treatment with a-factor leads to inhibition of Cln3/
Cdk and CInl/Cdk functions [24-26]. Simulations
showed that treatment with a-factor resulted in cell
cycle arrest as a steady state was reached. Cells in which
Cln3/Cdk was not yet active (early G1) exhibited imme-
diate cell-cycle arrest prior to the transcription of the

G1 cyclin CLN1 and entry into S-phase (Figure 4), as
reported [27-29]. Cells that were already in S-phase,
M-phase or anaphase completed the cycle and arrested
in G1, with high levels of CLN3 RNA and protein, but
CLN1, CLB5 and CLB2 RNA and proteins were absent
(Figure 4). Commitment to the cell-cycle, namely entry
into S-phase, occurred only in cells in which the activity
of Clb5/Cdk was induced (Figure 4, compare G1 to G1/
S cells). Note that at the onset of simulation Clb5/Cdk
was not active in both G1 and G1/S (Figures 4, and 5B),
although the CIb5 protein was induced. Since the activity
of CIb5/Cdk is inhibited by Sicl [30], we examined its
level in these cells. Cells able to activate Clb5/Cdk showed
a transient elimination of Sicl (Figure 5B, step 18). In con-
trast, cells that were shifted to pheromone one step earlier,
exhibited only a decline in the level of Sicl (Figure 5B,
step 17). This result points to Sicl as the indicator for
commitment, as previously suggested [31,32].

We further examined if the commitment actually
depended directly on Sicl or actually on its upstream
regulator. Degradation of Sicl depends on Clnl/Cdk
[33]. In accord, the level of Cln1/Cdk was higher in cells
able to complete the cycle, in comparison to cells that
showed immediate arrest (Figure 5B, compare cells
switched at step 18 and step 17). Thus, the low level of
Cln1/Cdk (node at state 1 enabled only a decline in Sicl
state (Figure 5B, step 17). On the other hand, when
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Figure 4 Simulation in the presence of a-factor. Cells at different steps in the normal cell-cycle simulation were “shifted” to simulations in
which a-factor node is at state 9. Early G1 cells were taken from step 9, G1 cells from step 17, G1/S cells from steps 18 and 23, S-phase cells from
steps 29 and 33, M-phase cells from step 43, and A-phase cells from step 53. Results regarding Cyclins (RNA and proteins), CDK activities and
cell-cycle events are shown. All simulations reached steady state, and plots end at this step.

Cln1/Cdk level reached the higher state of 4, Sicl was
completely degraded (Figure 5B, step 18). This analysis
suggests that the ability of Cln1/Cdk to destabilize Sicl de-
fines the point of no return, namely traversing through
“Start”, and that a threshold state/level of Cln1/Cdk is re-
quired for this effect. In agreement, using single-cell ana-
lysis, it was concluded that, the induction of Clnl/2
feedback, which results in higher activity of Clnl/Cdk,
provides a biochemical definition for Start [34].

Under normal conditions the level of Clnl mirrors the
level of Cln1/Cdk (Figure 3A). On the other hand, fol-
lowing pheromone treatment, the level of Clnl/Cdk is
lower than expected (Figures 5A and 5B). This suggests
that an additional factor plays an important role in cell-
cycle commitment. Farl* (the active, phosphorylated
form of Farl) inhibits Clnl/Cdk function [24], whereas
Cln1/Cdk destabilizes Farl [35]. We examined, there-
fore, the effect of Farl* on the level of the Clnl/Cdk.
Cells switched at step 18 showed a delay in the increase
of Farl* in comparison to the time of induction of Clnl/
Cdk (Figure 5B). On the other hand, cells switched at
stage 17 showed an earlier induction of Farl* at the

same time as that of Clnl/Cdk (Figure 5B). We con-
clude, therefore, that Cln/Cdk activity defines commit-
ment, and that under pheromone induction this activity
is regulated by the double negative feedback loop be-
tween Cln1/Cdk and Far1*, as previously suggested [34].

Nitrogen depletion leads to G1 arrest [36]. It is as-
sumed that its main target is the G1 cyclin, CLN3, as ni-
trogen starvation inhibits CLN3 mRNA translation [37],
increases Cln3 protein degradation [37], and retains
Cln3 in the cytoplasm [38]. It was speculated that nitro-
gen depletion has an additional target, since cells that
are deleted for CLN3 properly arrest in G1 following ni-
trogen depletion. Our simulation reinforces this specula-
tion, as nitrogen depletion promoted cell-cycle arrest,
mainly in G1, but a specific subpopulation arrested in
G2, after completion of DNA replication and prior to
entry into M-phase (Table 1, hypothesis 1)). This result
suggests that indeed nitrogen depletion must affect an
additional regulator. Two possible targets were previ-
ously suggested: SIC1 mRNA availability (hypothesis 2)
or Clnl/2 stability (hypothesis 3) [37]. Simulations of
these two hypotheses resulted in the correct G1 arrest
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Figure 5 Commitment to the cell cycle is determine by the level of CIn1/Cdk. Simulation in the presence of a-factor as in Figure 4. A. CIn1,

(Table 1). In order to discriminate between these two hy-
potheses we conducted simulations of a strain express-
ing a stable Clnl protein. This approach was based on
the report that cells which express a stable Cln2 protein
(CLN2-1 allele) respond to nitrogen depletion by arrest-
ing the cell-cycle at multiple points, not only in G1 [39].

Simulation of hypothesis 2 network resulted in the arrest
of all cells in G1, whereas simulation of hypothesis 3
network resulted in the correct behavior, namely arrest
in both G1 and G2 (Table 1). Our results predict,
therefore, that nitrogen depletion also affects the stabil-
ity of Clnl.

Table 1 Simulations predict that nitrogen depletion affects both CIn3 and Cin1

Hypotheses Possible nitrogen depletion targets Results of simulations

Point of cell-cycle arrest

Wild-type Stable Cin1
Hypothesis 1 ClIn3, CIn3/Cdk G1 and G2 G1 and G2
Hypothesis 2 CIn3, CIn3/Cdk, SICT transcription Gl G1
Hypothesis 3 ClIn3, CIn3/Cdk, CIn1, CIn1/Cdk G1 G1 and G2

Cells at different steps in the normal cell-cycle simulation were “shifted” to simulations in which Nitrogen was depleted.
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The use of our model to predict the Cdk/cyclin complex
that regulates Hcm1

The transient expression of Hcml is not required for the
transient transcription of its target genes [13]. Because
Hcml is subject to post-translational modification, it
was suggested that this modification affects its activity
during the cell cycle [13]. Since Hem1 is a probable Cdk
target [40] we examined if this regulation is mediated by
either CIn3/Cdk, Cln1/Cdkl or CIb5/Cdk (Figure 6).
Simulations revealed that activation of Hcml by Cln3/
Cdk resulted in premature decline in the transcription of
CLB2 in relation to S-phase (Figure 6B, upper panel).
On the other hand, regulation by either Cln1/Cdk or
Clb5/Cdk, showed the expected behavior (Figure 6B,
middle and lower panels). In order to discriminate be-
tween the latter two hypotheses, we examined the re-
sponse of cells to pheromone treatment. Regulation by
Clb5/Cdk showed an abnormal phenotype, namely some
Glcells arrested after completion of S-phase (Figure 6C).
Our simulations predict that Clnl/Cdk rather than
Clb5/Cdk or Clb2/Cdk, is responsible for regulating the
activity of Hem1. All simulations in this report were
done according to this prediction.

Discussion
The analysis of regulatory networks by computational
methods is often quantitative in nature. However, due to

Page 7 of 13

lack of complete quantitative kinetic data in many cases,
these methods are not applicable. Moreover, the use of
these methods requires intensive computational skills,
and are typically applied by either trained bioinfor-
maticians or employed in a collaborative, interdisciplin-
ary manner. Experimental biologists, by themselves,
rarely incorporate these methods in their routine re-
search, and often refrain from reviewing the computa-
tional analyses in scientific literature. Consequently,
manuscripts which include intense use of mathematical
equations are less frequently cited by experimental biol-
ogists [41]. Furthermore, the use of existing bioinformat-
ics tools by scientists who lack intensive background in
bioinformatics may result in misinterpretation of simula-
tion results and in erroneous conclusion making [42].

In this report we demonstrate that a simple discrete
model can suffice for the qualitative analysis of import-
ant network properties, but still remain intuitive for use
without extensive computational background. Indeed,
our results could not have been reached without a
repeated, intuitive, refinement process, made of numer-
ous simulations conducted directly by a biologist. This
type of model is a “middle ground” between Boolean
methods, which are claimed to gradually fall out of favor
[4], and quantitative models. Additional file 1 describes
the simple mode by which interested scientists can
apply this model, using the tool we implemented. As
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Figure 6 Hypotheses regarding how Hcm1* activity is regulated. A. hypotheses; B. levels of CLB2 and S-phase; C. levels of S-phase, mitosis
and anaphase in a-factor treatment of cells taken from G1 and G1/S stages.
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described, this process requires only a straightforward
conversion of a biological network into a specified
format.

We applied our model to the yeast cell-cycle network
demonstrating cell-cycle oscillation (Figures 3 and
Additional file 1). The network included 67 nodes, 60 of
which showed the reported sequential and periodic ex-
pression (the other 7 were either constitutively present
or active only under pheromone treatment) (Figures 3
and Additional file 1). Thus, the model effectively demon-
strated the correct behavior of a fairly large and non-linear
network. Predictions showing an arrest at three essential
points: prior to entry into S-phase, metaphase, or ana-
phase (Figure 3) were confirmed by published data.

Entry of eukaryotic cells into alternative differentiation
pathways is usually executed at G1 [36] Thus, signals
that regulate these developmental pathways will first
lead to arrest in G1 and subsequently to entry into the
new developmental pathway. Consequently, within G1
there is a point, START, prior to which cells will respond
by immediate arrest at G1, whereas cells that passed this
point are committed to complete the cell-cycle and only
then arrest in G1. In this report, using our discrete
model, we examined how yeast cells respond to either
the mating (pheromone) or nitrogen depletion signals.
We show that as reported, cells are divided into pre-
and post- START (Figure 4). Pre-START cells showed an
immediate arrest, whereas post-START cells where com-
mitted, completed the cell cycle, and then arrested in G1
(Figure 4 and Table 1).

Simulation in the presence of pheromone allowed us
to identify the component whose expression/activity de-
fined START. We showed that Cln1/Cdk expression is
required for commitment. Moreover, Cln1/Cdk level was
important, as a low state of 1 for that node did not suf-
fice for traversing the cell cycle. Finally, our results point
to the double-negative feedback loop between Cln1/Cdk
and Farl* as an important parameter in regulating the
level of Cln1l/Cdk, and consequently the commitment
stage (Figure 5), reinforcing a previous conclusion that
was based on experimental results and modeling by dif-
ferential equations [34].

Simulation under nitrogen depletion allowed us to
predict the targets for this signal. We showed that an ef-
fect only on CIn3 did not suffice for an arrest of all cells
in G1, and that in addition, starvation also affected the
availability of Clnl (Table 1). Moreover, our simulations
refute the hypothesis that SIC1 is an essential target of
nitrogen depletion (Table 1). This demonstrates the pre-
dictive capability of our model. We also examined 3 hy-
potheses regarding the regulation of Hcm1 activity. The
model predicted that Clnl/Cdk, rather than Cln3/Cdk
or Clb5/Cdk, mediates this regulation (Figure 6). In con-
clusion, our model allowed us to examine multiple
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hypotheses in a simple and intuitive manner, giving rise
to testable predictions.

The number of nodes used, 67, in this study does not
represent the complete cell-cycle regulatory network.
Our network (Figure 1) can be used as a starting point
for an in-depth, focused analysis of specific cell-cycle
events. For instance DNA-replication, G2-M transition,
exit from metaphase, or checkpoint regulation. Our
model is available upon request.

Conclusions

We present a simple and intuitive model that does not
depend on the availability of quantitative data, and can
be directly used without a need for intensive computa-
tional background. This methodology can be easily inte-
grated as a useful approach for the study of networks,
enriching experimental biology with computational in-
sights. The validity of the model was tested on a large
and complex network, cell cycle in budding yeast. We
verified the structure of the cell cycle network by simu-
lations of various mutants. The model has a strong pre-
dictive feature that can be easily used to distinguish
between alternative hypotheses. Herein the model was
used to predict the following: 1. Clnl/Cdk rather than
Cln3/Cdk, CIb5/Cdk or CIb2/Cdk, is responsible for
regulating the activity of Heml, and (2). Simulations in
the presence of a-factor predict that commitment to
enter the cell cycle depends on a double-negative feed-
back loop between Cln1/Cdk and Farl*.

Methods

The computational model

Our model is an extension of the discrete transition
model suggested by [7]. In this model, nodes represent
mRNA's, proteins, nutrients, or cellular events. Each
node assumes an initial discrete state taken from a fixed
range {0,...,U} [e.g. U=9, as in our simulations, chosen
for technical reasons, see [7]], and this state may change
over time. Edge (i,j) acquires a positive (activation) or
negative (repression) weight w(ij). “Dependency edges”,
going from some node k to an edge (ij), introduce
dependent regulation effects: In order for i to regulate j,
node k must be active (positive dependency) or inactive
(negative dependency). A configuration of the system is
a vector of all the nodes’ states. A transition function de-
termines the next state of each node, given its current
state, the states of its neighbors and the weights of its in-
coming edges. A simulation step is an application of the
transition function simultaneously to all nodes in the
system. Steps occur in discrete times t = 1, t = 2 and so
on. A simulation is a consecutive application of the tran-
sition function forming a sequence of steps, starting
from a designated initial configuration, and continuing
until either a steady state is reached (two consecutive
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identical configurations), or an infinite loop of configu-
rations is detected.

We extend the model's transition function, which ap-
pears in Formula 1. si(t) is the state of node i at time t.
The term sumy;(t) captures the total effect on node i at
time t by all its neighbors. We remark that cond(j, i) = 1
if all dependency conditions on edge (j,i) hold, and 0
otherwise. If sum;(t) exceeds the upper threshold of node
i (thresholdy) its state will increase in the next time step,
while if it is below the lower threshold (threshold;) its
state will decrease. The update is (in the first two cases)
some function f of sumy(t). In [7], f=1, whereas we in-
troduced a logarithmic-order transition function, fisum;
(#) = [In(|sum;(t)| + 1)]. We note that the logarithmic
function avoids the problematic nature of, e.g., linear func-
tions, which cause changes which are too extreme, and of
constant change functions, that are not sufficiently differ-
ential. This enriched model enables the transition function
to reflect differential strengths of regulation effects, such
as different elements showing faster increase or decrease
of activity, compared to others.

Formula 1: The extended transition function

min( U, s;(t) + f (sum;(t)) if  sum;i(t) > threshold;

si(t+1) =9 max(0,s;(t)~f (sum;(t)) if sum;(t) < threshold;
si(t) otherwise

where  sum;(t) = X w(j,i)s;(t)-cond(j, )
j

The model was implemented in C# using Visual Stu-
dio.NET, and analyses procedures of simulation results
were implemented as VBA macros.

Construction of the cell cycle network

The following general considerations were used to con-
struct the network (Figure 1). Redundant gene functions
were represented in our network each by a single elem-
ent. Periodic availability/activity requires that each node
is subject to both positive and negative inputs. RNAs are
non-stable molecules, nonetheless in most cases there is
no information regarding the control of mRNA stability.
Therefore, in the network, we simulated the intrinsic
stability of the RNAs by using negative auto-regulation.
In many cases, reported results demonstrated periodic
expression of proteins, however, only in few cases infor-
mation was reported regarding how these proteins’ sta-
bility is regulated. Therefore, in order to simulate this
behavior we either used negative auto regulation, or
negative feedback regulation. Some proteins are repre-
sented by two nodes: unmodified and modified (labeled
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with a star). Essential regulatory elements are present as
dependencies edges.

The information used to construct the cell cycle net-
work is described below. The G1 and G1/S transition
(Figure 1A): Entry into the cell cycle from G1 depends
on both the availability of nutrients (N) and the comple-
tion of anaphase. The major regulator is Cln3/Cdkl
(Cdklis designated inhere as Cdk). Cdk expression is
constitutive, while the transcription of CLN3 is regulated
by Mcml, a constitutive expressed TF (level 9 through-
out the simulation). Mcm1 activity is repressed by Yox1
[43] (Yoxl regulation will be described below). The
translation and stability of Cln3 protein is subject to
multiple regulations by nutrients [37,44,45]. We as-
sumed that depending on anaphase, nutrients regulate a
nutrient sensing node (NSC), and that this node regu-
lates a checkpoint (cPA) whose availability depends on
the completion (absence) of anaphase. We further as-
sumed that the translation of CIn3 depends on this
checkpoint. Finally, Cln3 is degraded following phos-
phorylation by Cdk [46]. We assume that this regulation
is mediated through the CIn3/Cdk complex. Cln3/Cdk
promotes the activity of two transcription factor com-
plexes, SBF and MBF. SBF represses transcription when
it consists of Swi4/Swi6/Whi5, and activates transcrip-
tion when Whi5 dissociates from the complex. The tran-
scription of WHI5 is regulated by Hcm1* [13]. However,
because in cells deleted for HCM1 its transcription is
constitutive, but less than the wild type level [13], we
omitted regulation by Hcm1*, and designated its regula-
tion as constitutive, with initial level of 5. The activity of
Whi5 is negatively regulated by Cln3/Cdk, an event that
causes its dissociation from the complex [47]. In order
to prevent entry into the cell cycle until Cln3/Cdk is
available, the initial state of Whi5 was 5.

The transcription of SWI4 is regulated in the same
manner as that of CLN3 [43]. In the network SW14 reg-
ulates SBF formation. For simplicity, we did not separate
SBF into its repression and activation complexes. In-
stead, the essential repression functions of Whi5 [48,49]
was modeled as a dependency edge that inhibits the abil-
ity of Swi4 to activate SBF, as well as by a direct negative
regulation on SBF. In addition, the function of SBF is
positively regulated by both CIn3/Cdk and Clnl/Cdk
[29,50]. SBF function is negatively regulated by Clb2/
Cdk [51] as well as by Clb6/Cdk, as phosphorylation of
Swi6 by Clb6/Cdk leads to the export of Swi6 from the
nucleus to the cytoplasm. Dephosphorylation of Swi6 by
Cdcl4 promotes nuclear import, in preparation for a
new cell cycle [52]. This effect is designated in the net-
work as an edge from Clb5/Cdk.

The transcription of YOX1 is periodic, regulated by
SBF [13,43]. Both SBF and MBF bind to the HCM1
promoter [53]. These transcription factors have
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apparently redundant functions, because deletion of
both TFs was required in order to observe an effect on
its transcription [54]. The network includes regulation
by only one complex — SBE, which is functional prior to
MBF. The Hcm1 protein shows periodic expression [13],
we assume that this is due to its intrinsic stability, simi-
larly to Yox1. Heml is switched to the active Hem1* de-
pending on CIn1/Cdk (see rational in Figure 6 and text).

The transcription of CLN1 is regulated by SBF [49,55].
Expression of Clnl is periodic; we assume that this is
due to Clnl intrinsic stability.

MBEF is detected on promoters throughout the cell
cycle, although at most times it represses transcription
[56]. Transcriptional activation by MBF depends on both
Cln3/Cdk and Clnl/Cdk. Therefore, we divided this
complex into 3 nodes: MBER (for repressive), MBEF, and
MBF* (for active). MBER level is constitutive 9. MBFR is
switched to MBF depending on Cln3/Cdk, whereas MBF
is switched to MBF* depending on Cln1l/Cdk. The level
of MBF is decreased depending on self-degradation. Ac-
tivity of MBF* is inhibited by Nrm1 [56]. In cells deleted
for NRM1 the transcription of MBF targets is still peri-
odic [56], and because we do not know who is respon-
sible for this effect, we put self-degradation on MBF*.

The transcription of NRM1 is regulated by MBF* [56].
The periodic expression of Nrm1 is mediated by degrad-
ation via Cdh1/APC [57]. MBF* regulates the transcrip-
tion of CLB5. The periodic expression of Clb5 and Clb5/
Cdk is mediated by degradation from APC/C/Cdc20*
[21,23]. The level of APC/C is constitutive, but its activ-
ity depends on its association with either Cdhl or Cdc20
[20]. Therefore, in our network, Cdc20* represents APC/
Cdc20. In addition, stability of CIb5 depends on an add-
itional proteasome depending factor whose identity is still
not known [58]. As this unknown regulation is absent
from our network, the level of Clb5 was not reduced to 0
upon treatment with pheromone. Finally, the activity of
Clb5/Cdk depends on the absence of Sicl [30].

Entry into S-phase (Figure 1B): DNA replication is a
complex process that depends on many proteins. In the
network presented in here we used only few proteins
that suffice to define its separation to distinct phases/
complexes. Below we first describe the regulation of
these proteins and then how they are used to regulate
DNA replication. The transcription of CDC6 is posi-
tively regulated by Mcm1 depending on the absence of
Yox1 [43]. The periodic availability of Cdc6 is accom-
plished through negative regulation from Clb5/Cdk
[59,60]. Cdcé6 is present prior to G1, and therefore, the
initial levels of CDC6 and Cdc6 were given the state 9.
The transcription of CDC45 and DBF4 are positively
regulated by MBF* [53,61]. Cdc45 availability is regu-
lated by intrinsic stability. In order to shorten and
control time of expression, the positive and negative
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regulations edges were assigned the weight 2. The stabil-
ity of Dbf4 is regulated by APC/Cdc20 [62]. Pre-
Replication Complex (preRC) formation is regulated by
Cdc6 [14]. The preRC complex was switched to PrelC
depending on Clb5/Cdk1 [62,63]. The switch from prelC
to prelC* depends on Cdc45 [62,63]. To simulate the
switch from preRC to prelC, preRC was negatively regu-
lated by prelC, and prelC was eliminated by self-
degradation. Finally, entry into S-phase from prelC*
depended on the function of Dbf4 [64]. Both prelC* and
S-phase were terminated by a negative feedback loop
from S-phase.

The G2 to anaphase transition (Figure 1C): Hcml*
regulates the transcription of both NDD1 and FKH2
[13]. However, in cells deleted for HCM1 transcription
remained periodic with a shift in peak time, indicating a
combinatorial control by both Hecml and at least one
other cell cycle-specific regulator that promotes tran-
scription later in the cycle [13]. Because there is a non-
perfect site for MBP in both NDD1 (at -556 ACGCGc
instead of ACGCGT) and FKH2 (ACGCtT at -530), in
the network regulations by both Hcm1* and MBF* were
added. We assume that the periodic expression of Ndd1,
Fkh2 and Fkh2* are due to the intrinsic stability of the
proteins. Fkh2 that functions as a negative regulator is
converted into a positive one, designated Fkh2*, depend-
ing on phosphorylation by Clb5/Cdk [65].

The transcriptions of CLB2, SWI5 and CDC20 are
negatively regulated by Fkh2, depending on the absence
of Cln1/Cdk activity [66]. Transcription is positively reg-
ulated by Nddl depending on Fkh2* (which recruits
Ndd1 to the promoter). Transcription is also positively
regulated by Fkh2* depending on Nddl [65,67,68]. The
transcription of CLB2 is initiated following entry into
S-phase, and is completed following the completion of
S-phase [19]. The use of a limited number of regulators
in our network resulted in earlier expression of CLB2. In
order to overcome this effect, we delayed the transcrip-
tion of CLB2 by putting an upper threshold of 8 on its
positive regulator — Fkh2*.

The periodic expression of Clb2 is regulated by
Cdc20/APC [21,23]. The activity of Clb2/Cdk depends
on the absence of Sicl [21]. Swi5 level is periodic
[69], but since its mode of regulation is not known,
we assumed intrinsic stability. Activation of Cdc20,
designated Cdc20* is via phosphorylation by Clb2/Cdk
[22,70]. We assume that Cdc20 and Cdc20* availabil-
ity are regulated by a negative feedback from cPM
(checkpoint M).

The transcription of SIC1 is positively regulated by
Swi5 [71]. The stability of Sicl is regulated following
phosphorylation by Clnl/Cdk [33]. In order to delay
entry into S-phase until cells express Clnl/Cdk, in the
simulation the initial state of SIC1 and Sicl was 9.
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Entry into metaphase: (Figure 1C): Entry into meta-
phase depends on a checkpoint that monitors the com-
pletion of S-phase. This checkpoint was represented in
the following simplified manner: We assume that Clb2/
Cdk activates the S checkpoint (cPS) depending on
S-phase. This checkpoint activates entry into metaphase
depending on the completion (absence) of S phase [19].
We assigned the weight of that edge to 2, because in our
simplified network many regulators required for entry
into metaphase are missing, and thus the use of a single
edge was unable to promote an increase of the meta-
phase node to 9, whereas the use of level 2, sufficed.
Down regulation of cPS is by metaphase, and metaphase
is subject to negative auto-regulation.

The transcription factor that regulates the transcrip-
tion of PDSI is not known. Transcription profile resem-
bles CLN1 transcription, however, neither SBF nor MBF
bind to PDS1 promoter [53]. We assume that it is
regulated by Hcml* because it carries a consensus
for its binding, atAAACAAa at -148 [consensus is
AAAAACAAA [13]]. Protein availability is regulated by
Cdc20*/APC [72]. The transcription of ESP1 is regulated
by Hcml* [13]. Espl is inactive in the presence of
Pds1 [73]. We represent this regulation by the addition of
an active Espl node whose presence depends on the
absence of Pdsl. We do not know how Espl and Espl*
availabilities are regulated; we assume negative feedback
from cPM.

The activity of Cdhl is positively regulated by Cdc14
and negatively regulated by both Clb2/Cdk and Clb5/
Cdk [74]. The activity of Cdc14 is positively regulated by
Espl* and negatively by APC/Cdhl [75].

Entry into anaphase also depends on a checkpoint. We
assumed that this checkpoint (checkpoint M — cPM) is
activated by Espl* depending on entry into M-phase.
Entry into anaphase is activated by this checkpoint de-
pending on the completion of metaphase. In the net-
work only limited number of regulators that activate
anaphase were used, therefore, in order for anaphase to
reach a maximal state of 9, we used edge weight of 2.
Completion of both the checkpoint and anaphase is
under negative feedback regulation from anaphase.

Regulation by pheromone: Under normal conditions
the level of pheromone (excluded from Figure 1) was 0,
while for the mating pheromone response its level was
9. Pheromone treatment results in inhibition of Cln3/
Cdk, and Cln1/Cdk activity [26]. Our network does not
include most of the details on how this signal is trans-
mitted. Inhibition of Cln1/Cdk was mediated by Farl*.
Pheromone regulates Farl* in two modes: Firstly, in re-
sponse to pheromone treatment the transcription of
FARI is induced [76], and the protein is activated fol-
lowing phosphorylation [24]. Finally, phosphorylation of
Farl and Farl* by Cln1/Cdk tags it for degradation [35].
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The initial state of Nitrogen depletion signal was 9,
and it was represented as N. This node repressed Cln3
along with CIn3/Cdk, and either Clnl along with Clnl1/
Cdk, or SIC1, according to the hypotheses examined
(see Table 1 and text).
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