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Id :: Char
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TECHNICAL NOTE Open Access

hPDB – Haskell library for processing atomic
biomolecular structures in protein data bank
format
Michał Jan Gajda

Abstract

Background: Protein DataBank file format is used for the majority of biomolecular data available today. Haskell is a
lazy functional language that enjoys a high-level class-based type system, a growing collection of useful libraries and a
reputation for efficiency.

Findings: I present a fast library for processing biomolecular data in the Protein Data Bank format. I present
benchmarks indicating that this library is faster than other frequently used Protein Data Bank parsing programs.
The proposed library also features a convenient iterator mechanism, and a simple API modeled after BioPython.

Conclusion: I set a new standard for convenience and efficiency of Protein Data Bank processing in a Haskell library,
and release it to open source.

Keywords: Structural biology, Protein DataBank file format, Parallel parser, Parser efficiency, Column-based parsing

Findings
Background
The Protein Data Bank (PDB) is a widely used data
repository of atomic resolution, three-dimensional pro-
tein and nucleic acid structures [1]. The rapid growth
of structural data enables key endeavors to bring knowl-
edge of genomes [2] to the structure and function of
large biomolecules. In addition to sequence searches and
genome assemblies, efficient and reliable structural data
processing are one of the most important and common
structural bioinformatics tasks [3].
Haskell is a modern, lazy, pure functional language [4,5]

that enjoys fluid syntax, and clarity comparable to Python
[6], as well as an efficient compiler that often gener-
ates code approaching the speeds of industry standard
languages such as C [7] or C++ [8].

Library interface
The library is a comprehensive solution for the parsing,
rapid processing and writing of PDB files. I introduce the

Correspondence: miga@nmr.mpibpc.mpg.de
NMR-2, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11,
Göttingen, Germany

library by providing examples and describing the underly-
ing data structuresa, and finally, I present an evaluation of
its efficiency.

Simple use example
A parser exampleb – a script that reads a structure con-
tainingmultiple models and splits the structure into single
models.

import Bio.PDB as PDB
import qualified Data.Vector as V

splitModels aStructure = map mkStructure .

V.toList .

models $ aStructure
where mkStructure aModel = aStructure {models =

V.singleton aModel}

Here, I extract a list of models from a Bio.PDB.
Structure.Structurec object (V.toList . modelsd),
and repackage each model as a separate structure. These
structures are then written using PDB.write.
I use Data.Vector.Vector to store all lists, including

list of models, within the library. Data.Vector.Vector

© 2013 Gajda; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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significantly reduces memory use after reading PDB files
(see the benchmark section.)
To complete the program I include a command line

interface:

import Data.ByteString.Char8 as BS

main = do [inpfname, outfname] <- getArgs

Just structure <- PDB.parse inpfname
let splitted = zip [1..] $ splitModels structure

forM splitted $ \(num, aStructure) ->

do let fname = outfname ++ show num ++ ".pdb"

PDB.write aStructure fname

A simple PDB.parse action returns a structure, to which
I apply splitModels and zip a list of results with model
numbers. These results are used to generate names of out-
put files, that are then written using the PDB.write IO
action. ByteString is used rather than [Char]within the
library for everything except file paths (FilePath), due to
efficiency considerationse.

Data structure describingmolecules
Different levels of collection hierarchy can be seen on
Figure 1:

Structure that contains information about whole PDB
entry;
Model that shows a single model of the molecule;
Chain describing a single polymer chain;
Residue for a single monomer (aminoacid residue or
nucleic acid base) within the polymer;
Atom for a single atom location.

Names of these types correspond to the names used by
PDB file format definition [1]. Those atoms which may

have multiple locations within the model are described by
several records, and those residues that have alternative
mutants are also described by different records in accord
with current practice of PDB [1].

Iterating with Iterable
For the different types of objects, I devised a custom
Iterable class that allows iteration over all objects of
each of many types contained within an argument object.
This class generalizes map, and foldr iteration patterns
used over lists, to hierarchical containers, and allows iter-
ation over any type of contained objects, potentially in an
indirect manner:

class Iterable a b where
itmap :: (b -> b) -> a -> a

itfoldr :: (b -> c -> c) -> c -> a -> c

itfoldl :: (c -> b -> c) -> c -> a -> c

...

The itmap method allows mutation of any of the objects
of a given type b contained within type a. To compute a
statistic over all contained objects itfoldr or itfoldl
can be used.
The class Iterable a b may thus be viewed as a gen-

eralization of Functor, Foldable, and Traversable to
hierarchical collections that may contain more than one
class of objects. All Iterable instances, and method types
are shown in Figure 1.
It is often convenient to use a monadic state when com-

puting a statistic, or when renumbering residues. For this
purpose, I use monadic variants of the following methods:

class Iterable a b where
...
itmapM :: (Monad m) => (b -> m b) -> a -> m a
itfoldM :: (Monad m) => (c -> b -> m c) -> c -> a -> m c

Structure

models :: Vector Model

Model

modelId :: Int
chains :: Vector Chain

0..*

Chain

chainId :: Char
residues :: Vector Residue

Residue

resName :: String
resSeq :: Int
insCode :: Char
Id :: Char
atoms :: Vector Atom

Atom

atName :: String
atSerial :: Int
coord :: Vector3
bFactor :: Double
occupancy :: Double
element :: String
segid :: String
charge :: String
hetatm :: Bool

0..* 0..* 0..*

Figure 1 Data structures used to describe PDB structures. This figure represents a hierarchy of collections contained in each PDB Structure.
Arrows represent the hierarchy of Iterable instances linking contained objects. Line style distinguishes between direct (continuous line) and
transitive (dashed line) instances of Iterable class. For ease of use, I also allow to iterate over each type as a singleton collection (dotted line.)
Below each datatype name I enumerate record components and their types for easy reference.



Gajda BMC Research Notes 2013, 6:483 Page 3 of 6
http://www.biomedcentral.com/1756-0500/6/483

For efficiency I introduce a rapid itlength method,
and a strict itfoldl variant:

itfoldl’ :: (c -> b -> c) -> c -> a -> c

itlength :: b -> a -> Int

Note that itlength is the only method using a dummy
first argument to indicate the type of contained object to
be counted. As all othermethods use a function argument,
automatic type inference finds the proper class instance
without requiring a type declaration, as shown in the
examples belowf.

Structure analysis example
In the following examples I skip the command line
interface, assuming that all functions input a parsed
Structure object.
The most convenient interface for a complex cascade

of container types within a PDB structure is composition
based on fold, and map analogs.
To compute the center of mass of all Atom objects con-

tained within a structure, I use a two pass algorithm:

center :: Structure -> Vector3
center s = avgVec

where

sumv = itfoldl’ addCoord 0 (s :: Structure)
n = fromIntegral $ numAtoms s
addCoord v (Atom { coord = c }) = v+c
avgVec = (1/realToFrac n) *| sumv

Here I use itfoldl’ instantiated to the following type,
automatically inferred from the types of addCoord and s:

itfoldl’ :: (Vector3 -> Atom -> Vector3)
-> Vector3 -> Structure -> Vector3

I will generalize this type to other types within the struc-
ture, when showing class Iterable. This generalization
allows a function to have a type showing that it can take
any object that contains Atom objects within:

center :: (Iterable a Atom) => a -> Vector3

Then, I can subtract the computed center from all
atomic coordinates with the itmap method, analogous to
map for lists. In this example, mapping PDB.Atom objects
within a PDB.Structureg, is used:

shift v = itmap (\at -> at { coord = coord at - v })

This use of itmap has an instantiated type, that is auto-
matically inferred from its first argument:

itmap :: (Atom -> Atom) -> Structure -> Structure

Stateful modification
Simple itmap, and itfoldl’ methods are not sufficient
to perform a complex stateful operation such as renum-
bering residues starting from 1.
In this case, I use monadic analogs, such as itmapMh:

renumberChain = itmapM renumberAtom (ch :: Chain)
where
renumberAtom :: Atom -> CounterM Atom
renumberAtom elt = do v <- get

modify (+1)
return $ elt { atSerial = v }

Such a code requires separate application to each chain,
because residue numbering begins anew with each chain:

renumberResidues = itmap (runCounterM .
renumberChain)

Assigning consecutive serial numbers is handled by a state
monad [9], as described below:

import Control.Monad.State(State, modify,

get, RunState)

type CounterM a = State Int a

runCounterM :: CounterM a ->

a runCounterM = fst . (flip runState) 1

Renumbering atoms within each model is more
involved, because the PDB data format [10] mandates that
TER recordsi are counted along with the atoms, and these
records do not have direct representation in hPDB data
structures.

renumberAtoms = itmap (\m -> runCounterM $
itmapM forEachChain (m :: Model))

where
forEachChain :: Chain -> CounterM Chain
forEachChain ch = do newCh <- itmapM forEachAtom ch

modify (+1) -- for TER
return newCh

forEachAtom :: Atom -> CounterM Atom
forEachAtom at = do v <- get

modify (+1)
return $ at { atSerial = v }

In this example renumberAtoms may be labelled with the
monomorphic (and useful) type:

renumberAtoms :: Structure -> Structure

Although the automatically inferred type allows this func-
tion to act not only on the entire Structure but also on
any single Model that contains the Chain objects.

Example applications
hPDB’s speed and ease of use has allowed for rapid imple-
mentation of typical functions such as: orienting structure
so that the longest diameter corresponds to the Y axis,
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Table 1 Total CPU time in seconds

PDB entry hPDB par. hPDB seq. BioJava1 BioRuby BioPython PyMol RasMol Jmol1

1CRN ≥ 0.01 ≥ 0.01 0.38 0.03 0.31 0.06 0.06 1.96

3JYV 0.27 0.26 1.31 0.89 1.26 0.28 0.28 3.52

1HTQ 5.08 4.63 6.66 16.52 23.41 3.94 4.90 25.82

1Jmol and BioJava use multiple threads, thus completion time is closer to half the CPU time than to the sum of CPU time and I/O time (as indicated in Table 3).

and the second longest cross-sectional dimension corre-
sponds to the X axis (CanonicalAxes in hPDB-examples
package), normalizing PDB files for use by applications
restrictive with respect to file format (CleanPDB), and
examining the sequence of main polymer chain or geo-
metric parameters of small-angle scattering shape recon-
structions (Rg example) with minimal code.

Results and discussion
Benchmarks
For the benchmark, hPDB was compiled in single-
threaded and multi-threaded mode by GHC v7.6.2.
I benchmarked three other PDB parser libraries

BioJava [11] (v3.0.5-2), BioRuby [12] (v1.4.2 using stan-
dard Ruby VM v1.9.3p194), and BioPython [13] (v1.60,
using standard CPython 2.7.4 [6] implementation). I
include time results for common molecular visualization
programs (as these are required to show a complete struc-
ture quickly): RasMol [14] (v2.7.5.2), known for a long
history of optimization and written in C; PyMol [15]
(v1.5.0.1), written in both C and Python; and Jmol, written
in Java [16] (v12.2.32). Each parser’s CPU time is reported
in Table 1.
In the case of libraries, I used operating system calls or
ps program to determine the upper bounds of memory
used in Table 2 (including purely virtual allocations).
Haskell memory is reported for the current heap, in

addition to the target space for copying garbage collector
[17].
Note that Jmol and BioJavamay both use more than one

thread, which significantly reduces time-to-completion
when using a multicore machine as reported in Table 3.
The benchmarks were measured on a quad-core

Intel® Core™ i7 2600 processor running at 3.4 GHzj,
16 GB of 1333 MHz memory, and a SAMSUNG
470 Series solid-state disk. The system was running a
64-bit Ubuntu 13.04 with a standard Linux kernel package
3.8.0-31.

While hPDB may be expected to stand out in runtime
comparisons to the bytecode-based dynamic language
libraries BioRuby and BioPython, surprisingly, serial hPDB
is faster than other parsers in compiled languages, with
the exception of PyMol. The parallel version of the hPDB
parser may be the fastest PDB parser on machines with at
least 4 independent processing cores.
It was noted that memory use, even with a neces-

sary overhead (2×) of Haskell’s copying garbage collector,
compared favorably with memory used by other libraries.
Parsing the entire PDB archive (as of January 6th 2013,

compressed, 16 GB) takes approximately 14.5 minutes
using 4 cores in parallel, with total CPU and I/O time
reported to be 50 minutes. No crashes are reported, but
8k lines (mostly meta data) are reported as erroneousk
because they are inconsistent with strict interpretation of
PDB format [10].
Benchmarks show that in this specific application, the

mildly optimized Haskell parser may provide speeds com-
petitive with compiled languages such as Java and even
lower level explicitly allocated languages such as C. Mem-
ory usage is also less than any other aforementioned
library.
There is another Haskell library parsing PDB files on

Hackage [18] called PDBtools, but it was not able to fully
parse any of our example files because it does not handle
errors in the read routine.

Conclusions
I have shown clear uses of a nice high-level interface for
the analysis and modification of molecule descriptions
encoded in the PDB file format [10].
While there are many similar parsers written in other

languages, this is the first one I am aware of in Haskell,
that parses entire coordinate contents within the PDB
repository. It is also efficient both in runtime and memory
use, and thus, the preferable choice for sophisticated, high
volume analyses.

Table 2 Total allocatedmemory inmegabytes

PDB entry Input size hPDB par. hPDB seq. BioRuby BioJava BioPython

1CRN 49 kB 3 1 8 240 206

3JYV 5 41 35 85 302 324

1HTQ 76 609 547 1350 1180 2409
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Table 3 Completion time after parsing in seconds

PDB entry hPDB par. hPDB seq. BioJava BioRuby BioPython PyMol2 RasMol2 Jmol2

1CRN ≥ 0.01 ≥ 0.01 0.23 0.04 0.32 0.14 0.77 2.26

3JYV 0.09 0.28 0.71 0.94 1.43 0.38 0.86 2.81

1HTQ 1.39 4.79 3.24 17.14 24.01 4.22 5.73 12.86

2Includes the time needed for startup and closing the window.

While future work on analysis API extensions would
likely further improve utility of this library, I believe that it
is ready for production use, as indicated by the many code
examples.
I conclude that in this specific application, Haskell has

both ease of use and abstraction of high-level dynamic
languages, along with a speed competitive with lower level
explicit-allocation languages such as C.

Availability and requirements
Source code is available as Additional files 1, 2 and 3
attached to the manuscript or from GitHub repository
https://github.com/mgajda/hPDB, and released on Hackage
as hPDB. It has been tested with several GHC versions
including 7.0.3, 7.2.2, 7.4.2, and the recently released
7.6.2. It has few dependencies, and all are available from
Hackage [18].

Project name: hPDB
Project home page:
http://hackage.haskell.org/package/hPDB
Source repositories:
http://github.com/mgajda/hPDB
http://github.com/mgajda/hPDB-examples
http://github.com/mgajda/iterable
Operating system(s): Platform independent
Programming language: Haskell
Libraries: Haskell Platform, AC-Vector
Other requirements: GHC ≥ 7.0
License: BSD

Endnotes
a While this article contains only one figure showing

the most important types for the API, two additional
diagrams elucidating the library’s internal structure are
available in the Additional files 4 and 5.

b The command line interface for this function may be
found in examples/SplitModels.hs in the
hPDB-examples package.

c Names defined in the hPDB package are emphasized
in bold font for ease of reading. Other modules are the
standard collection interface Data.Vector from
the vector package, the 3D vector interface
Data.Vector.V3 from the AC-Vector package, and
Data.ByteString.Char8 from the bytestring package.

d Note the use of Data.Vector for space efficient
storage of data.

e Most records in the PDB file format are ASCII-only;
therefore, Unicode encoding is not necessary. As
non-ASCII characters can only occur in comments and
metadata, they may be decoded after parsing.

f Type parameter b in declaration for itlength is a
dummy type argument to specify the contained object
types to be counted.

g This declaration is less polymorphic than the actual
itmap type, as demonstrated in the following section
about Iterable class description.

h Extended examples are present in the CleanPDB.hs
example attached to the library.

i Indicating termination of polymer chain, rather than
an atom.

j With overclocking switched off.
k It is known that, after six different official releases of

file format descriptions and many data remediation
efforts, there is a small amount of data that does not
entirely conform to the PDB archive format.

Additional files

Additional file 1: Source package archive. hPDB.tgz contains full
source distribution of the hPDB package. It is also available through the
Hackage database at: http://hackage.haskell.org/package/hPDB.

Additional file 2: Source package archive. hPDB-examples.tgz
contains full source distribution of hPDB examples. It is also available
through Hackage database at http://hackage.haskell.org/package/hPDB-
examples.

Additional file 3: Source package archive. iterable.tgz contains
library definition of Iterable class, and macros helping in its instantiation
written in Template Haskell [20]. It is also available through Hackage
database at: http://hackage.haskell.org/package/iterable.

Additional file 4: Data type hierarchy. Data type hierarchy showing all
accessible types and data flow during parsing and printing. Hidden types
are marked with dotted ellipses. Data flow is shown with dashed lines.
Types marked with solid ellipses are part of API, and solid lines indicate direct
type containment.

Additional file 5: Module diagram. graphmod.svg contains a module
diagram illustrating structure of hPDB.
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