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biomarker panel for prediction of dengue
hemorrhagic fever
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Abstract

Background: The choice of selection methods to identify important variables for binary classification modeling is
critical to produce stable models that are interpretable, that generate accurate predictions and have minimum bias.
This work is motivated by data on clinical and laboratory features of severe dengue infections (dengue
hemorrhagic fever, DHF) obtained from 51 individuals enrolled in a prospective observational study of acute human
dengue infections.

Results: We carry out a comprehensive performance comparison using several classification models for DHF over
the dengue data set. We compared variable selection results by Multivariate Adaptive Regression Splines, Learning
Ensemble, Random Forest, Bayesian Moving Averaging, Stochastic Search Variable Selection, and Generalized
Regularized Logistics Regression. Model averaging methods (bagging, boosting and ensemble learners) have higher
accuracy, but the generalized regularized regression model has the highest predictive power because the linearity
assumptions of candidate predictors are strongly satisfied via deviance chi-square testing procedures. Bootstrapping
applications for evaluating predictive regression coefficients in regularized regression model are performed.

Conclusions: Feature reduction methods introduce inherent biases and therefore are data-type dependent. We
propose that these limitations can be overcome using an exhaustive approach for searching feature space. Using
this approach, our results suggest that IL-10, platelet and lymphocyte counts are the major features for predicting
dengue DHF on the basis of blood chemistries and cytokine measurements.
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Background
Analysis of high-dimensional data, where the number of
predictors exceeds the sample size, poses many chal-
lenges for statisticians and calls for new statistical meth-
odologies in order to select relevant variables that are
correlated with one-another. In these data, feature selec-
tion is used to overcome the curse of dimensionality by
removing non-essential variables to achieve a model
with predictive accuracy. Consequently, the choice of a
variable selection procedure becomes very important
for the ability to generate reproducible findings and
generalizable conclusions. In high-dimensional data it
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is desirable to have parsimonious or sparse representations
of prediction models. Since highly complex models will be
penalized by increased total error, regularization can help
control the complexity of a classification by minimizing
over-fitting of the training data. This approach is evaluated
by maximizing goodness-of-fit and simultaneously mini-
mizing the number of variables selected. An alternative to
regularization is to develop a classifier via exploring in-
formation from many models built on a perturbed ver-
sion of a learning ensemble, such as a bagging and a
boosting algorithm. We evaluated different models by
randomly selecting and withholding the training data to
be used later for testing. The receiver characteristic op-
erating curve is a measure by which to compare predic-
tion accuracy based on sensitivity and specificity for
both training and test data.
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This study is motivated by our previous work on the
identification of biomarker panels associated with den-
gue hemorrhagic fever [1,2]. Dengue is an acute viral
infection hyperendemic to the tropics for which signifi-
cant numbers are at risk. A subgroup of patients acutely
infected with dengue is at risk for a later manifestation
of capillary leak and hemorrhage, known as dengue
hemorrhagic fever (DHF). In this study discriminative
features were identified that associated with dengue
hemorrhagic fever. Various blood chemistries and cyto-
kine measurements can be associated with disease out-
come. However, many of these variables are highly
correlated and which of the factors will result in the most
stable classifier is not known. Here we seek to extend this
work by comparing the effects of various feature reduction
methods to identify the most robust features for early de-
tection of DHF.

Study population
Active surveillance for people with dengue infection was
conducted in Maracay, Venezuela. Fifty one febrile sub-
jects with signs and symptoms consistent with dengue
infection who presented at participating clinics and hos-
pitals, or who were identified by community-based ac-
tive surveillance, were included in the study. On the day
of presentation, a blood sample was collected for dengue
virus reverse transcription-polymerase chain reaction
(RT-PCR) confirmation and clinical testing. Using the
2009 World Health Organization (WHO) criteria, 13
subjects developed DHF (dengue with warning signs; of
these three were classified as severe dengue caused by
plasma leakage and severe bleeding). Predictive mo-
deling was performed using laboratory values of 51 in-
dividuals (38 DF and 13 DHF) obtained on initial
presentation via binary classification models.

Methods
Feature selection methods identify the subset of
differentially-expressed predictors that are useful and
relevant in distinguishing different classes of samples.
Feature reduction using Significance Analysis of
Microarray (SAM)
We used Akaike information criterion (AIC) for SAM
modeling. AIC is given by

AIC ¼ ‐2ln Lð Þ þ 2 pþ 1ð Þ; ð1Þ
where L is the maximum likelihood for the model, and p
is number of covariates estimated in the model [3].
Bayesian information criterion (BIC) is given by

BIC ¼ ‐2ln Lð Þ þ ln nð Þ � pþ 1ð Þ; ð2Þ
where n is the samples size, and p are defined as those
variables in AIC [4].
Learning ensemble
For the Learning Ensemble, we used a stochastic gradient
boosted model (TreeNet). TreeNet is a generalized tree
boosting algorithm that is an accurate and effective off-
the-shelf procedure for data mining [5,6]. Software imple-
mentation of the bagging ensemble model was from Salford
Predictive Modeler version 7.0 from Salford Systems.

Bayesian model averaging
Bayesian model averaging (BMA) was used to consider
all the possible 2p model configurations from the model
space as the potentially correct mode. BMA was applied
using the R library BMA (http://cran.r-project.org).

Stochastic Search Variable Selection (SSVS)
The SSVS models were performed using WinBUGS (http://
www.mrc-bsu.cam.ac.uk/bugs/winbugs). The models can
fit with the R interface in the WinBUGS, R library R2-
WinBUGS (http://cran.r-project.org).

Generalized Path Seeker (GPS) modeling
Logistic regression models are estimated using the max-
imum likelihood method. Logistic modeling has a binary
response yi ∈ {0, 1}, and assuming

Pr y ¼ 1jxð Þ ¼ 1= 1þ exp ‐xTβ
� �� �

: ð3Þ

Automated stepwise logistic regression model selection
has the problem of instability and overfitting of subset se-
lection in multivariate regression by retaining redundant
information and noisy variables. The method sequentially
drops and adds predictor variables by examining the mean
squared error or a modified version of it. Recent tech-
niques, such as shrinkage and regularized estimation, can
account for and correct the overfitting. We used the opti-
mized L1 and L2 regularization generalized linear model
to select to most important features. Regularized and
shrinkage estimation methods such as a lasso (least abso-
lute shrinkage and selection operator) estimator help ad-
dress variable selection and multicollinearity [7]. The lasso
utilizes the L1 penalty and does both continuous shrink-
age and automated variable selection simultaneously. For
a binary response variable and the logistic regression
models, the lasso estimator is estimated by penalized the
negative log-likelihood with the L1-norm. The penalty
term is chosen by a cross-validation technique to evaluate
the out-of-sample negative log-likelihood. The elastic net
combines the L1 and L2 penalizing terms and possesses a
grouping effect, i.e., in a set of variables which have high
pairwise correlations, the elastic net groups the correlated
variables together [8].
The coefficient vector β that minimizes the penalized

log-likelihood,

http://cran.r-project.org/
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β∧ ¼ argminβ∈Rp ‐
X

ðyi log piþ 1‐yið Þ
log 1‐pið ÞÞ þ λ1 jβj j 1 þ λ2j jjβj 2;j Þ

ð4Þ
where pi = Pr(y = 1|x).
We used a soft loss function which is robust to the in-

fluence of outliers. Resampling techniques and cross-
validations were evaluated to reduce variability in the
prediction measures. Bootstrap methods are introduced
when an averaged prediction is made using multiple
models generated on random resamples of the observa-
tions with replacement. Bootstrap resampling started
with fitting the logistic model in a bootstrap sample of n
subjects, which was drawn with replacements from the
original sample. Zou (2006) proposed the adaptive lasso,
which permits different weights for different parameters,
and is also shown to have the oracle property [9]. The
comparisons of penalized regression methods in binary
response and logistic regression such as the ridge, lasso,
and elastic net were conducted. To estimate the coeffi-
cient, we performed generalized path seeker (GPS), a
high speed lasso-style regression from Friedman (2012)
to regularize regression [10]. GPS demonstrates the reg-
ularized regression based on the generalized elastic net
family of penalties. Software implementation of GPS is
available in Salford Predictive Modeler version 7.0 from
Salford Systems.
Multivariate Adaptive Regression Splines: MARS
MARS basis functions are combined as a weighted sum of

ŷ
i
¼ a

0
þ
Xp

k¼1

a
k
B
k
xð Þ; ð5Þ

where yˆ is the response described by the model, a0 the
coefficient of the constant basis function (intercept), p the
total number of basis functions and ak the coefficient of
the kth basis function Bk(x). MARS models use hockey
stick basis functions of the form (x − t)+ and (t − x)+, with t
being the knot. The basis functions in MARS are single
truncated spline functions or a product of two or more
spline functions for different predictors. The first order
MARS model was built without interactions to over-fit the
training data. A maximum number of basis functions
equal to 30 was used as the stopping criterion. The model
was pruned using a ten-fold and generalized cross valid-
ation. The optimal model was selected based on evalu-
ation of the model complexity and its predictive quantities
for the test sets. Software implementation of MARS model
is available in Salford Predictive Modeler version 7.0 from
Salford Systems.
Random Forest (RF)
RF modifies the classic CART (Classification and regres-
sion tree) algorithm by randomly selecting from a subset
of descriptors, rather than choosing the best split among
all samples. This procedure is repeated until a suffi-
ciently large number of trees have been computed. RF
performs a bootstrapping cross-validation procedure in
parallel with the training step of its algorithm. This
method allows some of the data to be left out at each
step, then used later to estimate the accuracy of the clas-
sifier after each instance has been carried out. Software
implementation of the RF model is available in Salford
Predictive Modeler version 7.0 from Salford Systems.
Nonlinear testing procedures
Modeling was performed to assess the linear or non-linear
association of binary responses variables of selected vari-
ables. For each part predictor, we also examined the log-
likelihood ratio test p-values comparing the deviance
between the full model and the model without that vari-
able. We calculated the projection (hat) matrix, Cook’s
distance, various residuals and the estimated probabilities
versus each predictor to evaluate outliers and identify in-
fluential points in the models. We used both the change
in residual deviance (as in parametric or nonparametric
models), and the area under the receiver operating charac-
teristic curve (ROC) to compare of the performance of the
statistical models. The area under the curve measures in-
dicate the ability of the model to discriminate between the
outcome groups. A score of 0.5 indicates that a model has
no discriminatory ability and a score of 1 indicates the
two groups are perfectly discriminated.
Results and discussion
In this study, we measured various blood chemistries
and cytokine measurements that are associated with dis-
ease outcome. We next sought to identify those variables
that were most informative for outcome. To improve the
model performance, we sought to first reduce the di-
mensionality. Feature reduction removes meaningless
features which are not related to a studied disease, thus
leading to overfitting of a classifier in high dimensional
data. This happens because without prior removal of ir-
relevant genes, the classification problem is known as
the small sample size problem (the number of features
far exceeds the number of samples in data set). Dimen-
sionality can be reduced by selecting an appropriate sub-
set among existing variables. For this purpose, we
applied two sample t-test or where appropriate, a two-
sample t-test on log transformed data. We addressed the
multiple testing using false discovery rate (FDR), a re-
sampling method have an improved ability to reject a
false hypothesis compared to the Bonferroni correction.



Figure 1 Learning Ensemble Variable Importance. A Shown is a rank ordered list of the 25 variables selected by SAM using t-test and
corrected by FDR. For each is shown the importance for each variable, estimated as its frequency of appearance in the bootstrap
aggregating tree.
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To accomplish this, we performed variable selection
using a SAM test. SAM is a widely used permutation-
based approach to identifying differentially expressed
genes when assessing statistical significance using FDR
adjustment in high dimensional datasets [11]. Efron,
Tibshirani, Storey et al. (2001) developed an empirical
bayesian approach using non-informative priors and de-
riving the posterior probability difference for each pre-
dictors without having to run t tests or Wilcoxon tests
to identify which were differentially expressed [12]. In
some cases, a heuristic approach is investigated for feature
selection by integrating correlation, histogram, and other
statistical measures. We used the AIC information criter-
ion on the modeling (Methods) with the false discovery
adjustment to select the top 25 variables with the most
significant p-values, based on the training data for each
fold of a 10-fold cross validation. Using these variables,
the training data were split into two parts: one to fit penal-
ized logistic models and one to select tuning parameters.
We next applied different feature selection methods

to identify the most informative predictive variables.
First we examined variables identified by learning en-
semble. Learning ensemble approach was developed by
Breiman (1996), who adopted the bootstrap sampling to
generate different base leaner classifiers [13]. The bag-
ging (bootstrap and aggregation) ensemble is the most
popular strategy for aggregating the output of the base
learning, i.e., voting for classification. The bagged
Table 1 Model assessment of the predictive power

Predictive Accuracy Accuracy

Models Train Test

Bagging Ensemble 0.804 0.745

GPS 0.882 0.804

MARS 0.902 0.726

TreeNet Gradient Boosting 0.804 0.745

Shown are the predictive powers for training and test samples based on a 10-fold c
Δ, difference between the training sample and the test sample; AUC, area under th
ensemble method can be used with unstable classifiers
to reduce the large variance effect. Bagging often out-
performs the base learning algorithm and improves the
performance of the model. The important variables
identified by learning ensemble were Platelets, IL-10,
and IL-6 (Figure 1). Each of these have > 50 average
values of appearing in the aggregating tree. The training
ROC measure of the bagging ensemble is 0.994, and the
overall average prediction accuracy is 80% (Table 1).
Second, Bayesian approaches were evaluated. Bayesian
model averaging (BMA) is an approach to assess the
robustness of results in terms of alternatives by cal-
culating posterior distribution over coefficients and
models. BMA produces a posterior probability for each
possible model in addition to one for each predictor [14].
Using BMA, model uncertainty can be incorporated into
conclusions about parameters and predictions. The BMA
analysis identified three variables-IL-10, platelets, and
lymphocytes-have a high probability of predicting hemor-
rhagic fever (Figure 2). Finally, stochastic search variable
selection (SSVS) was proposed by George and MaCulloch
(1993) for linear models [15] and Albert and Chib (1993)
for binary and polychotomous outcome models [16].
The Gibbs sampler method for SSVS allows interrogation
of the model space efficiently without fitting all possible
models and not having the inferences driven by the model
assumptions. The Bayesian hierarchical methods of variable
selection and classification are complimentary approaches
Accuracy AUC AUC AUC

Δ Train Test Δ

0.059 0.994 0.704 0.29

0.078 0.976 0.921 0.055

0.176 0.955 0.789 0.166

0.059 0.994 0.704 0.29

ross validation procedure.
e curve.



Figure 2 Bayesian Model Averaging. The X axis represents the models with the highest posterior probability and the Y-axis represents the
variable included in the model, where the red (positive) or blue (negative) blocks indicate significant regression coefficients. Note that IL10,
lymphocytes and platelets appear in the model with the highest posterior probability.

Figure 3 Relative Variable Importance. Shown is relative variable importance for GPS, MARS, Boosting, Bagging and RF models. The BMA/SSVS
relative variable importance cannot be calculated and is not shown.
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Table 2 MARS Basis Functions

Bm Definition am Variable
descriptor

Variable
Importance

BF1 (IL10 − 5.17)+ 0.312 IL10 100%

BF3 (Lymphocytes − 8)+ −0.011 Lymphocytes 84%

BF4 (Platelets − 45)+ −0.004 Platelets 72%

Shown are the basis functions (BF) for the MARS model for Dengue
hemorrhagic fever.
Bm each indiviual basis function, am, coefficient of the basis function. (y)+, = max(0, y).

Figure 4 Bootstrap Coefficients. For each variable shown, the
frequency of coefficient is plotted for 999 bootstrap estimations.
Note that the coefficients in the GPS model (Table 1) fall within the
95% confidence limits of the bootstrap estimation.
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to high dimensional data in that the uncertainty in the
model choice can be incorporated into the analysis. For
this analysis, 25,000 iterations of the Markov Chain Monte
Carlo (MCMC) were completed by removing the first
1000 for burn-in and saving every 5th iteration to
maximize storage. In the case of a binary outcome, the la-
tent probit model in which posteriors distribution for the
latent indicator variables are estimated via MCMC could
be used. Similarly, the SSVS models ranked the following
as importance predictors: diarrhea, IL6, platelets, IL-10,
lymphocytes, and trail (data not shown).
Next we identified variables using five different fea-

ture reduction classification methods, including genera-
lized path seeker (GPS), multivariate adaptive regression
splines (MARS), TreeNet, Boosting, and Random Forest
(RF) (Figure 3). The GPS is a high speed lasso-style logistic
regression from Friedman (2012) to regularize regression
[10]. The MARS method of Friedman (1991) is a non-
parametric regression method that estimates complex
nonlinear relationship by a series of truncated spline func-
tions of the predictors [17]. The random forest (RF) classi-
fier of Breiman (2001) generates a random decision tree
by selecting a feature subset randomly at each node, but
then performing the conventional split selection within
the selected feature [18]. The randomization procedure is
introduced only into the feature selection, not into the
choice of split points on the selected feature subset.
The relative variable importance for the MARS model

and the basis functions are shown in Table 2. Here, IL-10
was the most important variable (100% relative impor-
tance), followed by lymphocytes (84% importance) and
platelets (72%). Similarly, relative importance for the vari-
ables appearing in the GPS model are shown in Table 3,
where the same rank order of importance, IL-10 (100%),
lymphocytes (92%) and platelets (58%) was observed.
Table 3 GPS- generalized lasso estimators

Variable Coefficients Variable Importance

IL10 0.611 100%

Lymphocytes −0.025 92%

Platelets −0.042 58%

Shown are the coefficients for the generalized lasso estimators and
relative importance.

Figure 5 Regularized Regression Path. Shown is the solution path
β(s) as a function of s. As we can see, any segment between two
adjacent vertical lines is linear, hence the whole solution path is
piecewise linear. Another important feature of this solution path is,
over a certain range of values of s, only the relevant predictor variables,
that is, IL10, lymphocytes, and platelets have nonzero fitted coefficients
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Overall, this comparison indicated that IL-10, platelet
count and lymphocytes were the three most important
variables that consistently shown high relative importance
across all models. We also evaluated the nonlinearity of
these important predictors
(IL-10, platelets, and lymphocytes) using the deviance

testing procedure (χ2 statistics = 16.564, p-value is 0.06)
using generalized additive modeling (GAM) in a manner
similar to that earlier shown by Brasier et al. [2]. GAMS
is a diagnostic graphical tool to evaluate e the partial
residual plot r identifying nonlinear relationship between
the response and covariates for generalized additive
models [19]. The nonlinearity of the three predictor va-
riables was relatively unimportant. For the bootstrap
estimators, we further examined the model coefficients
using resampling techniques. In this analysis, B = 999
rounds of bootstrapping were performed. For each vari-
able, the model coefficient fell within the bootstrap-
estimated 95% confidence interval (red vertical line,
Figure 4). These findings indicate that the coefficient es-
timates appear stable. The solution path β(s) as a func-
tion of s was shown (Figure 5). Any segment between
two adjacent vertical lines is linear, hence the whole so-
lution path is piecewise linear. The indices of predictor
variables are labeled on the right side axis. Predictors
IL10, Lymphocytes, and Platelets are relevant variables.
As we can see, over a range of s, only these three predic-
tors have nonzero fitted coefficients.
Analysis of the model performance on the training

data set using ROC measures indicated that the GPS
model had an AUC of 0.92, the MARS model had an
AUC of 0.79, and the TreeNet model had an AUC of
0.70 (Table 1).
Based on this ROC comparison, we concluded that the

GPS model has the best prediction accuracy of the models
tested. Another comparison of the model performance
can be based on whether it will generalize well. In this
analysis, we estimated the change in AUC in the test set
relative to the training set. Here, the GPS model had the
smallest difference in AUC (Table 1), suggesting that it will
generalize better than the other models.

Conclusions
In this article, we compared several statistical methods for
feature reduction and constructing a predictive modeling
of developing dengue hemorrhagic fever disease. Our at-
tempts to identify the most informative predictors is based
on the assumption that different variable reduction tech-
niques have inherent biases, resulting in the omission of
potentially informative predictors and inclusion of unin-
formative ones. For example, the learning ensemble did
not identify lymphocytes as an important variable, yet this
variable was identified by the BMA methods. Model com-
parison suggests that GPS method with IL10, Lymphocytes,
and Platelets outperforms other models tested on the basis
of AUC and predicted ability to generalize. We recognize
that our study is limited because of the small data set. Fur-
ther evaluation of this modeling procedure on a large inde-
pendent data set is needed. It also will be a meaningful
study to explore the effect of sample size on the perform-
ance of various methods.
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