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Abstract

Background: Protein—protein interactions in cells are widely explored using small-scale experiments. However, the
search for protein complexes and their interactions in data from high throughput experiments such as
immunoprecipitation is still a challenge. We present “4N", a novel method for detecting protein complexes in such
data. Our method is a heuristic algorithm based on Near Neighbor Network (3N) clustering. It is written in R, it is faster
than model-based methods, and has only a small number of tuning parameters. We explain the application of our
new method to real immunoprecipitation results and two artificial datasets. We show that the method can infer
protein complexes from protein immunoprecipitation datasets of different densities and sizes.

Findings: 4N was applied on the immunoprecipitation dataset that was presented by the authors of the original 3N
in Cell 145:787-799, 2011. The test with our method shows that it can reproduce the original clustering results with
fewer manually adapted parameters and, in addition, gives direct insight into the complex—complex interactions. We
also tested 4N on the human “Tip49a/b" dataset. We conclude that 4N can handle the contaminants and can correctly
infer complexes from this very dense dataset. Further tests were performed on two artificial datasets of different sizes.
We proved that the method predicts the reference complexes in the two artificial datasets with high accuracy, even
when the number of samples is reduced.

Conclusions: 4N has been implemented in R. We provide the sourcecode of 4N and a user-friendly toolbox including

within a few hours.

two example calculations. Biologists can use this 4N-toolbox even if they have a limited knowledge of R. There are
only a few tuning parameters to set, and each of these parameters has a biological interpretation. The run times for
medium scale datasets are in the order of minutes on a standard desktop PC. Large datasets can typically be analyzed
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Findings

Background

Protein—protein interactions (PPIs) constitute the core of
inner cell communication [1,2]. Large—scale analysis of
PPIs in cells became possible due to the development
of high throughput measurement methods, in particu-
lar, affinity immunoprecipitation followed by mass spec-
trometry (AP/IP-MS) [3-5]. During an IP experiment,
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an antibody (an immune system protein raised in a host
species to recognize specific foreign target proteins) binds
to its target antigen in the cell sample. The antigen and
proteins that are bound can be effectively isolated from
the sample via interaction with an antibody and quanti-
fied and identified directly by mass-spectrometry [3,6].
IP-experiments using various antibodies on the same sam-
ple result in different, but possibly partly identical sets of
identified proteins that have different abundances in each
experiment [7].

Protein complexes work as functional units in the inter-
action network, and the members of a complex do not
appear individually. For this reason, proteins of the same
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complex are predicted to have a similar abundance in dif-
ferent IP—experiments. Consequently, a similarity-based
cluster analysis of these datasets leads to clusters that
represent the protein complexes. The clustering should
be based on both parts of the information, namely, the
occurrence of proteins in the samples and their relative
abundance values. Complex—complex interactions (CCls)
as a coarser view on the PPI network can be represented
by a clustering in which clusters are allowed to share
proteins as proof of the interaction.

Large—scale IP/MS study by Gavin et al. first described
such analysis for proteome wide characterization of pro-
tein complexes in yeast [3]. Subsequently, a variety of
studies describing different methods to find PPI networks
in this dataset emerged, notably including the work of
Krogan [8], Ethan [9], Collins [10] and Xie [11]. Different
methods were also presented and compared in [12].

A medium scale IP dataset for the components of the
human Tip49a/b—PPI complex was presented by Sardiu et
al. and used to illustrate complex inference [13]. Several
clustering methods were compared on the same dataset
in [14]. More recent methods which were applied to
Tip49a/b are biclust [15] and bi-map [16]. Both of these
methods are model based and both publications claim to
outperform previous methods. Biclust is freely accessible
and easy to handle. We have selected this method for the
comparison with 4N for this reason.

The different clustering methods are scattered widely,
and all studies concluded that there is no standard method
available currently that is suitable for clustering all kinds
of IP-based interaction data. In addition, some of those
methods, for example biclust, involve many parameters
and are very time—consuming as they need many itera-
tions to get to a result.

Malovannaya et al. introduced a method called Near
Neighbor Network clustering (3N) for predicting core
protein complexes in their large—scale IP/MS study on
human cells [17]. This algorithm has been implemented
within their local proteomics database and has four exter-
nal parameters that influence the result. The authors
optimized these parameters manually to identify several
complexes that are described in the literature as biologi-
cally relevant and proved that 3N can find them in their
specific dataset.

In this study, we present a new universal complex
inference method that is based on the idea of 3N clus-
tering which we call “4N”. Most of its parameters can be
set automatically; moreover, it contains tools for visualiz-
ing complexes and their interactions. Major advantages of
4N over other methods include that it can process very
large datasets, that it allows an immediate insight into the
data and that it directly shows the effect of the parameters
on the cluster result. 4N is simple and much faster than
methods based on probabilistic models, such as biclust.
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The high speed of 4N in combination with the visualisa-
tion tools allows the quick interactive search for protein
complexes. A software toolbox written in R is available
in the software section on the website www.bdagroup.nl.
It includes the algorithm itself, documentation, run-
ning examples and methods for plotting and evalu-
ation of the cluster result based on given reference
complexes.

The article starts with the description of the empirical
and simulated IP datasets that we used for testing 4N. The
3N and 4N methods are described in detail thereafter. The
article closes with detailed results for all datasets and a
Discussion and conclusion section.

Data description

Empirical datasets

For a direct comparison with 3N, we did an analysis using
our methods on the very large dataset from the origi-
nal 3N publication [18], which contains about 3200 IPs
with 11500 identified gene products. We name this dataset
“malovIP”. To mimic a targeted IP/MS dataset of inter-
mediate size, we applied 4N with a low U of 0.125 to
“malovIP” and removed all proteins that were not assigned
to near neighbor networks. The subset contained, besides
many other proteins, all protein subunits of the Inte-
grator [19], Mediator [20,21], and HDAC1/2 repressor
complexes from the “malovIP” matrix. This derivative set
is called “malovIP_subset” in our work. The reference
clusters for both “malovIP” datasets were the 6 clusters
described in Figure two(A,B) of [18], the “mediator”-
complex in Figure three(B) and the 3 complexes in
Figure four(A) of the same publication.

The next dataset that we analyzed is the “human
Tip49a/b” from [13]. We obtained a version of this dataset
that also includes proteins that are not in complexes from
the Supplementary Material of [16]. Reference complexes
for this dataset were taken from Figure three in [16]. A
detailed list of the reference proteins can be found in our
Additional file 1.

Simulated datasets

Unlike PPI networks from yeast—two—hybrid studies, only
a few IP-based datasets are available; information about
reference complexes especially is rare. We created another
small-scale, and a medium-scale IP dataset from two
simulated networks for this reason. The two PPI networks
were created with help of the protein interaction database
string-DB (http://www.string-db.org, [22]).

As a starting point for the first network, we used the
protein Snap25 to search for proteins that are connected
to it in string-DB. We extended this network further with
indirectly connected proteins, until we obtained a net-
work with 73 nodes and 116 edges (see Figure 1). The
network has one connected component, which means,
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Figure 1 The “smallPPI"” network. Each color other than pink denotes a cluster found with MCODE (see Data description). Pink nodes do not
belong to any cluster. Note that the pink nodes with a thick line are not part of any cluster though they are connected with more than one edge.

that each node is reachable from each other node. We
refer to this network as the “smallPPI”

The second network was generated using a set of 62
proteins from Figure one in [23]. Each of these proteins
was searched in string-DB, and networks were built con-
taining this protein and its closest interactants. The net-
works were exported for each of the 62 proteins and then
combined. The resultant dataset consists of 282 nodes
and 501 edges. It has 18 connected components and is
named “largePPI”. The process of creating the networks is
described in detail in the Additional file 1.

We first searched for complexes in these two networks
using the software cytoscape (www.cytoscape.org) with
help of the plugin clusterViz (chianti.ucsd.edu/cyto_web/
plugins/displayplugininfo.php?name=ClusterViz) and using
the MCODE method by [24]. This method finds groups
of nodes with higher average edge—to—node ratios within
the group than to nodes outside, and it is suitable for
deriving protein complexes from graphs. These clusters
were used as a reference for the complex prediction in the
IP data later on. We simulated IP results from the two

networks with an algorithm from [9]. This algorithm has
the following biological basis:

During the biochemical isolation of the protein com-
plex, some of the true protein interactions will likely
break, resulting in isolation of a population of partial pro-
tein complexes. It is a logical and biochemically sound
presumption that in an IP experiment, the probability
to be pulled out is highest for the target itself (granted
that the antibody works for the intended antigen), then
high for its direct interactants and lower for the indirectly
connected proteins. Thus, antibodies that target different
complex subunits are expected to pull out slightly dif-
ferent protein subsets from the complex, which leads to
redistribution of measured abundances for each protein.

Kim et al. presented the following method to simulate
this effect on graphs [9], where an unweighted undirected
graph describes a protein network, nodes represent pro-
teins, and edges represent interactions. First, they let a
certain node in a graph to be the IP target protein, and
each edge to have a breaking probability of 0.5 when the
antibody pulls on the target. The probability for each node


www.cytoscape.org
chianti.ucsd.edu/cyto_web/plugins/displayplugininfo.php?name=ClusterViz
chianti.ucsd.edu/cyto_web/plugins/displayplugininfo.php?name=ClusterViz

Kutzera et al. BMIC Research Notes 2013, 6:468
http://www.biomedcentral.com/1756-0500/6/468

in the graph to stay indirectly or directly connected to
the target is calculated, whereas the value for the target
itself is set to 1, as it has the highest likelihood to be
pulled out. Sets of nodes with many inner edges are likely
to stay connected when one node of the set is the tar-
get. This corresponds to a high common abundance in the
real IP experiment, where closely connected proteins stay
together when the antibody pulls on one of them. Two
only indirectly connected nodes are less likely to stay con-
nected when one of them is the target, which leads to a low
abundance value for the other one. The steps are repeated
for each node to create a symmetric node by node matrix
as shown in Figure 2. Finally, low values are removed from
the matrix to make it sparse, -as typical IP results usually
are-, with about 15% of non-zero values. In real studies,
experimenters normally select the antibodies against a set
of proteins that they consider being relevant. We simu-
late this through selecting only a subset of columns in
the matrix for complex prediction instead of the whole
dataset.

Methods
The original 3N algorithm
This paragraph contains a brief description of the 3N
algorithm, details can be found in the Additional file 1. An
overview of the steps is given in Figure 3, left side. The
3N (Near Neighbor Network) algorithm by [17] was devel-
oped to detect minimal endogenous modules (MEMOs),
which are stable complexes of proteins that always appear
together in IP experiments. MEMOs are the smallest rele-
vant units of interest and constitute the building blocks of
larger core complexes and their isoforms.

3N defines the near neighbor network for a certain pro-
tein as the set of proteins that appear reciprocally or
together, and have correlated abundance values with this
protein across the different-antibody samples where it has
its highest abundance. The correlation of two proteins

(5—(5) 1 2 3 4 5 6
' a1 0.62 | 0.62 | 0.31 | 0.19 | 0.19
e | 062 |1 0.62 | 0.31 [0.19 |0.19
w062 |0.62 |1 0.5 0.31 |0.31
~ 031 1031 |05 1 0.62 |0.62
e o1/0.19 |0.19 |0.31 |0.62 |1 0.62
o (0.19 |0.19 |0.31 |0.62 |0.62 |1

Figure 2 Example graph and the corresponding connection
probability table. For a triangle like (1,2,3), the probability for each
pair of nodes to stay connected is % ~ 062, as 3 edges lead to 2> = 8
possible configurations of remaining edges where 5 of them enable
at least one direct or indirect connection between 2 nodes. Image
based on [9].
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is defined in terms of the cosine-distance between their
rows U, V in the IP-matrix as arccos(U x V' /||U|| x ||V]])
like explained in [25] and it has to be below a certain
threshold. In the first step (“origNNN”), a NNN is calcu-
lated for each protein. These NNNs are used to infer the
core complexes in the “origCC”-step. They represent sets
of proteins that are very frequently pulled out together,
regardless of the protein that binds to the antibody. A set
of proteins, for which the NNN of nearly each member
contains all other members of the set is a minimal core
complex.

Although the original 3N algorithm performs well on
the kind of data described in [18], it has some limitations.
It has four external parameters that were manually opti-
mized, and all of them influence the result (see Table 1).
This is a strong limitation for generic applications of the
algorithm, as the original parameter setup may not work
as well and needs to be optimized for different datasets.

To calculate the near neighbor network for one protein,
3N considers only the samples where this protein has its
highest abundance values (i.e., the so-called Top list). This
can lead to a loss of proteins when the length of the Top list
(parameter L) is too short. A set of close proteins is only
detected as core complexes when all their NNNs contain
the complete protein set. Less closely connected com-
plexes easily become predicted incompletely. A threshold
of 65 for the cosine-distance (parameter C) is relatively
weak for separating proteins that do not belong together,
as two random vectors of only positive values are more
likely to have a cosine-distance < 65 than one between 65
and 90. The 3N algorithm was not published as software
implementation by the authors, which makes it impossible
for others to immediately apply it to their own IP data.

The 4N algorithm
The aforementioned limitations motivated us to create the
4N algorithm based on the 3N idea. We removed the idea
of sample ranking and used the binary Jaccard coefficient
[26] for the protein co-occurrence in the step of NNN
calculation. For a pair of proteins, this coefficient is the
number of common occurrences divided by the number
of samples where at least one of the proteins occurs. We
automated the optimization of the most important param-
eters and added a step for joining overlapping complexes.
For an overview of the algorithm, see Figure 3, right side.
Only two external parameters remain that need to be
optimized manually for different datasets. One of them is
the cosine-distance threshold parameter (C). In our anal-
ysis it is set to 40 such that the algorithm is able to keep
proteins in one cluster that build an unbranched chain in
the network. The value was determined experimentally
using the two artificial datasets. This parameter has an
influence on the absolute number of proteins in NNNss.
The other external parameter (P), which is used to decide
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Figure 3 Schematic overview of the 3N and the 4N algorithm. The scheme contains all steps for the 3N and the 4N algorithm. The pseudocode

Table 1 Overview of the parameters for 3N and 4N

External External Affectstotal Description
for 3N for 4N number of
proteins in
complexes
L Yes Yes Length of topList
T Yes Yes Co-occurrence threshold
influencing param.
C  Yes Yes Yes Cosinus-distance threshold
S Yes No Yes Jaccard coefficient thresh-
old for building CCs
u No Yes Jacc. coeff. threshold for
building NNNs
p Yes No Jaccard coefficient thresh-

old for joining CCs

External parameters are those that need to be adjusted by the user. The
non-external parameters of 4N are set automatically by the algorithm.

which core complexes should be joined finally, does not
influence the total number of proteins that are put into
complexes. Below we give an overview of 4N; a detailed
description can be found in the Additional file 1.

Inferring near neighbor networks and core complexes
We want to preserve all proteins that co-occur with at
least one other protein in at least one sample. The Jaccard
coefficient threshold for building the NNNs (U/) is set to
0.01 initially to assign all proteins that fulfil this require-
ment to a near neighbor network. After this, U is set to
the highest possible value, where each of the proteins still
remains in at least one NNN. The cosine-distance thresh-
old (C) is set to 40. The core complexes are calculated
from the NNNs with the highest possible value for the
Parameter S (Jaccard coefficient threshold for building
CCs), for which all proteins occur in at least one core com-
plex. Result of this step is set of core complex proteins for
each protein in the dataset. These sets of proteins overlap
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highly, especially when they are built with a low S. For
this reason, we added a step to join the core complexes
(step “joinCC”) based on the relative number of shared
proteins.

Joining core complexes We define the overlap between
two complexes as the relative number of proteins in the
smaller complex that occurs in the larger one. When
the threshold for joining core complexes (P) is small-
est, all core complexes that share at least one protein
are joined, which leads to completely distinct sets of
joined core complexes. They represent groups of core
complexes that interact within but not across the groups.
Higher thresholds create smaller sets of partly overlapping
complexes that stand for core complex isoforms, a value
of 1 creates sets that represent MEMOs. Here, two com-
plexes are only joined when the larger one contains all
proteins of the smaller one.

Different values for P in a range from 0 to 1 are used to
create a core complex plot alike to the one in Figure 4. It is
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based on a matrix all proteins vs. each other. Each matrix
cell is set to O at the beginning. A first joining—step is
applied to the core complexes with the smallest P, and the
matrix cells for proteins that are in the same joined core
complex become 1, shown by the large non-overlapping
squares in Figure 4. The joining step is repeated iteratively
with higher P and the matrix cells for proteins that are
still in the same core complex are incremented in each
step. A standard hierarchical clustering with Euclidean
distance is applied to each of the large squares to display
a heatmap of the inner structure and the overlap of the
joined core complexes. The image shows the MEMOs as
well as the core complex isoforms and can be used for
visualisation of the complex assignments for each protein.
It also shows whether the automatic value for U is high
enough to distinguish between the complexes. A too low
U leads to one very large square in the plot with large
white areas, see the plots for “Tip49a/b” in the Additional
file 1 as example. The value must be set higher in this
case. For a correctly set U, the plot can be used to set P to

u
|
|
|
|
u
|
]

can be found in the Additional file 1.

Figure 4 Core complex plot for the “Tip49a/b” dataset. Darker colors symbolize core complexes that were joined with a lower parameter P in
the “joinCC"-step, brighter colors stand for higher P. 107 proteins were assigned to 12 non-overlapping sets of core complexes when P was 0.01.
Higher P show the structure of cluster overlaps and reveal core complex isoforms. White solid squares show MEMOs. Explanations for all complexes
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decide whether the results should contain larger, less over-
lapping complexes or smaller dense complexes that share
proteins. The output of 4N for one specific set of param-
eters U,C,S,P is a list of predicted complexes. Each list
element contains the names of the proteins that are in the
complex.

Validation

The reference complexes for the three real datasets
(“Tip49a/b”, “malovIP” and “malovIP_subset”) are those
mentioned in the corresponding paragraphs in the Data
description section. The reference clusters for the sim-
ulated data (“smallPPI”, “largePPI”) are those that were
found by MCODE in the equivalent networks.

The threshold for joining the core complexes was
selected for each dataset by examining the corresponding
core complex plots and set to 0.5 for the artificial datasets,
0.6 for “Tip49” and to 0.85 for the tests on the “malovIP”
datasets. The complex prediction quality was tested by
comparing the 4N results with the reference clusters using
the method by Brohée and van Helden [27].

Both the given and the predicted clusters can be seen
as sets of sets. Let G be the set of given clusters, P the
set of predicted ones. Each given cluster g € G is seen as
a set of proteins, likewise each predicted cluster p € P.

Page 7 of 11

The scoring method uses the Jaccard coefficients for each
combination of p and g as |[p N g|/|p U g| and sets them
in relation to the sizes and number of the real and pre-
dicted complexes. A complete description of the method
can be found in [27]. The method calculates sensitivity,
positive predictive value and as square root of the product
of both, accuracy as quality measure. In addition, it gives
the separation value as measure for how many predicted
complexes represent one reference complex. This value is
important because the accuracy does not decrease when
a prediction method produces a too large amount of clus-
ters that contain proteins from the reference complexes,
as just the best overlapping cluster for each reference
complex is taken into account.

A perfect complex prediction yields 1 for the accuracy
score which means, that all reference complexes are com-
pletely covered by predicted complexes and the predicted
complexes only contain proteins of their corresponding
reference complex. The separation score is 1 when each
reference complex is covered by exactly one predicted
complex.

Results
The two real datasets “malovIP” and “malovIP_subset”
were analyzed and the joining-parameter (P) was set to
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Figure 5 Detail that shows the reference complex INT. Dark red dots mark proteins that are in the reference-complex, the bright red dots the
proteins in the complex predicted by 4N. The proteins from the complexes POL and INT are known from the literature to be close to each other and
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were put in one complex by 4N. A Figure that shows the close connections between POL and INT is in the Additional file 1.




Kutzera et al. BMC Research Notes 2013, 6:468
http://www.biomedcentral.com/1756-0500/6/468

0.85 after examining the core complex plot. The predicted
complexes were compared to the 10 reference complexes.
On both datasets, the same scores were reached as all
relevant proteins are in the “malovIP_subset” and the
additional number of proteins in the “malovIP” dataset did
not influence the prediction. Figures 5 and 6 show details
from the core complex plot for two predicted reference
complexes, the whole image and an explanation for all
complexes are in the Additional file 1.

Some of the reference complexes, e.g., “POLII” and
“INT”, are known from the literature to be larger than
the MEMOs shown in the original 3N publication [17]
because the number of proteins assigned to the complexes
varies from source to source. A search on string-DB for
all participating proteins and their close interactors shows
their neighborhood. The string-DB network can be found
in the Additional file 1. In addition, other reference com-
plexes are closely interacting with those complexes, see
Figure three in [18]. Our predicted complexes were larger
than the original reference complexes. For this reason, the
PPV was 0.76 at a sensitivity of 0.83 and an accuracy of 0.8.
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The analysis of “Tip49a/b” showed a core complex plot
with one large core complex when the parameter U was
automatically selected. The IP-matrix is very dense as the
complexes interact closely, and many proteins are pulled
out by the majority of the baits. A few proteins that are
less closely connected cause the parameter U to be too low
to distinguish between the close complexes, which can be
seen in the core complex plot. We increased the param-
eter until the core-complex-plot showed more plausible
complexes with a size of not more than 35 proteins. Core
complexes were joined with a parameter P of 0.6. Different
core complex plots for several U and the final plot includ-
ing an explanation for all reference complexes can be
found in the Additional file 1. The five largest complexes
were predicted completely, but two of them are separated
into two predicted complexes. Some small complexes
with only 2 or 3 proteins were predicted incompletely,
especially when they only contained bait proteins. The
proteins that are not in reference complexes did not dis-
turb the complex prediction but some of them appear in
predicted complexes such as PPPase 1. The accuracy was
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Figure 6 Detail from the core complex plot for “malovIP” that shows MED. White represents the MEMO, blue the core complex isoforms. The
dark red dots at the axes mark proteins that are in the reference-complex, bright red dots the proteins in the complex predicted by 4N.
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Figure 7 Result overview for the “smallPPI” network. Accuracy for 100 experiments each on 9 different numbers of samples.

0.77 with a sensitivity of 0.67 and a PPV of 0.87. The sep-
aration was 0.49 which shows that 4N is assuming slightly
too many complexes.

The “smallPPI” IP dataset was processed first using all
73 columns as IPs. The accuracy was 0.99. A value of 1 was
not reached, because 4N misclassified one single protein.
We applied 4N 100 times each on random sample subsets
with 60, 50, 40, 35, 30, 25, 20, 15 and 10 IPs (see Figure 7).
The average accuracy was around 0.99 for the experiments
on 60 IPs and remained still above 0.89 for 10 IPs. The
separation score ranges from 0.98 to 0.85. 4N performs as
well as biclust on all tested samples and is about 100 times

faster. In addition, the separation score for 4N is gen-
erally higher than for biclust in all experiments because
biclust predicts a larger amount of complexes. Details on
the comparison with biclust (runtime, scores and stability)
can be found in the Additional file 1.

The “largePPl” dataset was processed analogously,
using all columns first. The accuracy was 0.91. The
experiments were repeated on random subsets with
260, 190, 130, 65, 35 and 20 IPs (see Figure 8). The accu-
racy remained above 0.9 for the first 3 tests and was falling
slightly for the second three tests, down to 0.85 when 20
samples were used for clustering. We also tried biclust on
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Figure 8 Result overview for the “largePP1” network. Accuracy for 100 experiments each on 6 different sample numbers.
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“largePPI” but the method terminates without giving an
informative error message.

Discussion and conclusion

Sensitivity and PPV of 4N highly depend on the selected
parameters. Low U lead to a high sensitivity and low PPV,
high U to the opposite. At a correctly set U, most of
the complex proteins are found as complex proteins and
assigned to the right cluster. In datasets where every pro-
tein has a high co-occurrence to at least one other one,
this happens at the automatically set U. The parameter
P has a smaller influence on the result especially when
U is set correctly. A Figure in the Additional file 1 visu-
alizes the effect on the Tip49a/b dataset. It is important
to check different core complex plots to see the behav-
ior when 4N creates one large cluster in the automatic
setting.

We have set U in the experiment on “Tip49a/b” high
enough to get at most 35 proteins per complex in the core
complex plot. This value was selected because the size of
the largest reference complex we had in any of our datasets
was 35. The joining threshold was then selected high
enough to preserve the information of closely connected
subcomplexes within the large joined complexes.

For a biologist 4N might be more intuitive than
algorithms that are based on probabilistic models such as
biclust. As 4N does not need to be executed multiple times
(which is necessary for probabilistic methods), it is very
fast and can process very large IP datasets. The 4N anal-
ysis on the “malovIP”-dataset with its approx. 3200 IPs
and 11500 proteins took approximately one day (Intel core
2 duo, 2 x 2.8 GHz), the analysis of “Tip49a/b” can be
performed in seconds.

4N predicts the reference complexes in all tested
datasets with high accuracy. The algorithm allows an
immediate insight into the general density of an IP-
dataset, the MEMOs, the core complex isoforms and the
complex-complex interactions with the core complex plot.
When this plot is seen as result, only one parameter
that influences the result (the cosine-distance, C) remains
instead of four parameters as in the original 3N algorithm.
The immediate feedback given by the core complex plot
allows assessment of the result and a manual adaptation
of the parameters if necessary. 4N can process datasets of
different density from dense to sparse. It is easy to install
and execute as only a basic R-installation and one extra
library is needed as minimum requirement. The method
can efficiently cluster IP data and suggest protein complex
compositions.

Additional file

Additional file 1: Supplementary material.
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