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Abstract

Background: Global network alignment has been proposed as an effective tool for computing functional orthology.
Commonly used global alignment techniques such as IsoRank rely on a two-step process: the first step is an iterative
diffusion-based approach for assigning similarity scores to all possible node pairs (matchings); the second step applies
a maximum-weight bipartite matching algorithm to this similarity score matrix to identify orthologous node pairs.
While demonstrably successful in identifying orthologies beyond those based on sequences, this two-step process is
computationally expensive. Recent work on computation of node-pair similarity matrices has demonstrated that the
computational cost of the first step can be significantly reduced. The use of these accelerated methods renders the
bipartite matching step as the dominant computational cost. This motivates a critical assessment of the tradeoffs of
computational cost and solution quality (matching quality, topological matches, and biological significance)
associated with the bipartite matching step. In this paper we utilize the state-of-the-art core diffusion-based step in
IsoRank for similarity matrix computation, and couple it with two heuristic bipartite matching algorithms – a
matrix-based greedy approach, and a tunable, adaptive, auction-based matching algorithm developed by us. We then
compare our implementations against the performance and quality characteristics of the solution produced by the
reference IsoRank binary, which also implements an optimal matching algorithm.

Results: Using heuristic matching algorithms in the IsoRank pipeline exhibits dramatic speedup improvements;
typically ×30 times faster for the total alignment process in most cases of interest. More surprisingly, these
improvements in compute times are typically accompanied by better or comparable topological and biological quality
for the network alignments generated. These measures are quantified by the number of conserved edges in the
alignment graph, the percentage of enriched components, and the total number of covered Gene Ontology (GO)
terms.

Conclusions: We have demonstrated significant reductions in global network alignment computation times by
coupling heuristic bipartite matching methods with the similarity scoring step of the IsoRank procedure. Our heuristic
matching techniques maintain comparable – if not better – quality in resulting alignments. A consequence of our
work is that network-alignment based orthologies can be computed within minutes (as compared to hours) on typical
protein interaction networks, enabling a more comprehensive tuning of alignment parameters for refined orthologies.

Background
The description of a cell as a collection of pathways
of interacting biochemical components is fundamental
to a systems view of biological processes. Data relating
to regulatory, metabolic, and signaling interactions, is

*Correspondence: gkollias@purdue.edu; madan.sathe@unibas.ch;
mohammas@purdue.edu; ayg@cs.purdue.edu
1Department of Computer Science, Purdue University, 305 N. University
Street, West Lafayette, IN 47907, USA
2Department of Mathematics and Computer Science, University of Basel,
Klingelbergstrasse 50, 4056 Basel, Switzerland
Full list of author information is available at the end of the article

systematically, and naturally encoded into networks [1].
The diversity of species, cellular processes, abstractions,
and volume of interaction data generated from high-
throughput techniques strongly motivates development
of effective and efficient analysis algorithms. Over the
past two decades, significant progress has been made
on algorithms for identifying conserved components,
discriminating components, modularity, clustering, and
alignment, of sequences, sets, and special graph structures
(trees, DAGs). However, solving these problems for gen-
eral large sparse graphs, while providing sound statistical
basis for results, remains a topic of significant ongoing
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investigation. Effective solutions to these problems must
leverage properties of specific datasets to deliver desirable
performance.
In this paper, we focus on the problem of network

alignment. This problem aims to quantify the similarity
of two given graphs, resulting in the mapping of nodes
from one graph to the other, along with the induced
edge mapping. As a specific instance of this problem,
in protein interaction (PPI) networks, physically interact-
ing proteins are represented as edge-connected nodes.
Identifying (topological) regions of similarity between
networks of different species reveals insights into the
functional organization and coherence of sub-networks.
Specifically, if connected sub-graphs are conserved across
species, they likely correspond to shared function across
and within sub-graphs. This can be used for annotat-
ing proteins (by mapping annotations across species),
inferring missing interactions, and drawing functional
orthologies.
Network alignments can be derived from local or global

measures of cost. In local network alignment (LNA) [2-4],
local scoring functions reward potentially small subgraph
matches. In PPIs, it follows that a node (protein) may
potentially participate in many mappings. In contrast,
global network alignment (GNA) [5-7] relies on a cost
function defined over entire networks. This implies that
in PPIs, a single protein from one network is mapped to a
single protein in the other.
Proposed approaches to global alignment typically pro-

ceed in two steps:

• In the first step, a similarity score matrix X is
constructed, where element xij denotes the similarity
of node i in the first graph to node j in the second
graph.

• In the second step, a node matching algorithm selects
pairs of nodes, one from each network, optimizing an
aggregate similarity score measure using matrix X.

The similarity of two nodes is determined by the sim-
ilarity of their interaction profiles, also called topological
similarity, and the inherent similarity of the nodes. The
latter notion of inherent similarity is introduced in by
Singh et al. [6,7], as elemental (or node) similarity. Ele-
mental similarity scores supplement topological similar-
ity, and rely on node labels or attributes. As an example,
for protein pairs, sequence similarity scores, indepen-
dently computed by BLAST, can be used for elemental
similarity. The method of Singh et al. [6,7], called Iso-
Rank, uses a notion of topological similarity based on
an iterative diffusion process for computing matrix X.
In this method, the similarity of a pair of nodes is iter-
atively determined by the similarity of their neighbors.

The topological similarity thus computed is accumulated
with the elemental similarity at each iterative step and the
process is run to convergence to yield matrix similarity
matrix X.
In the second step of the method, best-matching pairs of

nodes are identified. The matrix X is viewed as a weighted
bipartite graph G = (VA,VB,E), where node i of the
first graph represents a vertex in VA, node j of the sec-
ond graph illustrates a vertex in VB and matrix entry xij
represents a weighted edge between the two nodes. Bipar-
tite graph matching algorithms can be applied to obtain a
set of edges M, M ⊆ E, such that no pair of edges in M
are incident on/to the same vertex. Furthermore, the sum
over the weighted edges inM is maximized (IsoRank [6,7],
NetAlignBP [8], H-GRAAL [9]).
In IsoRank, the computation of matrix X represents

the dominant cost. However, algorithmic improvements
to this step have resulted in significant reductions in
the cost of similarity matrix computation [10], particu-
larly in cases with a small set of dominant, elemental
similarity components. This has resulted in the second,
bipartite matching step now becoming the performance
bottleneck, and consequently, the focus of performance
improvements.
In this paper, we critically examine the need for opti-

mal bipartite matching, suitable heuristic algorithms for
bipartite matching, the associated improvements in over-
all runtime, and their implications for quality of solution,
both in terms of biological implications and topological
matches.
Specifically, for a series of PPI network pairs, we exper-

iment with our customized implementation of the two
stage pipeline: we utilize the IsoRank scoring matrix
calculation as the first stage, followed by the applica-
tion of the matrix-based, greedy, and adaptive, auction-
based matching algorithms. These two methods gen-
erate two alignments for each input network pair –
(mat3 greedy and mat3 auction results). We then run,
for the same input networks and parameters, the ref-
erence native binary implementation of IsoRank made
available by Singh et al.[6], who report that their software
applies the greedy and Hungarian algorithms to the scor-
ing matrix X, and produces iso greedy and iso hungarian
alignments.
Our key result is an improvement in overall runtime

of over one order of magnitude – typically an acceler-
ation of ×30 for almost all tested PPI network pairs –
with comparable, and in some cases superior results in
terms of topological and biological quality (mat3 * ver-
sus iso * computations). This represents a reduction in
runtime for typical cases of PPI networks from hours to
minutes – thus enabling a more comprehensive explo-
ration of the parameter space for extracting desirable
orthologies.
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Results and discussion
We report on the computational cost and quality char-
acteristics of our mat3 * alignments in comparison with
the ones generated by the reference native binary imple-
mentation of the IsoRank (iso * results). The set of PPI
networks, sequence similarity of their corresponding pro-
teins, and the executable files for IsoRank [6,11] were
obtained through the IsoRank public website [11]. PPI
networks in this dataset, the list of which is provided in
Table 1, were collected from publicly available databases,
such as BioGRID and DIP, as well as the datasets of Stelzl
and Vidal. Associated sequence similarities were gener-
ated by using BLAST on the sequences retrieved from
Ensembl. We use α = 0.80 for fixed number of iterations
(20) in all experiments.

Computational performance
Computation times format3 * and iso * implementations
are plotted in Figure 1.
Two important observations can be made:

• Ourmat3 *matches are generated approximately 30
times faster than iso *, for almost all pairs of
networks. For the largest datasets this roughly
translates to less than 5 minutes in our case
(compared to iso *’s 2 hours of processing time).

• The adaptive auction algorithm is a key element in
this performance improvement, as opposed to the
Hungarian algorithm — assuming IsoRank
(constructing X) and greedy matching
implementations are of comparable performance.
Please note that we have no way of benchmarking
these separately, since these times are not reported by
the reference implementation of Singh et al. One may
argue that our implementations of similarity matrix
computations are much faster than corresponding
implementations of Singh et al. While this is unlikely,
even if this were to be the case, our significant
performance improvements over the most widely
distributed implementation of IsoRank represent the
core of our contributions.

We also note that, especially for the largest pair of
networks, our adaptive auction algorithm is the most effi-
cientmethod for extractingmatching pairs from similarity

Table 1 PPI network data

Species Dataset name |V| |E|
fruitfly(D. melanogaster) dmela 7518 25830

bacterium(E. coli) ecoli 1821 6849

human(H. sapiens) hsapi 9633 36386

yeast(S. cerevisiae) scere 5499 31898

Species for which PPI network data is used in our experiments.

score matrices. Specifically, the only timing information
that is available after running the native binary from [11]
is the overall running time, which includes three sepa-
rate components – (i) their similarity matrix construction
phase, (ii) their Hungarian algorithm run, and (iii) their
greedy approach. These three times cannot be separated.
However we can measure, separately, the times for (i)
our similarity matrix construction phase, (ii) our auction
matching run, and (iii) our greedy approach run. Only the
implementation of the second part, i.e, their Hungarian
versus our auction algorithm, are fundamentally different.
The corresponding similarity computations in the first
phase and the greedy matching algorithm rely on simi-
lar algorithms. This suggests that the performance gain
that we observe in the overall running time from the three
parts in both cases (roughly ×30 speedup) can be primar-
ily attributed to the performance difference between their
Hungarian and our auction algorithm implementations.
In terms of the number of operations, the complexity

of the Hungarian algorithm is O(|V |(|E| + |V | log |V |)).
This is in comparison to the worst case complex-
ity of an ε-scaling auction algorithm, which is given
by O(|V ||E| log(|V |C)) for integer weights (with C =
maxij |xij| and xij the similarity scores). Here |V | is the
maximum number of vertices between the two graphs to
be aligned and |E| is the number of entries in X. Exper-
imental results suggest that the worst case runtime for
the auction algorithm is rare. Other causes for the speed
improvements include suboptimal data structures in sim-
ilarity matrix computations in the binary code, or an
unoptimized Hungarian implementation. These are hard
to decipher from the binary – in either case, our software
yields significant overall acceleration of the state-of-the-
art approach from Singh et al. for the global alignment
problem.

The alignment graph and its assessment
Topological perspective
In Figure 2, the number of conserved edges in the align-
ment graph is reported. Our proposed mat3 auction
approach outperforms the other methods in at least 2 out
of the 6 cases – more conserved edges imply better align-
ments, as described in the Methods Section – and that
the mat3 * matchings are superior to the iso * ones (in 5
out of 6 cases, and on average). However there is no clear
“winner”, i.e. a single method that is the best for all test
cases.

Biological perspective
To assess the functional coherence of computed align-
ments, we report on their sensitivity and specificity
(please see Methods Section for more details). Table 2
summarizes the corresponding statistics. We then pro-
vide a detailed analysis for a subset of the top-ranked
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Figure 1 Timing results. Timing results for extracting all four types of matches of Figure 4. Times for obtaining mat3 * matches are represented as
bars with colors identifying the relative contribution of each of the three algorithmic blocks (mat3, greedy, auction). The black line gives the
corresponding speedup (as read on the right vertical axis) in generating our mat3 * matches relative to iso * ones.

components with co-enriched terms, where a functional
term is enriched in the respective subgraphs of both input
networks (from different species).

Sensitivity
In terms of overall sensitivity (average of true-positive rate
(TPR) in the pair of aligned species),mat3 auction shows
superior performance, except in aligning human-versus-
fly, where mat3 greedy outperforms the mat3 auction
method. It is notable here that sensitivity is not com-
parable across different tables, since the total number
of expected enriched terms is a function of evolution-
ary distance among species pairs that are being aligned.
Species that have diverged more recently are more prob-
able to have common pathways, which results in higher
number of identified terms. However, for a fixed pair
of species, which defines a unique functional space, we

can use sensitivity as a measure to compare different
methods.

Specificity
In terms of average specificity, we observe more diver-
sity among different methods. Surprisingly, mat3 greedy
is the top-ranked method in 4 out of 6 experiments,
except in aligning yeast-versus-bacterium and bacterium-
versus-human, for which iso hungarian andmat3 auction
perform better, respectively. These results suggest that the
well-known Hungarian algorithm for maximum weighted
bipartite matching does not necessarily enhance the bio-
logical quality of the results. One possible explanation for
this phenomena is the over-fitting problem. The objec-
tive function for the matching phase is defined over the
set of pairwise similarity scores for the nodes in different
graphs, which itself is computed using both sequence and

Figure 2 Number of conserved edges in the alignment graphs. Number of conserved edges in the alignment graphs for all combinations of
species pairs and computation methods.
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Table 2 Biological validation of alignment graphs

(a) D.melanogaster vs S.cerevisiae

Fly Yeast

Method TPR TNR TPR TNR

iso greedy 535 17.00% 324 43.00%

iso hungarian 457 15.20% 1066 44.00%

mat3 auction 490 15.40% 1132 38.30%

mat3 greedy 448 17.00% 1102 44.00%

(b) D.melanogaster vs H.sapiens

Fly Human

Method TPR TNR TPR TNR

iso greedy 1067 30.10% 191 9.00%

iso hungarian 974 31.50% 671 14.30%

mat3 auction 1020 27.00% 519 12.50%

mat3 greedy 1029 30.80% 670 17.00%

(c) D.melanogaster vs E.coli

Fly Bacterium

Method TPR TNR TPR TNR

iso greedy 41 11.63% 66 16.60%

iso hungarian 60 10.38% 175 29.35%

mat3 auction 90 9.80% 236 32.00%

mat3 greedy 56 10.73% 235 32.58%

(d) H.sapiens vs S.cerevisiae

Human Yeast

Method TPR TNR TPR TNR

iso greedy 971 31.74% 406 17.97%

iso hungarian 1010 31.27% 1063 41.76%

mat3 auction 1064 28.40% 1083 40.16%

mat3 greedy 989 33.33% 1095 46.14%

(e) S.cerevisiae vs E.coli

Yeast Bacterium

Method TPR TNR TPR TNR

iso greedy 419 46.10% 63 15.00%

iso hungarian 359 46.60% 231 38.24%

mat3 auction 400 40.72% 274 35.75%

mat3 greedy 378 44.22% 289 35.37%

(f) E.coli vs H.sapiens

Bacterium Human

Method TPR TNR TPR TNR

iso greedy 52 16.77% 472 29.56%

iso hungarian 158 35.63% 386 28.40%

mat3 auction 252 32.96% 557 34.80%

mat3 greedy 219 36.00% 444 29.73%

Biological validation of alignment graphs based on the method of Kalaev et al. [21]. The TPR column contains the total number of GO terms covered in the biological
process branch, and the TNR column represents the percent of components that were enriched in each species.



Kollias et al. BMC Research Notes 2013, 6:35 Page 6 of 11
http://www.biomedcentral.com/1756-0500/6/35

topological similarities. We note that both of the ini-
tial scores – sequence similarity scores computed using
BLAST, and aggregated scores computed using IsoRank,
are inherently noisy and over-fitting a model (matching)
on them can potentially decrease the performance of the
results.

Examples of highly enriched components
We also evaluate the performance of the mat3 auction
method by extracting components that are highly
enriched in both species with respect to a unique GO
term. We manually curated the components identified
by mat3 auction and selected four significant compo-
nents for our case study, spanning four different species
pairs. These components, which are shown in Figure 3,
reveal that there is a strong correlation between structural
conservation and functional similarity, which has been
faithfully recovered by mat3 auction. Most of these com-
ponents have more than one co-enriched GO term, but
interestingly enough, these terms are coherent in the sense
that they describe the same function in more or less detail.
For example, component 3(b) is annotated with RNA pro-
cessing, which is a generalization of the term nuclear
mRNA splicing via spliceosome, another enriched term in
3(b). Similarly, component 3(c) is enriched with both his-
tone acetylation and histone modification. The first term is
clearly a refinement of the type of modification.

These functionally similar modules exhibit closely
related structure. In most cases, the smaller subgraph
and all its edges can be perfectly embedded in the other
species. The set of missed interactions can be explained by
either evolutionary divergence or the quality of the input
dataset.
From an evolutionary standpoint, one can argue that

the set of orthologous genes in the pair of species could
have diverged and either gained or lost specific functions.
These functional adaptations are reflected in the pattern
of protein-protein interactions by deleting or inserting
partnerships. On the other hand, an easier argument can
be made based on the quality and the coverage of pro-
teome, noting that different PPI interactions have been
predicted in different labs for each species. Some of
these species are well-studied and there are more high-
quality interactions available for them. As is evident from
Figures 3(a) and 3(d), most of the missed edges reside in
yeast, which can simply be explained by heterogeneity in
the quality of initial PPI networks.

Conclusions
Our results show that the IsoRank-based method for
computing similarity scores between nodes of two PPI
networks, coupled with a fast, adaptive, auction-based
implementation and a matrix-based greedy algorithm for

(a) H.sapiens -
S.cerevisiae

(b) S.cerevisiae -
D.melanogaster

(c) H.sapiens -
D.melanogaster

(d) S.cerevisiae - E.coli

Figure 3 Conserved components identified by the mat3 auction method. Conserved components identified by the mat3 auction method.
Each component is coherently annotated with specific branch of the biological process. (a) Peroxisome organization. (b) RNA splicing. (c) Histone
modification. (d) Ribosome biogenesis.
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extracting matching proteins, yields an efficient and effec-
tive algorithm for global alignment. The method yields
over one order of magnitude improvement in compu-
tation time – typically ×30 times faster for the total
alignment process in most cases of interest – with com-
parable or superior topological and biological quality of
the results. Using out method, alignments can be com-
puted within minutes (less than 5 minutes for typical
alignments), as compared to hours, using previously used
methods (of the order of 130 minutes for the largest input
configurations). This enables users to tune alignment
parameters much better and extract superior alignments.

Methods
Ranking node pairs in IsoRank
We use the similarity matrix construction step in IsoRank
in all alignment methods. This method is based on an
analogy between the network alignment problem and that
of identifying “reputed” nodes in a single network – also
sometimes called the page- or node-ranking problem. Per-
haps, the most commonly used measure for the rank of a
node in a single given network can be recursively defined
as follows: “a node is important if it is linked to other
important nodes” [12]. Extending this definition to our
node similarity problem, we arrive at the following def-
inition: “two nodes are (topologically) similar if they are
linked to other (topologically) similar node pairs” [6,7,13].
IsoRank effectively implements this notion of “recursive
node similarity”. Note that this perspective is not new –
it has been exploited in application areas like automated
image captioning [14] and synonym extraction [15].
We initiate a more formal discussion by introducing

necessary notation. Given a graph GA = (VA,EA), VA and
EA denote the vertices and edges of GA respectively, and
nA = |VA|. Its adjacency matrix A has elements aij = 1
iff edge (i, j) ∈ E, and aij = 0 otherwise. Clearly, A
is symmetric for an undirected graph. Matrix Ã is the
normalized version of the matrix AT ; formally, (Ã)ij =
aji/

∑nA
i=1 aji for nonzero rows of A and zero otherwise.

We denote by 1, the column vector of size nA consisting of
1’s. Also, the vec(·) operator for stacking matrix columns
into a vector (as well as its associated “inverse” unvec(·)
operator for re-assembling the matrix) are used. Using
these operators, vec(AXB) = (BT ⊗ A)x, holds, where ⊗
denotes the Kronecker product of two matrices.
In IsoRank, vertex similarity scores in (PPI) networks

are computed by integrating both vertex attributes (simi-
larity of protein sequences) and topological affinity (links
to similar nodes). More specifically, in [6], Singh et al.
introduce the following iterative procedure for computing
similarity scores:

x ← αÃ ⊗ B̃x + (1 − α)h. (1)

Here x = vec(X) is the vector vertically stacking the
columns of the similarity matrix X having as entries the
similarity scores xij. h = vec(H), similarly stacks ele-
ments hij of matrix H, i.e., the elemental similarity scores
between nodes i ∈ VB and j ∈ VA. Vectors x and h are
normalized to unity. Successive iterates scale topological
similarity and elemental similarity of nodes by factors α ≤
1 and 1 − α, respectively. In the context of PPI networks,
vector h encodes protein sequence similarity scores in par-
ticular, and protein interaction networks GA and GB are
assumed to be undirected. By “unvec”ing (1), we obtain:

X ← αB̃XÃT + (1 − α)H . (2)

Matching algorithms
As a first step in identifying similar subgraphs in the
two networks, IsoRank computes a |VA|-by-|VB| similar-
ity score matrix X. We assume without loss of generality
that |VA| ≤ |VB|. The matrix can be viewed as encod-
ing a weighted bipartite graph G = (VA,VB,E,w), where
VA ∩ VB = ∅, E ⊆ VA × VB, and the weight function
w : E → R

≥0. Each row represents a vertex inVA and each
column a vertex in VB. A non-zero entry in the matrix is
interpreted as an edge between the row and column ver-
tices. The numerical value xij of the matrix indicates the
weight of the edge. A matching in the bipartite graph is
defined as a subset M ⊆ E such that no pair of edges of
M are incident on the same vertex. In a maximal match-
ing, no edge can be added to M without violating the
matching property. A maximum (cardinality) matching is
a matching that contains the largest possible number of
edges. Specifically, we are interested in finding a maxi-
mum matching with maximum weight. The weight of the
matching is defined as

∑
(i,j)∈M xij; this typically trans-

lates to a large number of matching pairs with a high
cumulative similarity score.
Various algorithms have been proposed for computing

a weighted matching M for a given similarity matrix X.
Approximation algorithms [16], which compute a max-
imal matching with a maximum weight, and maximum
weighted matching algorithms [17,18], which return a
maximum matching with a maximum weight, are all can-
didates for finding a suitable assignment. In our approach,
we use the 1/2-approximation algorithm and propose a
weighted matching implementation that is based on the
principle of auctions. The main advantage of using an
auction-based scheme is the so-called ε-scaling mech-
anism, using which the quality and convergence of the
algorithm can be controlled.

1/2-approximation algorithm
This simple approximation algorithm can be described
as follows: First, the weights of the edges are sorted in
decreasing order. Then, the heaviest edge e is selected and
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deleted, together with the edges incident to its endpoints.
This is repeated until the graph is empty. The worst case
complexity of this sorting procedure is O(|E| log |E|). We
implement the linear-time 1/2-approximation algorithm
of Preis [16], of known time complexity O(|E|) (Algo-
rithm 1), translating this graph-based description into
matrix operations (matrix-based greedy algorithm): After
selecting the element with maximum value xij from the
similarity matrix X �= 0, we report the matching of nodes
i and j. We then zero the ith row and the jth column of X,
and repeat the aforementioned step until X contains only
zeros across one of its dimensions.

Algorithm 1 1/2-approximation algorithm for weighted
matching
1: M = ∅;
2: while E �= ∅ do
3: Take an {a, b} ∈ E with locally heaviest weight;
4: M = M ∪ {a, b};
5: Remove all edges incident to a or b from E;
6: end while

Auction algorithms
Auction algorithms [18] find the maximum weighted
matching via an auction: in this analogy, i ∈ VA is a
person, j ∈ VB is an object and xij is the benefit the
buyer i obtains by acquiring object j. Each object j has an
associated price pj, with the initial value zero.

Algorithm 2 Auction Algorithm
1: M ← ∅; 
 current matching
2: I ← {i : 1 ≤ i ≤ nA}; 
 set of unassigned buyers
3: pj ← 0 for j = 1, . . . , nB; 
 initialize prices to 0
4: t ← 0; 
 iteration counter
5: C ← maxij |xij|; 
 maximum value in G
6: θ ← 16; ζ ← 1

nB ;
7: ε ← C

θ
; 
 initialize ε with a large value

8: while I �= ∅ do 
 auction iteration
9: ji ← argmaxj{xij − pj}; 
 find best objects

10: ui ← xiji − pji ;
11: vi ← maxj �=ji{xij − pj};
12: pji ← pji + ui − vi + ε; 
 update price
13: M ← M ∪ {i, ji}; I ← I \ {i};
14: M ← M \ {k, ji}; I ← I ∪ {k}; 
 updateM, I
15: t ← t + 1;
16: ε ← max{ 1

nB , ε − ζ };
17: end while

In an auction iteration, the bidding and assignment
phase, and update of the price and of the value of ε are
performed. In the bidding phase, an unassigned buyer
i bids for the best object ji, i.e., the object ji, that has
the maximal profit for buyer i. The bid is computed by

subtracting the second-best profit vi from the most valu-
able profit ui, i.e., ui − vi. The most valuable profit ui
for buyer i is defined as {xiji − pji}, while the second-best
profit vi is computed by maxj �=ji{xij − pj}. After the unas-
signed buyer has submitted the bid, the designated object
is awarded to the bidder, yielding its potential previous
owner unassigned. The price is calculated by updating
the old price by the corresponding bid and by a small
increment ε. It follows that the auction-based algorithm
(see Algorithm 2 for a simplified description also assum-
ing integer xij) consists of four phases: the initialization
phase (lines 1–7), the bidding phase (lines 9–12), the
assignment phase (lines 13–15), and the termination phase
(line 8).
The initial value of increment ε has significant impact

on the computational cost of the auction algorithm. Ide-
ally, the value of ε should be close to the optimal value
of the price, since the number of iterations to find a
matching will be small. In general, the computational
worst case complexity of an ε-scaling auction algorithm is
O(|V ||E| log(|V |C)) (where C is defined in line 5 of Algo-
rithm 2). Due to the pseudo-polynomial complexity, we
embed an aggressive ε-scaling strategy into the auction-
based implementation of Algorithm 2, resulting in our
adaptive auction algorithm, which effectively splits the ε-
scaling phase into multiple ε-scaling phases; its steps are
detailed in Algorithm 3.

Algorithm 3 Adaptive Auction Algorithm
1: Perform initialization phase of algorithm 2 (lines

1–4);
2: ξ ← 4; θ ← 16;
3: δ ←

⌊
min

{
N
ξ
, nB

θ

}⌋
; 
 Initialize threshold δ

4: while |I| > 0 do
5: ε ← θ

nB+1 ;6: while |I| > δ do
7: Perform bidding and assignment phase of

algorithm 2 (lines 9–15);
8: ε ← ε · ξ ;
9: end while
10: δ ← δ

ξ
; θ ← θ · ξ ;

11: end while

Here, the ε-value is initialized with a small value and
adaptively increased relative to the overall progress of the
matching. The basic idea behind the proposed heuristic is
that in the inner iteration, at least δ buyers get assigned
to an object, while ε pushes the price of the object to
a large value. In general, the heuristic provides a maxi-
mal matching with a maximum weight. Since the matrix
X is dense, a simple greedy approach is applied subse-
quently, in order to achieve a maximum matching. The
post-processing method assigns an unmatched buyer to
the first unmatched object from the object list, resulting
in a maximum matching with maximum weight.
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For a more detailed presentation of the auction algo-
rithm we use, we refer readers to Sathe et al. [19], where a
scalable distributed version of the algorithm is described.
This formulation computes weighted matchings on sparse
and dense bipartite graphs running on hundreds of com-
pute nodes, while efficiently using multiple cores on each
compute node.

Numerical experiments
In all cases, the construction of the similarity matrix X
is IsoRank-based. We implemented the iterative scheme
of Equation (2) in Matlab (mat3 * cases — name mat3 is
used to indicate a triple-matrix product kernel) and tested
this part against equivalent codes in the netalign package
[20], yielding exact agreement (within machine accuracy).
The resulting matrix X of similarity scores is then input
to (i) our matrix-based implementation (in Matlab) of
the 1/2-approximation algorithm (hereafter referred to as
greedy) to produce the mat3 greedy alignment and (ii)
to the adaptive auction algorithm (in C) to generate the
respectivemat3 auction alignment.
We then execute, for the same runtime parameters, the

reference IsoRank binary for producing iso greedy and
iso hungarian alignments and compare them against our
approach (mat3 * alignments). Unfortunately the refer-
ence native code does not provide an option for generating
either the similarity matrix X, or the timings for its com-
putation. It internally uses the result of this first phase to
extract the best matching node pairs, the second phase.
The total timing results — for both phases — are reported
together with the extracted matchings pairs in this case.
Specifically, results from two matching algorithms are
reported [6], namely their implementation of the greedy
and Hungarian algorithms – thus justifying the selection
of iso greedy and iso hungarian names for the complete
alignment pipelines. It is understood that marked devi-
ations could arise due to internal optimization-targeted
realizations of the algorithmic ideas, however these are
not readily accessible or reported. Figure 4 summarizes
the algorithmic blocks driving the generations of four sets
of matchings for each pair of PPI networks.

The alignment graph and its assessment
Given a set of matching node pairs (one of the fourmat3 *,
iso * possible alternatives in this context), we need to eval-
uate solution quality. The alignment graph is the auxiliary
structure built to facilitate this task. Each node in the
alignment graph is a matching node pair from the com-
puted set of matches. Furthermore, if m1 = (i1, j1) and
m2 = (i2, j2) in VA × VB are two such matches, then m1
and m2 are connected by an edge iff i1 is connected with
i2 and j1 with j2 in the input graphs GA and GB. Essen-
tially, the alignment graph identifies the link structures
that remain invariant when replacing nodes of one graph

Figure 4 Algorithmic blocks Algorithmic blocks for the
generation of the four types of matches (mat3 greedy,
mat3 auction, iso greedy, iso hungarian) under comparison.

with their matching counterparts in the other; it captures
how our computed matchings between nodes preserves
implicit/induced matchings between their incident edges.

Topological perspective
When analyzing the alignment graph of two networks,
two measures for the topological evaluation of the com-
puted match can be used:

• The number of edges in the alignment graph
(conserved edges). Note that the more the conserved
edges – incident on our matching nodes in the two
networks – the larger the percentage of “link
structure” (edges at minimal or larger connected
subgraphs) that could be put under direct mapping as
well, i.e. aligned.

• The size of the connected components in the
alignment graph (common connected subgraphs).
These are “clusters” of pairs of matching nodes in the
original graphs also conserving their link patterns.

The existence of many conserved edges clearly increases
the probability of them being part of extensive connected
subgraphs. However, it could also be the case that they
are parts of larger numbers of connected subgraphs, all of
moderate sizes. Comparative, connected subgraph statis-
tics is the main focus of quality assessment from the
biological point of view.

Biological perspective
Topological assessment of the alignment graph can
uncover important characteristics of each alignment
method. However, additional considerations must be
taken into account to avoid growing components at the
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expense of over-generalizing them. This can negatively
affect the specificity of predictions. For example, by ana-
lyzing the size of connected components, one can penalize
against fragmenting functional modules. An alignment
with many singletons (isolated pairs of nodes in the align-
ment graph) is less desirable than a larger connected
component that can group a number of related nodes
(and their corresponding proteins) together. On the other
hand, by mixing functionally independent groups that
share a small subset of genes, one can create larger com-
ponents that are not functionally coherent. To remedy
this problem, we adopt an approach similar to the one
proposed by Kalaev et al. [21] to assess the functional
coherence of each connected component in the alignment
graph. In this approach, each connected component is
treated as a computational prediction of a functionally
related group of proteins and is cross-validated against
the existing GO annotations as the actual set of func-
tionally related genes. Given the gene ontology (GO) [22]
annotations with respect to biological process (BP) for
the member genes of each species, we compute the set
of enriched GO terms within each connected component
in the alignment graph using the GO::TermFinder tool
[23]. We process each graph separately and, similar to
Kalaev et al. [21], apply a threshold of 0.05 to extract the
set of enriched GO terms. Finally, we define two com-
plementary criteria to validate each alignment method –
the fraction of enriched components (components with
at least one enriched GO term) and the total number of
covered GO terms in all components. The former cap-
tures specificity (true negative rate or TNR), while the
latter captures the concept of sensitivity (true positive rate
or TPR).

Source code and datasets
All online material for this project is available at http://
compbio.soihub.org/projects/fastalign/. This includes
Matlab scripts, C code for the (more general, distributed
version of the) auction algorithm, input datasets, and also
data generated during intermediate phases of an actual
run.
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