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Abstract

Background: Large-scale molecular interaction networks are dynamic in nature and are of special interest in the
analysis of complex diseases, which are characterized by network-level perturbations rather than changes in
individual genes/proteins. The methods developed for the identification of differentially expressed genes or
gene sets are not suitable for network-level analyses. Consequently, bioinformatics approaches that enable a
joint analysis of high-throughput transcriptomics datasets and large-scale molecular interaction networks for
identifying perturbed networks are gaining popularity. Typically, these approaches require the sequential
application of multiple bioinformatics techniques – ID mapping, network analysis, and network visualization.
Here, we present the Variability Analysis in Networks (VAN) software package: a collection of R functions to
streamline this bioinformatics analysis.

Findings: VAN determines whether there are network-level perturbations across biological states of interest. It
first identifies hubs (densely connected proteins/microRNAs) in a network and then uses them to extract network
modules (comprising of a hub and all its interaction partners). The function identifySignificantHubs identifies
dysregulated modules (i.e. modules with changes in expression correlation between a hub and its interaction partners)
using a single expression and network dataset. The function summarizeHubData identifies dysregulated modules based
on a meta-analysis of multiple expression and/or network datasets. VAN also converts protein identifiers present in a
MITAB-formatted interaction network to gene identifiers (UniProt identifier to Entrez identifier or gene symbol using
the function generatePpiMap) and generates microRNA-gene interaction networks using TargetScan and Microcosm
databases (generateMicroRnaMap). The function obtainCancerInfo is used to identify hubs (corresponding to significantly
perturbed modules) that are already causally associated with cancer(s) in the Cancer Gene Census database.
Additionally, VAN supports the visualization of changes to network modules in R and Cytoscape (visualizeNetwork and
obtainPairSubset, respectively). We demonstrate the utility of VAN using a gene expression data from metastatic
melanoma and a protein-protein interaction network from the Human Protein Reference Database.

Conclusions: Our package provides a comprehensive and user-friendly platform for the integrative analysis of -omics
data to identify disease-associated network modules. This bioinformatics approach, which is essentially focused on the
question of explaining phenotype with a ‘network type’ and in particular, how regulation is changing among different
states of interest, is relevant to many questions including those related to network perturbations across developmental
timelines.
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Findings
Introduction
Network based approaches for analyzing -omics data are
necessitated by the daunting intricacies of biomolecular
systems and have the potential to quantifiably model
large-scale functional networks [1]. These approaches
can be broadly divided into two categories – generating
novel networks by analyzing -omics data [2-4] and using
pre-defined networks to analyze -omics data e.g., [5-7].
Our paper focuses on the latter approach and describes
a method for the identification of network modules i.e.
a hub and all its interaction partners that are perturbed
across biological conditions. Hubs are of special relevance
to medicine and disease because they are both the source
of network robustness to failure, as well as its weakness
(discussed in detail in [8]). Moreover, proteins with 6 to 38
interaction partners are frequently observed among existing
cancer therapeutic targets [9]. To better understand how
protein networks may act to control biological responses,
the ongoing development of tools to analyze relationships
between network structure and function is important.
A network-based analysis of transcriptomics data differs

from the more conventional analysis of transcriptomics
data. The latter relies on methods that were developed for
the identification of differentially expressed genes or gene
sets (e.g., [10]). These methods evaluate changes in the
expression levels of genes across biological states rather
than changes in the strength of gene-gene correlations
across biological states. Given that a disease is often a
consequence of localized or large-scale perturbations
in the strength of molecular interactions rather than
changes in individual genes [11] there is a need for
methods that focus on gene-gene correlations. Such
methods examine whether, for a given network mod-
ule, the average gene expression correlation between a
hub (i.e. a densely-connected node) and its interaction
partners is the same among two biological conditions.
This approach was initially proposed by Han and colleagues
in yeast [12] to measure the correlation (tightness) within
a network module and was subsequently applied by Taylor
et al. [5] to analyse breast cancers in a study that also
included examination of the prognostic utility of such
modules. The current approach by Taylor et al. [5] has two
main limitations. First, it does not account for variability in
the results owing to differences in the expression and/or
network datasets used. Second, the test statistic is limited
to the analysis of two biological conditions of interest.
In addition to these issues, there is a growing requirement
for the availability of user-friendly software, suitable for a
broad community of end-users, for the implementation of
network-centric analyses.
In this paper, we introduce a data analysis pipeline

for the identification of dysregulated network modules
using one or more transcriptomic datasets and molecular
interaction networks. If multiple datasets or networks are
provided as input to our pipeline, then we provide an
end-user the option of integrating the results using
meta-analysis approaches. We illustrate the benefit of our
pipeline using a publicly available melanoma dataset and
protein-protein interaction (PPI) dataset and identify hubs
of potential relevance to melanoma biology.

Methods
Variability Analysis in Networks (VAN) provides a suite
of tools for testing and visualizing the dysregulation of
modules in molecular interaction networks (Figure 1
see also Additional file 1 – VAN User Guide).

Significant network modules
VAN enables an integrative analysis of (a) gene expression
data with PPI network data or (b) gene and microRNA
expression data with microRNA-gene interaction network
data using the function identifySignificantHubs. Firstly,
VAN identifies the hubs where the number of interaction
partners, which are present in both the network and
expression data, is greater than a user-defined threshold
value e.g., a hub may be defined as a gene/microRNA with
at least five interaction partners. Each hub, along with its
interaction partners, represents a network module. Sec-
ondly, VAN calculates the correlation of gene expression
between the hub and each of its interaction partners in
every biological state of interest. Thirdly, it generates the
statistic for testing the null hypothesis that the average
correlation is the same in all the biological states. The test
statistic is similar to that defined by [5] for two conditions
and an F-statistic for multiple conditions. Finally, VAN
estimates the p-value for the test statistic using a per-
mutation test and the user can specify the number of
permutations to be performed (refer Additional file 1,
VAN User Guide Section 11: Measures of association,
for a detailed description of the test statistics and per-
mutation tests). A small p-value provides evidence that
a network module is dysregulated.

Meta-analysis of network modules
VAN also enables the identification of the subset of
modules for which dysregulation (in terms of gene ex-
pression correlation with interaction partners) is repro-
ducible across independent cohorts and/or interaction
networks (Additional file 1, VAN User Guide Section 5.
Meta-analysis of multiple datasets – an example). There
are many publicly-available PPI and microRNA-gene
interaction networks of varying quality and coverage
(discussed in more detail in [13]). As such, VAN explicitly
refrains from imposing a specific network on users. Given
that there is an extensive and well-documented lack of
overlap in the interaction information among network da-
tabases [14-18], even for a single gene expression dataset,
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Figure 1 VAN pipeline for the identification of hubs that are significantly perturbed across biological states.
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the set of dysregulated modules is likely to vary from
one network dataset to another. This necessitates a
meta-analysis of the results obtained using multiple
datasets to identify the candidate modules for down-
stream analysis and/or validation. VAN provides the
function summarizeHubData for meta-analysis and
currently this function supports two methods – Fisher’s
combined test and RankProd [19]. In Fisher’s combined
test, the overall p-value for a network module being dysreg-

ulated is computed using the test statistic −2
XN

i¼1

lnpi .

Here, N denotes the number of transcriptomics dataset and
interaction network combinations and pi denotes the prob-
ability (of the module being dysregulated) obtained using
the ith combination. In contrast, RankProd computes
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the overall p-value using the rank of the network module
in each of the N combinations; a network module that is
consistently ranked high will have a low overall p-value.

ID mapping
An integrative analysis of transcriptomics and PPI data re-
quires the two types of data to map to a common identifier
(Additional file 1, Section 6: Generating microRNA-target
or protein-protein interaction interactome and Section 8:
Conversion of gene symbols to Entrez IDs). In practice,
many PPI networks are based on UniProt identifiers
whereas transcriptomics data are based on Entrez iden-
tifiers or NCBI gene symbols. For ease-of-use, the VAN
package automatically maps the various identifiers to one
another. VAN provides two functions – generatePpiMap
Figure 2 Network module visualization graph generated in R for the
visualization. Therefore, VAN provides options to visualise individual hubs of in
color-coded, undirected edges that are weighted with the co-expression corr
VAN User Guide Section 4: Option 1: Visualization in R). In this example, we an
a protein-protein interaction network downloaded from the Human Protein R
CCND2, was one of 81 hubs showing significant (p-value < 0.05) differences in
partners. The graph on the left hand side of the figure displays the gene expr
of relapse (ANSR) more than 4 years after resection of metastatic disease whil
from melanoma (DM) within 12 months. The colour scale ranges from red (st
to green (strong positive correlation).
and generateMicroRnaMap – for creating the input inter-
action network data. The former function transforms PPI
data available in MITAB-lite format (e.g., data downloaded
from the protein interaction source iRefWeb [20]), which
contains the UniProt identifiers of interacting proteins,
into hub-interactor pairs such that the pairs correspond to
Entrez identifiers or gene symbols. The latter function gen-
erates microRNA-target gene pairs using the TargetScan
[21,22] or Microcosm [23,24] databases.

Network visualization
Network interpretation is greatly aided by visualization [25].
Therefore, VAN provides the function visualizeNetwork for
plotting the strength of correlation between a hub and each
of its interactors via color-coded undirected edges (Figure 2).
melanoma dataset. Network interpretation is greatly aided by
terest (in dark grey) linked to their interaction partners (in light grey) via
elation value for a given state as shown here (see also Additional file 1,
alysed transcriptomic data in metastatic melanoma [28] in the context of
eference Database [29] (refer to Implementation for details). The hub,
the average gene expression correlation with respect to its interaction

ession correlation coefficients determined for patients alive with no sign
e the graph on the right hand side shows the same for patients who died
rong negative correlation of expression) through yellow (no correlation)
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Figure 3 (See legend on next page.)
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(See figure on previous page.)
Figure 3 Network module visualization graphs generated in Cytoscape for the melanoma dataset. For a global impression of network
modules of interest, VAN generates output files that are directly importable into Cytoscape [26], together with a ‘color-blind safe’ edge palette file
(ExampleVisualStyle.props) and suggested layout protocol (see also Additional file 1, VAN User Guide Section 4: Option 2: Visualization in
Cytoscape). As described in Figure 2, we used VAN to analyse gene expression data in metastatic melanoma from Mann et al. [28] in the context
of a protein-protein interaction network downloaded from the Human Protein Reference Database [29]. The coordination of gene expression
among patients with a survival time greater than four years (Figure 3A) and patients not surviving beyond 12 months (Figure 3B) is affected as
indicated by the changes in edge colour. Figures 3C and 3D zoom in on the same subsets of 3A and 3B, respectively and show in more detail
the significant (p-value < 0.05) disruption in the coordination of gene co-expression for the hub TRAF1 and its interaction partners. Our example
visualisation protocol can be applied to two or more conditions (not shown here) and the Cytoscape platform provides dynamic zooming to
allow focus on one, or a few, hubs of interest (C and D).
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This tool is available for an analysis involving two conditions
(Additional file 1, VAN User Guide Section 4: Option 1:
Visualization in R).
For a global visualization of networks of interest, VAN

also provides an output file that is directly importable into
Cytoscape [26] a popular network visualization tool. To
aid with network comprehension in Cytoscape, we also
provide an example layout and a ‘color-blind safe’ edge
palette (created with the aid of ColorBrewer 2.0 and Color
Universal Design). The edge palette is supplied as a ‘Vizmap
property file’ (ExampleVisualStyle.props) and can be
directly imported into Cytoscape, as described in the
VAN User Guide (Additional file 1). This tool is applicable
to the visualization of two or more conditions of interest
(Additional file 1, VAN User Guide Section 4: Option 2:
Visualization in Cytoscape).

Extended analysis of cancer datasets
The function obtainCancerInfo is used to map the hubs
from significantly perturbed network modules to an
externally curated catalogue of genes, the cancer Gene
Census [27], that are already causally associated with
cancer(s). Section 6 of the VAN user guide (Combining
output data with known cancer annotation) provides
additional details of this aspect of the software which
is also illustrated in the example below.

Implementation
An example PPI network analysis
We used VAN to identify potentially dysregulated modules
in relation to patient clinical outcome in disseminated
melanoma. For this purpose, we analyzed a publicly available
metastatic melanoma gene expression dataset [28] in
the context of a PPI network from the Human Protein
Reference Database (HPRD, Release 9, April 13, 2010) [29].
The gene expression data corresponded to 45 patients
that were split into two groups based on survival time
(greater than four years and less than one year). The
HPRD PPI network was manually filtered to include
only direct, physical PPIs where data were strictly taken
only from normal human tissues, denoted as in vivo (vv).
The VAN-based analysis comprised multiple steps. Firstly,
we identified hubs and their interaction partners that were
present in both the expression and network datasets.
Secondly, we evaluated the modules (hubs with at least
five interaction partners) for potential dysregulation.
Of the 1649 modules evaluated, 81 were potentially
dysregulated (p-value < 0.05). The resulting network was
visualized using two separate platforms, R (Figure 2) as well
as Cytoscape (7) (Figure 3), both of which are facilitated by
VAN (see Methods) Finally, we searched the cancer Gene
Census [27] database to determine whether one or more of
the 81 hubs (associated with the dysregulated modules)
have previously been causally implicated in cancer(s). We
observed that 10 of the 81 hubs – CCND2, CCND3,
FANCA, FANCD2, GATA2, KIF5B, LMO2, RET, VHL,
WAS (Table 1) have at least one such relationship. Thus,
the combination of prior knowledge about mutations with
global gene expression data and PPI networks can generate
a biologically meaningful context, in this case by pointing
to where further mutation discovery could be focused.

Additional examples
In addition to the analysis performed herein, further
examples of each of VAN’s functions are provided in
the Additional file 1 as part of the VAN User Guide.
Section 2 of the user guide describes a number of ex-
ample gene expression, interactome and VAN output
datasets (also refer to Section 7 of the user guide for
input data formats). Section 3 of the user guide con-
tains the R code for: 1) analyzing gene expression data
(comprising two conditions) with a PPI dataset; 2) ana-
lyzing gene expression and microRNA expression data
(comprising two conditions) with a microRNA-target
interactome; and, 3) analyzing gene expression data
(comprising more than two conditions) with a PPI dataset
or microRNA-target interactome. Section 5 of the user
guide contains example code for meta-analysis.

Conclusions
Integrative -omics approaches are increasingly popular
and will become standard practice in the analysis of com-
plex diseases [1]. Our open source R software package,
VAN, provides one possible application of this paradigm.
By integrating -omics data with network and mutation
data, VAN has the potential to identify network modules



Table 1 ^Cancer Gene Census [27] information for the dysregulated hubs identified in the melanoma cancer dataset

Symbol CCND2 CCND3 FANCA FANCD2 GATA2 KIF5B LMO2 RET VHL WAS

P-value 0.04 0.033 0.021 0.036 0.015 0.047 0.016 0.001 0.019 0.01

Name cyclin D2 cyclin D3 Fanconi anemia,
complementation
group A

Fanconi anemia,
complementation
group D2

GATA binding
protein 2

kinesin family
member 5B

LIM domain only 2
(rhombotin-like 1)
(RBTN2)

ret proto-oncogene von Hippel-Lindau
syndrome gene

Wiskott-Aldrich
syndrome

Gene ID 894 896 2175 2177 2624 3799 4005 5979 7428 7454

Chr 12 6 16 3 3 10 11 10 3 X

Chr Band 12p13 6p21 16q24.3 3p26 3q21.3 10p11.22 11p13 10q11.2 3p25 Xp11.23-p11.22

Cancer Somatic Mut yes yes NA NA yes yes yes yes yes NA

Cancer Germline Mut NA NA yes yes NA NA NA yes yes NA

Tumour Types
Somatic Mutations

NHL,CLL MM NA NA AML(CML blast
transformation)

NSCLC T-ALL medullary thyroid,
papillary thyroid,
pheochromocytoma,
NSCLC

renal, hemangioma,
pheochromocytoma

NA

Tumour Types
Germline Mutations

NA NA AML, leukemia AML, leukemia NA NA NA medullary thyroid,
papillary thyroid,
pheochromocytoma

renal, hemangioma,
pheochromocytoma

lymphoma

Cancer Syndrome NA NA Fanconi
anaemia A

Fanconi
anaemia D2

NA NA NA Multiple endocrine
neoplasia 2A/2B

von Hippel-Lindau
syndrome

Wiskott-Aldrich
syndrome

Tissue Type L L L L L E L E, O E, M, O L

Cancer Molecular
Genetics

Dom Dom Rec Rec Dom Dom Dom Dom Rec X-linked
recessive

Mutation Type T T D, Mis, N, F, S D, Mis, N, F Mis T T T, Mis, N, F D, Mis, N, F, S Mis, N, F, S

Translocation Partner IGL@ IGH@ NA NA NA RET, ALK TRD@ H4, PRKAR1A, NCOA4,
PCM1, GOLGA5, TRIM33,
KTN1, TRIM27, HOOK3,
KIF5B, CCDC6

NA NA

Other Germline Mut NA NA NA NA NA NA NA yes NA NA

Other Syndrome Disease NA NA NA NA NA NA NA Hirschsprung disease NA NA

^Abbreviations: AML; acute myelogenous leukemia, CLL; chronic lymphatic leukemia, CML; chronic myeloid leukemia, D; large deletion, Dom; dominant, E; epithelial, F; frameshift, L; leukaemia/lymphoma,
M; mesenchymal, Mis; Missense, MM; multiple myeloma, N; nonsense, NHL; non-Hodgkin lymphoma, NSCLC; non small cell lung cancer, O; other, Rec; reccesive, S; splice site, T; translocation, T-ALL; T-cell acute
lymphoblastic leukemia, Chr; Chromosome, Mut; Mutation, NA; No data or not applicable.
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(and hubs) of biological relevance to complex human
diseases. Although the resulting models of network mod-
ule dysregulation are largely explanatory/descriptive rather
than mechanistic, they do have the potential to highlight
dysfunctional pathways, network-centric candidate bio-
markers, and/or therapeutic target networks [1,30]. Given
that VAN enables the testing of modules for dysregulation
based on two or more conditions, it is also suitable for the
examination of changes across developmental timelines.
Availability and requirements
Package name: VAN.
Package repository: sourceforge.
URL for downloading the package: https://sourceforge.
net/p/variabilityanalysisinnetworks/wiki/Home/
Operating system(s): Platform independent.
Programming language: R.
Other requirements: R version 2.15.1 or higher.
License: GNU Lesser GPL.
Any restrictions to use by non-academics: None.
The sourceforge project repository for VAN contains –

i. User guide: A step-by-step guide for installing and
executing the R package. The user guide also
contains example code for data analysis and
visualization.

ii. Package functions: A pdf file containing an exhaustive
list of all the functions (along with their input and
output parameters) available for data analysis and
visualization.

iii. R package: The R packages are available for
execution on Microsoft Windows©, UNIX, and Mac
OS X.

iv. Example dataset: A collection of input and output
files for executing the data analysis and visualization
examples provided in the user guide.

v. Source code: VAN’s source code.
Additional file

Additional file 1: VAN Package User Guide Version 1.0.
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