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Abstract

Background: Biomarker discovery datasets created using mass spectrum protein profiling of complex mixtures of
proteins contain many peaks that represent the same protein with different charge states. Correlated variables such
as these can confound the statistical analyses of proteomic data. Previously we developed an algorithm that
clustered mass spectrum peaks that were biologically or technically correlated. Here we demonstrate an algorithm
that clusters correlated technical aliases only.

Results: In this paper, we propose a preprocessing algorithm that can be used for grouping technical aliases in mass
spectrometry protein profiling data. The stringency of the variance allowed for clustering is customizable, thereby
affecting the number of peaks that are clustered. Subsequent analysis of the clusters, instead of individual peaks, helps
reduce difficulties associated with technically-correlated data, and can aid more efficient biomarker identification.

Conclusions: This software can be used to pre-process and thereby decrease the complexity of protein profiling
proteomics data, thus simplifying the subsequent analysis of biomarkers by decreasing the number of tests. The software
is also a practical tool for identifying which features to investigate further by purification, identification and confirmation.
Background
Investigations in genomics and proteomics deal with large
datasets, and statistical methods are being developed to
decrease the complexity of the datasets. Examples of these
investigations include protein profiling by mass spectrom-
etry in biomarker discovery studies, in which complex
samples are often fractionated prior to analysis. A com-
monly used method of analysis is to control the fraction of
false-positives among significant results (false discovery
rate, FDR) [1,2]. While it is important to discover whether
biomarkers correlate biologically with each other, strongly
correlated peaks or features (due to multiple fractions be-
ing examined or other technical issues) usually lead to un-
certainty in the estimate of FDR [3], and do not add to
finding new biomarkers. Thus, it would be useful to deal
with correlations in the analyses of protein profiling mass
spectra, as obtained using surface enhanced laser desorp-
tion ionization-time of flight mass spectrometry (SELDI-
TOP MS).
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Biomarker discovery studies using SELDI-TOF-MS
will usually consist of many spectra - different samples,
often with spectra of each sample using multiple analysis
parameters (instrument parameters optimized for pro-
teins of different sizes), and sometimes with spectra of
chromatographically fractionated pre-processing of sam-
ples to decrease the complexity of the samples.
Protein profiling studies often produce features that

strongly correlate. Groups of peaks (features) may have
similar, but not identical m/z values, appearing in spectra
acquired at different laser energies, from different chroma-
tographic fractions of samples, or even at mass multiples
that might indicate different ionizations or protein aggre-
gates. In addition there could be biological correlations
such as proteins without and with post-translational modi-
fications [4-6]. We have previously developed a clustering
algorithm for dealing with correlations in protein profiling
SELDI-TOF proteomic data, such as those found in SELDI
biomarker discovery studies [7]. Our previous clustering
technique was based on representing each feature (mass
spectrum peak) as a vector, with each element of the vec-
tor representing a measurement of a sample. The tech-
nique creates mean-centered unit vector centroids, and
uses measurement noise (replicate value variance, not
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instrument noise) to determine the feature weights when
calculating centroids and the optimal number of clusters
at a given variance. However, that clustering technique
does not draw a distinction between peaks that biologic-
ally correlate and peaks that are “technical aliases” of a
single feature. Using many elements of our clustering
software, we have developed an algorithm that that has
been modified to identify and cluster the “technical
aliases” in protein profiling datasets. The clusters are
then represented by centroids that are calculated by
taking a noise-weighted average of the individual fea-
tures [7]. Downstream statistical analysis, such as
multi-hypothesis testing, can then be applied to the
clustered dataset directly, eliminating multiple analyses
of the same protein. The aim of technical alias cluster-
ing is to decrease the subjectivity of identifying peaks
that represent proteins with different charges and ag-
gregates of proteins. A rational way to group technic-
ally correlated features in a biomarker dataset will
identify peaks representing the same protein in differ-
ent spectra (whether from different laser energies,
chromatographic fractions or peaks of the same protein
with different ionizations) decrease the number of stat-
istical tests and aid biological interpretation of the data.
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Figure 1 Examples of mass spectra of purified transthyreting and com
transthyretin was applied to a CM10 ProteinChip array and spectra at medi
transthyretin with z = 1 and 2, and transthyretin dimers are prominent in th
molecules can be seen at high laser energy. The lower spectra are average
extract from Q anion exchange chromatographed plasma samples applied
used to develop mass windows for the algorithm are annotated.
Results and discussion
SELDI-TOF mass spectra of a purified protein demonstrate
the presence of peaks representing the protein with single
and multiple charges, as well as aggregates of the protein.
As an example, peaks representing human transthyretin
with one, two, and three positive charges are present in
SELDI mass spectra of the purified protein, with peaks at-
tributable to aggregates of up to nine transthyretin mole-
cules also identified (Figure 1). Mass spectra of complex
mixtures of proteins have numerous peaks, making the
identification of the protein peaks with z > 1 and peaks
representing protein aggregates more challenging. In a sin-
gle spectrum, most experienced researchers can easily iden-
tify the parent protein peak with z = 1, and will recognize
other peaks as technical aliases (z = 2 or 3) or aggregates of
the parent protein peak. The SELDI mass spectrometer
vendor (Bio-Rad) provides a software feature to identity
likely aliases in a given spectrum, although the algorithm is
not disclosed. The widely used and useful SELDI-TOF
spectrum processing and peak finding software PROcess
can also identify technical aliases in a given spectrum (an R
package available in the Bioconductor suite) [8]. In contrast
to Bio-Rad’s software, the PROcess software provides a
mass window parameter that can be modified by the user.
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Algorithm
The software is written in R. The goal of the algorithm is to
find sets of clusters that group protein peaks that represent
the same protein presenting in spectra of several samples as
multiple peaks, i.e. technical aliases. Protein profiling bio-
marker discovery studies might include spectra from differ-
ent laser energies, chromatographic fractions, or SELDI
ProteinChip array surfaces. The clustering of peaks is an it-
erative process consisting of four steps (Figure 2).
Before the first step, the table of peak intensities is

converted to a table of normalized mean centered unit
centroids, along with the variance (noise) of the replicate
measurement of each sample. Missing values in the data
are imputed in the software using the k-nearest neighbor
method in PAM software(R package pamr) [9,10]. This
table of normalized centroids without clustering is written
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Figure 2 Diagram of the algorithm for technical clustering.
as an output file that can be used in a downstream statis-
tical test such as FDR analysis. The algorithm then clusters
the normalized peak centroids.
Correlation test
The algorithm represents each peak as a feature vector
with each element of the vector representing a measure-
ment on a particular sample.
For peaks that are technical aliases of each other, we

expect to find correlation between peak intensities of the
individual samples studied. For example, if the easily
recognizable albumin peak of approximate mass 66,000 is
very high in one sample (relative to the other samples), one
might expect that the albumin peak with z = 2 (33,000)
would also be very high in that sample (relative to the other
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samples) (Figure 1). To test this correlation we use the fol-
lowing procedure:
Peaks that are candidates for being technical aliases of

each other are identified (see below). We obtain the ratio
of the intensities of both peaks for corresponding sam-
ples. Thus, we obtain a ratio value for each sample in
our dataset.
We then compute the coefficient of variation (CV) of

these values. The CV serves as a measure of the disper-
sion of the data. We set a threshold on the CV value,
and if the CV value is less than this threshold, the two
peaks are classified as being technical aliases of each
other and constitute a cluster. The variance threshold
for the clustering is a parameter that can be set in the
algorithm.

Selecting peaks for evaluation as aliases
In step 1, aliases from spectra within one laser energy,
on one surface, for one fraction are clustered. Each peak
in this set is compared with other peaks in the same set
to see if the ratio of the peak locations is an integer mul-
tiple. Since the mass values are unlikely be exact multi-
ples of each other, we define an interval within which
the mass ratios should lie if the peaks are technical
aliases. For example, if we were considering a peak that
was located at an apparent mass of 66,000, then a peak
of approximately 33,000 would be a possible candidate
for a technical alias with z = 2. For each peak, we search
in a window centered at that peak to check if there are
peaks at a similar location but in a different fraction,
array, or laser energy set. The size of this window is a
percentage of the peak location itself and is specified in
Table 1 for the mass range of 2,000 – 200,000. As shown
in the table, the size of the window increases with in-
creasing apparent mass of the peak. For the example of
a primary peak of 66,000, the window for a possible
technical alias in which z = 2 would be 32,918 – 33,082
(a window of 0.5% of mass). These values were empiric-
ally developed to be appropriate for the Bio-Rad
PCS4000 mass spectrometer used for SELDI biomarker
discovery studies, and are influenced by the mass
Table 1 Size of search window as a function of the
peak location

Peak m/z Size of window Proteins used

(as % of mass) (mass with z = 1)

2000 <m/z <
10,000

0.1% Apo CI (6,630); Apo CI (−2) (6,432);

10,000 <m/z <
30,000

0.15% α-globin (15,126); β-globin (15,867)

30,000 < m/z <
70,000

0.5% Albumin (66,471); transferrin (75,101)

100,000 <m/z 1.0% Albumin dimers; transferrin dimers
calibration, mass accuracy and resolution of the instru-
ment. These values were developed using peak inten-
sities derived from SELDI-TOF spectra from a study
consisting of 1537 peaks derived from 45 samples. Each
sample was processed in duplicate, yielding five chroma-
tographic fractions (Q anion exchange chromatography),
applied to two SELDI proteinchip array surfaces (CM10
and H50), and spectra acquired at three laser energies opti-
mized for small, medium, and large proteins (2,700 spec-
tra). The sizes of the mass windows were empirically
developed by optimizing the clustering of selected promin-
ent and previously identified proteins (Table 1). As a dem-
onstration, two spectra for medium- and high-laser energy
of Fx4 Q extract (pH 4) on CM10 ProtinChip arrays are
shown in Figure 1 (spectra are averaged spectra for 90 indi-
vidual spectra using our Simultaneous Spectrum Analysis
software [11]). The peak locations for albumin and α-globin
are annotated, for z = 1, 2, and 3, and protein dimers.
As can be seen in Figure 1, peaks of prominent proteins

with z > 3 are difficult to identify in SELDI spectra of com-
plex protein mixtures that are common in biomarker dis-
covery studies and aren’t considered. Once we find
candidate peaks that are aliases, we check the variance be-
tween the samples of both peaks before concluding that
they are actual technical aliases.
In step 2, the technical aliases in spectra obtained at

different laser energies on one surface in one fraction
are determined by the same clustering test. For example,
if the peaks of similar size in spectra obtained in separ-
ate spectra obtained using different laser and acquisition
parameters (e.g. optimized for small- and medium-sized
proteins), the same variance test of peak correlation is
performed. If the study uses unfractionated samples on a
single surface, the analysis finishes after these first two
steps and creates the output files.
If the input table contains peaks from spectra obtained

on different surfaces (e.g. CM10 and H50 ProteinChip
arrays), the algorithm continues to step 3. In this step
technical aliases in spectra from surfaces with different
chemistries at the same or different laser energies within
a single chromatographic fraction are evaluated. For the
given variance threshold, the peaks may be clustered or
added to clusters from previous steps.
If the input table contains peaks from spectra obtained

from different chromatographic fractions, the algorithm
continues to step 4. In this step peak centroids may be
clustered with peak centroids from multiple laser ener-
gies or multiple surfaces in the same or multiple chro-
matographic fractions, or added to existing clusters.

Cluster centroids
Once the peaks that are technical aliases of each other
are identified, each cluster is represented by a “centroid”
that best captures the features in that cluster. The
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Figure 3 Number of technical clusters and clustered peaks
from unfractionated CSF dataset. The Technical Clustering software
was applied to a dataset of 247 peaks from 45 unfractionated CSF
samples in a biomarker discovery dataset at the indicated variance
threshold. The number of technical clusters (solid red circles) and
number of peaks clustered (open red circles) are plotted.
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centroid is computed by taking the noise-weighted aver-
age of individual features in the cluster and is a mean-
centered unit vector as described in [7]. The software
returns two results files:

1) A list of the clusters and the peaks that constitute
the clusters is written. For each cluster in the table
of clusters, the weighted (by measurement noise)
contribution of the components of the cluster and
the average variance of each cluster component is
reported. While the clusters of technical aliases are
developed without regard to any groupings of the
samples, this table also returns the variance of the
components of the cluster for each group of samples
in the dataset, solely for information purposes.

2) A table of centroids for the peaks and clusters for
each sample is written. These centroids can then
directly be used in downstream statistical analyses.

Implementation: unfractionated samples
We demonstrate the algorithm using data from two bio-
marker discovery studies. The first dataset comes from a
study of rat cerebrospinal fluid (CSF) in an experimental
primary glioma model [12]. The spectra were processed
and the table of peaks was developed as described for al-
gorithm steps 1 and 2, because the samples were not
chromatographically fractionated, and were applied to
only one SELDI surface (CM10). Spectra were obtained
at three laser energies optimized for mass ranges of
2,000 – 10,000 (low), 5,000 – 30,000 (medium), and
20,000 – 200,000 (high).
The input table of peaks extracted from the spectra of 45

samples consisted of 247 peaks, with duplicate values for
each sample. The first four columns of the input table in-
clude the fraction name (Fx0 in this case), laser energy
(low, med, or high), SELDI ProteinChip array type (CM10
in this case), and a text string of the mass of the peaks (for-
matted as exported by the vendor’s software ProteinChip
Data Manager, v 3.51). The algorithm uses the first three
columns for grouping the features for the different steps of
the clustering, and converts the text string of the mass to a
numeric mass.
These data were clustered for technical aliases with this

algorithm using variance thresholds ranging from 0.2 –
0.7, and the results are shown in Figure 3. Intuitively one
expects that few clusters will be created when the toler-
ance for noise in the data is low (low variance threshold).
No peaks are clustered at thresholds < 0.2, and the number
of clusters and peaks within clusters increases as the strin-
gency of variance is decreased (variance threshold is
increased).
At a variance threshold of 0.5, 87 of 247 peaks were

grouped into 39 clusters, yielding 199 features (cluster
centroids plus the peak centroids not clustered at this
threshold). Since this was a study of unfractionated CSF
with spectra acquired for samples on only one SELDI
surface, the results come from only steps 1 and 2 of the
algorithm. These centroids were then processed with a
downstream statistical test, the Mann–Whitney U-test
coupled with false discovery rate (FDR) analysis [13]. Be-
fore technical clustering, 61 of 247 peaks (24.7% of
peaks) had Mann–Whitney U-test p < 0.05. After tech-
nical clustering with a threshold of 0.5, 50 features of
199 total features (25.1%) had Mann–Whitney U-test of
p < 0.05. Fifteen of the 50 features with p < 0.05 were
technical clusters which contained 35 peaks. Therefore
70 peaks (35 in 15 clusters and 35 peaks not clustered)
of the original 247 peaks (28.3%) had p < 0.05.

Comparison with alternative software
The vendor’s software (ProteinChip Data Manager v 3.51
was used) has a feature to identify multiply-charged peaks
in individual spectra. A customizable mass error can be
set as appropriate for different mass ranges. However this
method does not compare the results across spectra from
different samples (the algorithm is performed on each
spectrum individually). In this software, a peak location
(for example with an apparent m/z of 5,000) can consist of
peak labels of the different samples indicating a mixture of
protein labels with z = 1, 2, 3 or more (5000, 10000/2, or
15000/3). The investigator would then assign the peak
label for that feature, but there would not be a built-in
mechanism for clustering these assigned peaks.
The PROcess software (from the R Bioconductor suite)

can be used to develop a table of biomarker peaks from
SELDI spectra. The peak finding algorithm is performed



Whitin et al. BMC Research Notes 2013, 6:358 Page 6 of 14
http://www.biomedcentral.com/1756-0500/6/358
on spectra obtained under uniform conditions (e.g.
medium laser energy) and returns sample values for
peak locations. PROcess includes an algorithm to deter-
mine whether peaks present in a vector of biomarker
peaks are integer multiples of other peaks in the vector,
thus potentially representing the same protein with dif-
ferent charges. In contrast with our Technical Clustering
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groups (43 and 42 patients). The spectra were obtained
from five chromatographic fractions (Q anion exchange
chromatography) of the samples on two types of
ProteinChip arrays (CM10 and H50) from which spectra
were obtained at three laser energies, essentially as de-
scribed for a different dataset [14,15]. Therefore 5100
spectra were acquired in duplicate for these 85 samples
under different conditions (fractions, ProteinChip arrays,
laser energies). Peak intensities for 1350 peaks were
obtained across the 30 conditions. To demonstrate the
complexity of the dataset, some of the averaged SELDI-
TOF spectra are shown in Figure 4, presented for illus-
tration. Each panel is therefore the averaged spectrum of
170 spectra from 85 samples. The spectra are from ali-
quots of five chromatographic fractions of plasma ap-
plied to CM10 ProteinChip arrays, with spectra acquired
using low-, medium-, and high-laser energies.
The variance threshold for technical clustering of the

peaks was varied from 0.05 (5%) – 0.8 (80%) for this
dataset. The number of clusters and the number of clus-
tered peaks are shown in Figure 5. The algorithm yields
clusters of peaks that have the same apparent mass on the
same surface in different fractions, on multiple SELDI sur-
faces both within fractions and in different fractions, as
well as in spectra obtained at different laser energies. The
number of clusters for this dataset began to plateau at 100
clusters with a threshold of 0.35. These 100 clusters
contained 346 peaks at this variance threshold.
Simulated datasets were used to test the algorithm. In

the first simulated dataset, the algorithm was tested
when the intensities of only one of the 1350 peaks were
randomized. The intensity values for the 85 patients of
the easily identified serum albumin peak of 66,680 on
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Table 2 Randomization test of technical clustering software

Threshold Original cluster Weight Cluster after randomizing Fx4_CM10_high_C066628 Weight

0.15 Fx4_CM10_high_C066628_ 0.581 Not clustered NA

Fx4_CM10_high_C033359_ 0.419

0.20 Fx4_CM10_high_C0133296 0.288 Not clustered NA

Fx4_CM10_high_C066628_ 0.260

Fx4_CM10_high_C033359_ 0.176

Fx3_CM10_high_C033347_ 0.129

Fx4_CM10_high_C022248_ 0.061

Fx3_CM10_high_C066617_ 0.053

Fx3_CM10_high_C022244_ 0.033

0.25 Fx4_CM10_high_C0133296 0.250 Not clustered NA

Fx4_CM10_high_C066628_ 0.230

Fx4_CM10_high_C033359_ 0.154

Fx3_CM10_high_C033347_ 0.121

Fx3_CM10_high_C0133108 0.089

Fx4_CM10_high_C022248_ 0.055

Fx3_CM10_high_C066617_ 0.051

Fx3_CM10_high_C022244_ 0.027

Fx4_H50_high_C022244_ 0.024

0.3 Fx4_CM10_high_C0133296 0.238 Fx3_CM10_high_C033347_ 0.237

Fx4_CM10_high_C066628_ 0.224 Fx4_CM10_high_C033359_ 0.237

Fx4_CM10_high_C033359_ 0.151 Fx3_CM10_high_C0133108 0.152

Fx3_CM10_high_C033347_ 0.119 Fx4_CM10_high_C022248_ 0.106

Fx3_CM10_high_C0133108 0.087 Fx3_CM10_high_C066617_ 0.093

Fx4_CM10_high_C022248_ 0.054 Fx5_H50_high_C022236_ 0.065

Fx3_CM10_high_C066617_ 0.050 Fx4_CM10_high_C066628_ 0.056

Fx5_H50_high_C022236_ 0.030 Fx3_CM10_high_C022244_ 0.028

Fx3_CM10_high_C022244_ 0.026 Fx4_H50_high_C022244_ 0.026

Fx4_H50_high_C022244_ 0.020

0.4 Fx4_CM10_high_C0133296 0.238 Fx4_CM10_high_C0133296 0.240

Fx4_CM10_high_C066628_ 0.224 Fx4_CM10_high_C033359_ 0.165

Fx4_CM10_high_C033359_ 0.151 Fx3_CM10_high_C033347_ 0.154

Fx3_CM10_high_C033347_ 0.119 Fx3_CM10_high_C0197893 0.117

Fx3_CM10_high_C0133108 0.087 Fx3_CM10_high_C0133108 0.112

Fx4_CM10_high_C022248_ 0.054 Fx3_CM10_high_C066617_ 0.065

Fx3_CM10_high_C066617_ 0.050 Fx4_CM10_high_C022248_ 0.064

Fx5_H50_high_C022236_ 0.030 Fx5_H50_high_C022236_ 0.036

Fx3_CM10_high_C022244_ 0.026 Fx3_CM10_high_C022244_ 0.024

Fx4_H50_high_C022244_ 0.020 Fx4_H50_high_C022244_ 0.012

Fx4_CM10_high_C066628_ 0.012

0.5 Fx4_CM10_high_C0133296 0.161 Fx4_CM10_high_C0133296 0.194

Fx4_CM10_high_C066628_ 0.140 Fx4_CM10_high_C0196854 0.155

Fx4_CM10_high_C0196854 0.129 Fx4_CM10_high_C033359_ 0.101

Fx4_CM10_high_C033359_ 0.088 Fx3_CM10_high_C033347_ 0.074
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Table 2 Randomization test of technical clustering software (Continued)

Fx3_CM10_high_C033347_ 0.064 Fx3_CM10_high_C0197893 0.065

Fx6_CM10_high_C033435_ 0.060 Fx6_CM10_high_C033435_ 0.065

Fx3_CM10_high_C0197893 0.055 Fx3_CM10_high_C0133108 0.061

Fx3_CM10_high_C0133108 0.052 Fx6_CM10_high_C066702_ 0.042

Fx6_CM10_high_C066702_ 0.036 Fx6_CM10_high_C0133574 0.039

Fx6_CM10_high_C0133574 0.033 Fx3_H50_high_C033429_ 0.038

Fx3_H50_high_C033429_ 0.032 Fx4_CM10_high_C022248_ 0.034

Fx4_CM10_high_C022248_ 0.030 Fx3_CM10_high_C066617_ 0.033

Fx3_CM10_high_C066617_ 0.028 Fx3_H50_high_C066672_ 0.023

Fx3_H50_high_C066672_ 0.019 Fx5_H50_high_C022236_ 0.020

Fx5_H50_high_C022236_ 0.018 Fx3_H50_high_C0133496 0.019

Fx3_CM10_high_C022244_ 0.016 Fx3_CM10_high_C022244_ 0.018

Fx3_H50_high_C0133496 0.016 Fx4_H50_high_C022244_ 0.017

Fx4_H50_high_C022244_ 0.013 Fx4_CM10_high_C066628_ 0.002

Fx5_CM10_high_C0133649 0.010

Fx5_CM10_high_C066776_ 0.001

The Technical Clustering software was applied to the dataset of spectra obtained from 85 samples before (left-hand column) and after (right hand column)
randomizing the sample identities of the intensities of one peak (Fx4_CM10_high_C066628, in bold type). The clusters that contain the correct sample values are
shown in the “Original Cluster” column at the indicated threshold CV, and after randomizing the sample intensities of just one peak on the right. The
contributions (weights) of the components of the clusters are also shown.
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this least stringent threshold of 0.5, the non-randomized
m/z 66,628 peak was still a major contributor to its tech-
nical cluster of 20 peaks in the original dataset.
A common use of this type of biomarker dataset is the

downstream analysis for significant differences between
two groups. The second and third simulated datasets
were created by randomizing the sample identities for
each of the peaks of the original dataset, preserving the
replicate pairing of values. Thus the sample identities for
the values of each peak were randomized, and the
process repeated for each of the 1530 peaks. The aim
was to use these randomized datasets to characterize the
effect of technical clustering on downstream significance
analysis. The randomization to create the second simu-
lated dataset was performed for each peak within groups
(preserving the pairing of duplicate measurements), while
the randomization to create the third simulated dataset
was performed for each peak without regard to groups
(while still preserving the pairing of duplicate measure-
ments). The effect of this within-peak randomizing of
sample identities of values on subsequent technical clus-
tering for these two synthetic datasets is shown in Figure 5,
in comparison to the original dataset. In Figure 5, ran-
domization of the sample identities within each peak
greatly reduces the number of clusters found by the algo-
rithm as well as the number of peaks within clusters, for
both the within groups randomized data and the fully ran-
domized data. For example, at a threshold of 0.5, the algo-
rithm clustered 537 peaks in 117 clusters in the original
dataset of 1530 peaks. In the simulated datasets, at a
threshold of 0.5 the algorithm clustered 60 and 53 peaks
(Figure 5B) into 19 and 18 clusters (Figure 5A) for the
randomized within groups and fully randomized data,
respectively.
To characterize the effects of clustering on subsequent

analysis of significant differences between groups, we
performed the Mann–Whitney U test on the original data
and the data after Technical Clustering [13]. Before tech-
nical clustering, 434 of 1350 peaks (32%) in the original
dataset had a Mann–Whitney U test p < 0.05 (red line for
Discoveries in Figure 6A). After technical clustering at a
threshold of 0.5, 267 of 930 features (29%) had p < 0.05
(Figure 6B). These 267 features consisted of 38 technical
clusters with p < 0.05 containing 176 peaks, with the
remaining significantly different features being 229 peaks
not clustered at this threshold. Therefore, after technical
clustering, 405 of the original 1350 peaks were p < 0.05
(combining peaks within clusters and peaks not clustered),
compared to 434 peaks when the data weren’t clustered.
Therefore, essentially equal proportions of original peaks
were significantly different when comparing unclustered
and clustered data.
For the simulated dataset in which sample identities

are randomized within peaks within groups, the Mann–
Whitney U test results were identical to the original
dataset, as expected (Figure 6C). After technical cluster-
ing at a threshold of 0.5, this within group randomized
dataset had 423 of 1309 features with p < 0.05. There
were only 3 technical clusters among the 423 features
with p < 0.05, composed of 8 peaks (Figure 6D). This
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Figure 6 Discoveries with Global FDR correction for Mann–Whitney U test. Mann–Whitney U tests with FDR correction were performed on
unclustered (A, C, E) and clustered (B, D, F) datasets. In each panel, the number of discoveries with p < 0.05 is plotted in red crosses, while the average
number of discoveries of the data permuted 100 times is plotted with open green circles. A) original dataset of 1350 peaks; B) original dataset after
technical clustering at threshold 0.5; C) simulated dataset of each peak randomized within groups; D) simulated dataset from C after technical
clustering at threshold 0.5; E) simulated dataset of each peak fully randomized; F) simulated dataset from E after technical clustering at threshold 0.5.
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result demonstrates that the algorithm is sensitive to dis-
ruption of the values vector for each sample. Overall, the
two groups remain highly significantly different because
the randomization was performed only within groups.
However, at this threshold, the algorithm clustered very
few peaks (Figure 5). In contrast, fully randomizing the
sample identities for each peak of the original dataset
yields randomized groups of sample values. Therefore
no significantly different peaks were found after false
discovery rate correction (the green symbols in Figure 6)
either before (Figure 6E) or after technical clustering at
a threshold of 0.5 (Figure 6F).

Utility of clustering technical aliases
Proteomic studies such as biomarker discovery often
contain many more features than samples, and contain
features that correlate either biologically or are technical
aliases. Our previous clustering algorithm did not distin-
guish between biological and technical aliases [7], while
this present algorithm is a tool for correlating technical
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aliases only. The correlation algorithms are similar, with
the difference being that this current effort tests whether
peak masses are multiples of the mass of other peaks (as
found in the same protein having different charges, or
protein aggregation) or are the same as peaks of similar
apparent mass in spectra obtained at different laser ener-
gies, in chromatographic fractions and/or on multiple
surfaces.
One utility for using the technical clustering algorithm

in a biomarker discovery study can be seen in Figure 7. In
this bubble chart, the Mann–Whitney U test results with
p < 0.05 for technically clustered features (threshold = 0.5)
are plotted versus the corresponding Mann–Whitney U
test results for the original feature set. The p value of an
individual cluster therefore appears as horizontal lines of
bubbles that correspond to the original p values of the
members of that cluster. The area of the bubbles is pro-
portional to the weight of that protein peak to that cluster.
Peaks that did not cluster at this threshold fall on the diag-
onal line at their respective unchanged p value. For ex-
ample, a prominent cluster that is highly significant with a
p = 6 × 10-6 can be seen to consist of 20 peaks with ori-
ginal p values ranging from 0.01 to 0.000001. The highest
weighted peak in the cluster has an apparent mass of
17,419 on H50 surfaces in fraction 5 (pH 3 extraction of
anion exchange chromatography of the original samples)
at medium laser energy. Most of the alias peaks in this
M
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Figure 7 Comparison of Mann–Whitney U test results before and afte
data are plotted on the abscissa, and the U test results after technical clustering
two peaks with p< 1 × 10-7 and 972 peaks with p> 0.05 are not plotted. Peaks
as small black open circles, and fall on the diagonal. The clustered peaks with p
proportional to the weight (contribution) of that protein peak to that cluster’s c
cluster have apparent mass of approximately 8,710 (z = 2
for 17,419). Evaluation of the results before and after tech-
nical clustering allows the investigator to rationally choose
which peaks represent the relevant species for further iden-
tification, rather than using more subjective judgement.
Biological identification and interpretation of the biology of
the biomarker can be focused solely on the 17,419 peak,
thereby reducing the complexity of that phase of the dis-
covery study.
In one of our previous reports about a search for mar-

kers of premature birth in a mouse model, we found bio-
markers in plasma using SELDI-TOF-MS profiling of
fractionated plasma [15]. In these studies several peaks
of approximately 11,700, 11,800, 5,800, and 5,900 were
significantly different when comparing the plasma of
control mice and mice that gave birth prematurely after
injection with lipopolysaccharide (LPS). A subsequent
experiment compared the plasma of mice injected with a
lower concentration of LPS, resulting in half of the mice
giving birth at term, and half giving birth preterm. The
same peaks were higher in the preterm group than in
the term group. Thus, higher amounts of this biomarker
correlated with preterm vs term birth in this model.
After using this algorithm, technical clusters consisted of
the 11,800 and 5,900 peaks, and of the 11,700 and 5,800
peaks (Figure 8). This result provided a rationale for fo-
cusing on purification of the 11,700 and 11,800 peaks.
 (No Clustering)

10 3 10 2

r technical clustering. The Mann–Whitney U test results for the original
at threshold 0.5 are plotted on the ordinate. For convenience of viewing,
with p< 0.05 that do not cluster at variance threshold 0.5 are represented
< 0.05 are represented as a bubble plot, with the area of the bubble being
entroid. For viewing convenience, clusters have bubbles of different colors.
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After trypsinization and MS/MS analysis the peaks were
identified as serum amyloid A1 and serum amyloid A2.
Subsequent analysis of the plasma serum amyloid A2
content in the plasma confirmed that the levels were sig-
nificantly higher in the preterm group, in both the con-
trol vs preterm study, and the subsequent correlation
study between term and preterm birth following low
dose LPS (Figure 8). This software gave us a rational, ra-
ther than strictly subjective basis as to which biomarker
peaks should be identified, and which were technical
aliases of the same protein.
In another of our previous reports, we identified several

proteins in rat CSF that were presymptomatic biomarkers
for primary glioma [12]. Seven of the top 11 significantly
different peaks in that study were technical aliases of three
of the other four peaks after using this algorithm. Subse-
quent biochemical identification of the proteins with z = 1
confirmed the identity of the technical aliases, and subse-
quent orthogonal assays confirmed the statistically differ-
ence between the groups.
The observation that a peak is never found in any tech-

nical cluster can also provide useful information in a dis-
covery study. In our published work on CSF from rats in a
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Figure 8 Test results from one technical cluster from a biomarker dis
six SELDI-TOF MS peaks for term labor and preterm labor are shown in A – F. T
cluster centroids for term and preterm labor for this cluster is shown in G. The s
identification of candidate biomarker by chromatographic purification, gel purifi
text. Panels A - G are mean ± sem with n = 7 for Term and n = 6 for Preterm. Pa
primary glioma model, one of the peaks (m/z = 3493) of
highest significance did not cluster even at a high variance
threshold of 0.8 using the technical clustering algorithm.
This confirmed that identification strategies for this bio-
marker could be confidently focused on this low molecu-
lar weight protein, which we eventually biochemically
identified as a novel fragment of α1-macroglobulin [12].
There are limitations to the use of this algorithm. There

is no correct variance threshold for technical clustering,
nor is perfect technical clustering likely achievable. This
algorithm has been developed for biomarker discovery
studies using protein profiling datasets obtained with the
SELDI-TOF-MS platform. Among the advantages of this
platform are its sensitivity and capability of reasonably
high throughput of samples. Among the disadvantages of
this platform are the modest mass resolution and mass ac-
curacy. In addition, identification of all potential discover-
ies from this platform requires additional biochemical,
proteomic, and immunological techniques, since identifi-
cation cannot be achieved directly from the mass spectra.
Nonetheless, this present algorithm is a useful tool for de-
creasing the subjectivity of one aspect of the analysis of
these large datasets.
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Conclusions
The approach presented here describes a framework to ra-
tionally correlate the technical aliases present in SELDI
proteomic biomarker discovery datasets. Representing each
cluster through only its centroid helps reduce the complex-
ity of the dataset and reduces the number of statistical tests
applied to the dataset. Using clustering will also help high-
light relationships between technically-correlated peaks.
This algorithm is a useful tool as part of multi-faceted ana-
lyses of biomarker discovery datasets, such as in protein
profiling SELDI-TOF-MS studies.
Methods
SELDI peak intensity datasets obtained on rat, mouse, and
human samples were used to develop and demonstrate the
algorithm described in this study. The rat CSF [12] and
mouse plasma [15] samples were obtained in studies ap-
proved by the Stanford University IUCAC in accordance
with guidelines for animal safety and welfare. The dataset
developed from human plasma samples was obtained in
studies approved by the Stanford University Institutional
Review Board (protocol IRB-13965). Informed consent was
obtained from the parents of all subjects and assent from
all subjects > 6 years of age.
All mass spectra were obtained using a Bio-Rad PCS4000

SELDI mass spectrometer. Aliquots of CSF (4 μl) were de-
natured with urea and applied to CM10 ProteinChip arrays
(weak cation exchange surface) as described in [12]. Mass
Spectra were acquired using low (3200 nJ), medium (4200
nJ), and high (7200 nJ) laser energy. The mass spectra were
externally calibrated using Bio-Rad’s protein standards.
Spectra were pre-processed using noise reduction and base-
line subtraction in ProteinChip Data Manager 3.51. The
signal of spectra acquired using the same conditions (laser
energy) were normalized. Peaks were detected using
ProteinChip Data Manager, and the resulting peak tables
exported as text files without averaging replicate values of
samples. The output files were then combined to create the
dataset used for technical clustering.
Aliquots of plasma (20 μl) were denatured with urea, ap-

plied to strong anion-exhange Q ceramic HyperD F beads
(Pall) as described in [15]. The beads were extracted with
200 μl buffer in a decreasing pH gradient, followed by a
final acidic organic extraction. A small amount of each
fraction (10 μl) was bound to CM10 weak cation exchange
or H50 reverse phase ProteinChip arrays as described
[15]. Mass spectra were acquired and processed as above.
The averaged spectra depicted in the figures were created

using our Simultaneous Spectrum Analysis software [11].
Mass calibrated spectra (without other processing) were
exported as text files. Spectra acquired under the same con-
ditions (laser energy, fraction and ProteinChip array) were
processed in the software to create an average spectrum for
that condition. Figures of the averaged spectra were created
using Datagraph 3.1.1 software (Visual Data Tools).

Availability and requirement
Project Name: Technical Clustering
Project home page: http://med.stanford.edu/labs/
harvey_cohen/
Operating system(s): Platform independent
Programming language: R (tested in version 2.15.1)
Other Requirements: R packages “gsubfn”, “proto”, and
“pamr” and their dependencies must be installed.
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