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Abstract

controls for normalization of hepatic miRNA levels.

possibly erroneous conclusions.

Background: MicroRNAs (miRNASs) are short (~22 nt) endogenous RNAs that play important roles in regulating
expression of a wide variety of genes involved in different cellular processes. Alterations in microRNA expression
patterns have been associated with a number of human diseases. Accurate quantitation of microRNA levels is
important for their use as biomarkers and in determining their functions. Real time PCR is the gold standard and
the most frequently used technique for miRNA quantitation. Real time PCR data analysis includes normalizing the
amplification data to suitable endogenous control/s to ensure that microRNA quantitation is not affected by the
variability that is potentially introduced at different experimental steps. U6 (RNU6A) and RNU6B are two commonly
used endogenous controls in microRNA quantitation. The present study was designed to investigate inter-individual
variability and gender differences in hepatic microRNA expression as well as to identify the best endogenous
control/s that could be used for normalization of real-time expression data in liver samples.

Methods: We used Tagman based real time PCR to quantitate hepatic expression levels of 22 microRNAs along
with U6 and RNU6B in 50 human livers samples (25 M, 25 F). To identify the best endogenous controls for use in
data analysis, we evaluated the amplified candidates for their stability (least variability) in expression using two
commonly used software programs: Normfinder and GeNormplus,

Results: Both Normfinder and GeNormplus identified U6 to be among the least stable of all the candidates
analyzed, and RNU6B was also not among the top genes in stability. mir-152 and mir-23b were identified to be the
two most stable candidates by both Normfinder and GeNormplus in our analysis, and were used as endogenous

Conclusion: Measurements of microRNA stability indicate that U6 and RNU6B are not suitable for use as
endogenous controls for normalizing microRNA relative quantitation data in hepatic tissue, and their use can led to
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Background

MicroRNAs are short (~22 bp) endogenous non-coding
RNAs that regulate post transcriptional gene expression
by binding to specific target mRNA transcripts and pro-
moting their mRNA degradation/destabilization and/or
translational inhibition [1]. They have been suggested to
play important roles in defining normal tissue specific
gene expression patterns [2]. Aberrant expression levels
of microRNAs have been associated with several human
diseases such as cancer [3,4], diabetes [5], metabolic
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disorders [6], neurological disorders [7] and cardiovascu-
lar diseases [8]. As microRNAs are relatively stable to
degradation [9], they are being increasingly used as bio-
markers for pathological states and clinical conditions
[10,11].

An accurate determination of microRNA expression
levels is, hence, key to the elucidation of their biology and
roles in human diseases. Although several different strat-
egies can be used for profiling microRNA expression levels,
real time PCR or quantitative RT PCR (Q-RT PCR) is argu-
ably the most used low to medium-throughput technique
for measuring microRNA levels [12]. Given its high sensi-
tivity and accuracy, real time PCR is frequently used to
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validate findings from genome-wide scans of microRNA ex-
pression. Results obtained using real time PCR are them-
selves, however, sensitive to experimental variation that can
be introduced at several different steps, making the
normalization strategy critical for obtaining accurate and
reproducible results [13].

The most commonly used approach for normalization of
real time PCR data is to consider one or more “invariant”
single endogenous genes to control for the variability that is
introduced at different stages of the real time PCR experi-
ment, the key assumption, obviously being that these en-
dogenous controls do not vary across the samples being
studied [14]. Unfortunately however, to date, no standard
endogenous controls have been identified for microRNA
profiling and a large majority of microRNA expression pro-
filing studies rely on the use of small nuclear RNAs such as
U6 and/or RNU6B to control for experimental variability.
There is limited evidence, however, to suggest that these
controls do not vary across human tissue samples and as
our study demonstrates, their use in quantitating hepatic
microRNA levels can lead to incorrect interpretations and/
or conclusions.

The goal of our study was to investigate the existence
of inter-individual variability and gender differences in
hepatic microRNA expression. We specifically focused
on microRNAs that were (1) predicted (by Targetscan
database) to have binding sites in 3'UTR regions of hep-
atic drug metabolizing enzymes and several key hepatic
transcription factors known to be or potentially involved
in regulating these drug metabolizing enzymes, and (2)
known to be expressed in human liver based on litera-
ture. In addition we evaluated the use of mammalian U6
and RNU6B as endogenous controls, as both have been
extensively used for normalizing hepatic microRNA ex-
pression levels. Our results demonstrate that both U6
and RNU6B are highly variable in expression and thus,
not ideal for use as endogenous controls in normal hu-
man liver samples. Moreover we show that the use of
U6 and RNU6B can lead to results that are highly
different from those obtained when alternate stably
expressed microRNAs are used as endogenous controls.

Methods

Study samples

50 human liver tissue samples (25 female, 25 male) were
obtained from University of Minnesota’s Biological Mate-
rials Procurement Network facility (BIONET). The liver tis-
sues used in this study were de-identified normal tissues
obtained from human subjects that had been flash frozen
and stored in liquid nitrogen. The research was carried out
in compliance with the Helsinki Declaration and the use of
the samples was reviewed and approved by University of
Minnesota IRB.
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Isolation of total RNA

Total RNA was isolated from frozen human livers using
the Mirvana miRNA isolation kit (Life Technologies,
Grand Island, NY) followed by additional enrichment for
RNA molecules of ~200 bp and less from the larger
RNA species according to the manufacturer’s recom-
mended protocol. Small RNA enrichment procedure al-
lows more sensitive small RNA detection with less
background as compared to the same assay used with
total RNA. Briefly, approximately 35 mg of frozen liver
tissue was homogenized in the lysis/binding buffer
(Ambion) using TissueLyser LT (Qiagen) for 3 min at 50
Hz. Organic extraction followed by enrichment procedure
for small RNAs was performed according to manufac-
turer’s protocol (Ambion). miRNA was eluted in 60 pl
RNase-free water and stored at —80°C. The RNA quality,
yield of each miRNA sample was obtained from A260
measurements using the NanoDrop 2000 (Thermo Fi-
scher Scientific Inc). The RNA integrity number (RIN)
was tested by using the Agilent 2100 Bioanalyzer (Agilent
Technologies).

microRNA reverse transcription

The isolated RNA was reverse transcribed using ABI
miRNA reverse transcription kit (Part Number: 4366596)
in combination with a multiplexed stem-loop primer pool
which allowed us to simultaneously reverse transcribe 22
miRNAs and endogenous controls. The stem loop design
ensured highly sensitive and specific amplification of ma-
ture microRNA targets [15]. The primer pool consisted of
primers for 22 microRNAs, U6 and RNU6B —with the
final concentration of each RT primer being 0.05 in a final
volume of 1000 pL. The 22 microRNAs selected for this
study were predicted (by Targetscan database) to have
binding sites in 3'UTR regions of hepatic drug metaboliz-
ing enzymes and had indication of hepatic expression
based on literature. Briefly 4.01 pl of total RNA was added
to each RT reaction mix consisting of 6pls of the RT pri-
mer pool, 0.3 ul ANTPs with dTTP (100 mM), 3 pl of
MultiScribe Reverse Transcriptase (50 U/uL), 1.5 pl of 10
RT Buffer, and 0.19 pls of RNase Inhibitor (20 U/uL) for a
total reaction volume of 15 pl. Reverse transcription was per-
formed at 16°C for 30 min, 42°C for 30 min followed by a
final reverse transcriptase inactivation step at 85°C for 5 min.

Real-time PCR amplification

We used custom designed 384 well TLDA (Tagman Low
density Array) cards for real time PCR amplification of our
microRNA targets and endogenous controls (U6 and
RNU6B). The TLDA Cards were prepared as described in
the TagMan Array User Bulletin (Part no. 4371129). For
each ¢cDNA sample, 24 candidates were profiled in dupli-
cate, allowing us to profile 8 samples per 384-well TLDA
plate. As our RNA vyields were >350 ng/4 pl we did not
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carry out pre-amplification. Briefly, 0.9 pl of RT product
was added to 56.25 pL of TagMan Universal Master Mix II,
No AmpErase® UNG (2) (Part Number: 4324018) and
55.35 pL of Nuclease-free water for a total reaction mix of
112.50 pL. 100 pl of this was loaded onto each fill reservoir
(corresponding to 2 lanes) of the TLDA plate. The TLDA
plates were loaded onto an 7900HT system and default
TLDA cycling conditions were used: 95°C for 10 min
followed by 40 cycles of 95°C for 15 s and 60°C for 1 min.
Following the reaction, the SDS 2.3 software was used to
analyze the runs and these were transferred to an RQ study
using Reference manager 1.2. The baselines and thresholds
were set manually following visual examination of each run
and raw Ct values were calculated. The RQ study output
was analyzed using Data Assist v3.01 software from Applied
Biosystems and Qbaseplus software from Biogazelle. Rela-
tive quantification was carried out using ddCT method
using a common calibrator sample. Replicates/wells with
Ct > 37 excluded.

Stability analysis of candidate endogenous controls

We used two computational programs Normfinder [16,17],
and GeNormplus [18] to compare and rank the candidate
endogenous controls (U6 and RNU6B along with other
microRNAs which could be used as candidate endogenous
controls) on the basis of their stability (least variability in
expression) in hepatic tissue. Along with U6 and RNU6B,
the microRNAs analyzed as candidate endogenous controls
included mir-152, mir-23b, mir-10a, mir-27a, mir-128a,
mir-200a, mir-138 and mir-9. GeNormplus is integrated
into Qbaseplus, which can be downloaded for a fully func-
tional 15-day trial from Biogazelle (http://www.biogazelle.
com/gbaseplus). Raw amplification (Ct) data from Refer-
ence Manager 1.2 was imported into Qbase plus for GeN-
ormplus analysis. For stability and relative quantitation
calculations, we used the option of calibrating the data to a
specified sample. Apart from the stability calculations
through the GeNormplus module, we also analyzed the
relative quantitation data when it was normalized to (1) U6,
(2) RNU6B and (3) geometric mean of mir-152 and mir-
23b. The Mann Whitney test was used to test for gender
differences between specific targets as a consequence of
normalization.

Normfinder is a freely available as an excel add-in at
the site: http://moma.dk/normfinder-software. As the
Normfinder software can only process data that is on a
linear scale, prior to analysis, we converted the Ct data
into linear values by defining a specific sample as a cali-
brator and calculating the RQ values for other samples
using the equation RQ = 2/ (CtSample-CtCalibraton) ‘g thege
calculations, the PCR efficiency was assumed to be
100%. As Tagman gene/microRNA expression assays are
extensively validated for comparable PCR efficiency
(which is reportedly close to 100%) and use the same
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amplification conditions, we felt that this was a reason-
able assumption to make. In addition to ranking the
genes based on their stability which is estimated using a
linear mixed effects model, the Normfinder algorithm
can also estimate both intra- and intergroup variance if
groups are specified. We used gender to specify groups
and analyzed variance within- and between male and fe-
male liver samples. As candidate microRNAs with a
large inter-group (Male—female) variation can impact
the stability calculations, we also re-evaluated the micro-
RNAs for their stability after eliminating the candidates
with large inter-group variation.

For both Qbaseplus and Normfinder calculations, we ex-
cluded replicates/wells with Ct > 37. A sample with missing
data had to be excluded from the Normfinder analysis.

Results

MicroRNA amplification in human liver tissues and initial
stability comparison using GeNormplus and Normfinder
We used a Custom TLDA card to amplify 22 micro-
RNAs and the 2 endogenous controls, RNU6B and U6
(Table 1) in normal human liver tissues from 50 subjects
(25 males and 25 females). All except 6 microRNAs
(mir-613, mir-583, mir-137, mir-499, mir-206, mir-141)
were amplified at appreciable levels. U6 (RNU6A) and
RNUG6B, two small nuclear RNAs that are frequently
used to normalize microRNA data, were amplified as en-
dogenous controls. To determine the suitability of U6
and RNUBG6B for use as reference controls in our analysis,
we next compared their stability (a measure of variation
in expression; high stability = low variation) with the sta-
bility of the microRNA targets amplified. We excluded
microRNAs with missing data (mir-1 and mir-135a)
from these stability calculations. Both GeNormplus and
Normfinder identified U6 as the least stable (most vari-
able) of all candidates analyzed (Figure 1A and Figure 1B
respectively). RNU6B did not fare much better, being
ranked 13™ of the 16 candidates analyzed for stability by
GeNormplus (Figure 1A) and 9™ by Normfinder analysis
(Figure 1B). mir-23b was identified as the most stable
candidate in GeNormplus analysis while it was 4™ most
stable in Normfinder rankings. Similarly mir-152 was
the most stable in Normfinder rankings and 2"¢ most
stable in GeNormplus rankings.

Estimation of Intergroup variation (between genders)

Eliminating candidates with large inter-group variation is
expected to improve the estimates of variance and
minimize the bias that any one target can have on out-
come of stability calculations. For this analysis Normfinder
was the program of choice as it allows the determination
of both inter-group (if groups are specified) and intra-
group variability. Normfinder uses a linear mixed effects
model to calculate inter and intra-group variation. Using
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Table 1 Details of microRNAs and endogenous controls profiled in this study

ABl assay ID  Assay name Mature microRNA sequence Drug metabolizing genes and associated transcription factors targeted by microRNA
(targetscan)
460 hsa-miR-135a  UAUGGCUUUUUAUUCCUAUGUGA CYP1B1, CYP4F2, NR3C1, NCOAT1, HNF4y, PPARa
1586 hsa-miR-613 AGGAAUGUUCCUUCUUUGCC CYP2C8, CYP1AT, HNF4q, SLCO1B1
2216 hsa-miR-128a  UCACAGUGAACCGGUCUCUUU CYP4F2, CYP2C9, CYP3A4, CYP3AS, CYP1A2, CYP2B6, HNF4y, NCOAT, NR3C1, PPARa, PPARy,
PPARGC1a, RXRa
470 hsa-miR-148a UCAGUGCACUACAGAACUUUGU CYP2B6, NR112, HNF4a, RXRa, NCOAT1, PPARa, PPARGCTa
399 hsa-miR-23a AUCACAUUGCCAGGGAUUUCC CYP2C18, CYP4F2, HNF4y, NCOR1, NCOA1, NCOA6, PPARa, PPARGC1a
426 hsa-miR-34a UGGCAGUGUCUUAGCUGGUUGU NR112, HNF4a, NCOR2, PPARq, PPARy, PPARS, RXRa
408 hsa-miR-27a UUCACAGUGGCUAAGUUCCGC NCOAT, CYP1B1, CYP3A4, CYP4F2, HNF4y, PPARa, RXRa, NR3C1
1129 mmu-miR-137  UUAUUGCUUAAGAAUACGCGUAG CYP3A4
409 hsa-miR-27b UUCACAGUGGCUAAGUUCUGC PPARy, HNF3y, RXRa
2218 hsa-miR-10b UACCCUGUAGAACCGAAUUUGUG Ncor2, PPARa
463 hsa-miR-141 UAACACUGUCUGGUAAAGAUGG CYP2C8, CYP2B6, CYP3A7, CYP3A4, CYP1B1, CYP2C18, NR3C1, PPARaa, PPARGCTa
400 hsa-miR-23b AUCACAUUGCCAGGGAUUACC NCOA6
473 hsa-miR-150 UCUCCCAACCCUUGUACCAGUG CYP4A11, CYP3A4, CYP2A6, CYP1B1, CYPTAT, NR3C1, PPARq, PPARS, PPARGC1a, HNF4a, NCORT1
475 hsa-miR-152 UCAGUGCAUGACAGAACUUGG NR1I2
510 hsa-miR-206 UGGAAUGUAAGGAAGUGUGUGG SLCO1B1
583 hsa-miR-9 UCUUUGGUUAUCUAGCUGUAUGA CYP1B1, RXRa, NR3C1, PPARq, PPARS, HNF4a, HNF4y, NCOA1, NCOR2
2284 hsa-miR-138 AGCUGGUGUUGUGAAUCAGGCCG CYP1AT1, CYPTA2, RXRa, NR3C1, PPARa, PPARS, NCORT, NCOA1
1050 hsa-miR-506 UAAGGCACCCUUCUGAGUAGA NR3C1, PPARa
502 hsa-miR-200a  UAACACUGUCUGGUAACGAUGU YY1
387 hsa-miR-10a UACCCUGUAGAUCCGAAUUUGUG HNF4y, NCOR1, NCOA6
2222 hsa-miR-1 UGGAAUGUAAAGAAGUAUGUAU SLCO1B1
1973 U6 snRNA GTGCTCGCTTCGGCAGCACATATACTAAAATTGGAACGAT
(NR_004394) ACAGAGAAGATTAGCATGGCCCCTGCGCAAGGATGACACGCAAA
TTCGTGAAGCGTTCCATATTTT
1093 RNUEB CGCAAGGATGACACGCAAATTCGTGAAGCGTTCCATATTTTT
(NR_002752)
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Figure 1 Stability values for the candidate controls analyzed using (A) GeNormplus, and (B) NormFinder. GeNormplus calculates the
average expression stability value M for each candidate, which is calculated as the average pairwise variation between the candidate and all the
other candidates. At each step the least stable candidate is excluded and M is recalculated until the most stable candidates are identified.
Normfinder uses a model-based approach to calculate the stability value of each candidate based on its inter- and intra group variance.
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gender to specify groups, we determined which candidates
had the highest inter-group variation between male and
female liver samples (Figure 2). In this figure the error
bars represent the average of the intragroup variation
and are also helpful as they provide a confidence inter-
val for the intergroup variation estimates. Of all the candi-
dates analyzed, mammalian U6 had the highest inter-group
and intra-group variability. This was very unexpected as
U6 is frequently used as an endogenous control for micro-
RNA expression analysis. U6 had by far the most skewed
expression of all candidates analyzed, being expressed at
higher levels in males compared to females. Several other
candidates were expressed differentially between male and
female livers including mir-150, mir-9, and mir-34a, these
miRNAs particularly showing more than 2 fold variation.
As the inclusion of such candidates with high inter-group
variability can bias the stability calculations and the selec-
tion of reference genes, they were excluded and the
remaining candidates reanalyzed for stability.

Choosing a stable endogenous control for RQ analysis

To avoid any bias due to microRNAs that might be
correlated in expression due to the fact that they belong
to same family, we analyzed only one microRNA per

family. This resulted in inclusion of mir-10a, mir-23b,
mir-27b, and exclusion of mir-10b, mir-148a, mir-23a
and mir-27a from further analysis.

An analysis of the best ranking candidates (RNU6B,
mir-10a, mir-23b, mir-27b, mir-128a, and mir-152) using
GeNormplus identified mir-23b as the most stable gene,
followed by mir-152, mir-27b and mir-10a respectively
(Figure 3A). Normfinder analyses also identified mir-152
and mir-23b as the two most stable candidates. Similarly
both the programs agreed on RNUG6B being the least
stable among these candidates. An analysis using GeN-
ormplus to identify the required number of endogenous
controls for our analysis identified this number to be
two, with a combination of mir-23b and mir-152 identi-
fied as the most stable of the reference candidates
(Figure 3B).

Impact of normalizer stability on relative quantification of
microRNAs

As U6 and RNU6B were identified as being among the
least stable of all the microRNAs/endogenous controls
analyzed, we next wanted to study the potential impact
of normalizing our data to U6 and to RNU6B versus
normalizing it to stable microRNAs.
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Figure 2 Inter-group variation (between genders) in expression of candidate endogenous controls as estimated using Normfinder. The
error bars represent the average of the intragroup variation and provide a confidence interval for the intergroup variation for each candidate.

Figure 4 shows the effect of normalization on mir-
150 levels (mean expression in males vs females)
when data is normalized to either U6 or RNU6B or a
combination of mir-152 and mir-23b, the two most
stable microRNAs. Normalization to a combination of
mir-152 and mir-23b identified females as having
a significantly lower mean mir-150 expression as
compared to males. Data normalization to RNU6B
decreased the magnitude of difference, but still indi-
cated females as having lower mir-150 levels than
males. Normalizing the data to U6, however, did not show
any difference among males and females with respect to the
expression levels of mir-150. In addition to miR-150 which

was the miRNA with most significant gender differences in
expression, we observed similar associations for mir-138 and
mir-34a where differences in expression levels between males
and females were significant (p = 0.002 and p = 0.04, respect-
ively) when data was normalized to a combination of mir-
152 and mir-23b, but not when RNU6B or U6 were used for
normalization. For mir-1, we observed significant gender dif-
ferences by all three normalization methods (p < 0.05 for all).
To further study the impact of normalizer variability
on relative quantitation of microRNA levels, we studied
the correlations between mir-10b expression levels and
other microRNAs when the data was normalized to U6,
RNUG6B or a combination of mir-152 and mir-23b.

2
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Figure 3 GeNorm plus was used to determine (A) the most stable candidate/s as ranked based on M value, and (B) the optimal

number of endogenous controls. A normalization factor NF is calculated for at least 2 candidates starting from the most stable pair and the
next most stable candidate/s are sequentially added to calculate additional NFs until the average pairwise variation between two sequential
normalization factors (V = NF/NF, .1, where n = number of controls used) falls below a set threshold (0.15).
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Figure 4 Effect of Normalization on microRNA expression.
Gender differences (Males > Females) are observed in mir-150
expression when data is normalized to a combination of mir-152
and mir-23b (geometric mean) but this effect is lost when data is
normalized to RNU6B or U6. Mann Whitney test was used to test for
significance of gender differences between mir-150 expression as a
consequence of normalization.

As shown in Table 2, when the data is normalized to
U6, mir-10b levels were highly correlated (r=>0.8) with
most of the targets analyzed. Normalization to RNU6B
still showed mir-10b as having high correlations to sev-
eral microRNAs, although the highest correlation was to
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mir-10a, a member of the same microRNA family.
Normalizing the data to a combination of mir-152 and
mir-23b however, identified only mir-10a as being highly
associated with mir-10b while mir-27b was additionally
identified as being negatively correlated to mir-10b.

We also looked at the correlation between RQ values
for mir-10b when the data was normalized to U6,
RNU6B or a combination of mir-152 and mir-23b. There
was little or no correlation in mir-10b levels between U6
and RNU6B normalized data (r =0.149) or between U6
and mir-152/mir-23b normalized data (r = -0.192), with
some correlation being observed between RNU6B and
mir-152/mir-23b normalized data (r=0.644). These re-
sults indicate that U6 or RNU6B are not adequte for use
as endogenous controls in liver tissue and that their use
can lead to misleading results and incorrect data
interpretation.

Discussion

microRNAs constitute an integral part of cellular gene ex-
pression machinery and microRNA mediated regulation
of gene expression represents a evolutionarily conserved
paradigm that is essential for the proper functioning of
each cellular/tissue type. Dysregulation of microRNA ex-
pression levels have been seen to be associated with a
number of human diseases and pathological conditions
[3-8]. The increasing use of microRNAs as biomarkers of
human disease states has led to an exponential increase in
microRNA expression profiling studies in recent years.

Although quantification of mature microRNAs presents
a number of challenges such as the small size of micro-
RNAs, sequence similarity between mature microRNAs
and precursor microRNAs etc., real time PCR techniques
(such as use of Tagman’s proprietary stem loop primers)
allow us to amplify mature microRNAs with high sensi-
tivity and specificity [15] and have thus become widely
established in current use. Real time PCR results are,
however, acutely dependent upon the normalization
strategy followed for obtaining accurate and reprodu-
cible results [12,13]. A common practice in real time
PCR data normalization has been the use of single en-
dogenous controls that are supposedly “invariant” in
expression across normal and/or diseased samples [14].
MicroRNA quantitation, however, so far suffers from a
lack of reference controls that have been standardized
for use in specific tissue types and several studies have
utilized small RNAs such as U6 or RNU6B as endogen-
ous controls [19].

With a goal of studying inter-individual variation and
gender differences in hepatic microRNA expression, we
carried out a microRNA expression profiling study in 50
human liver samples, with 25 male and 25 female sam-
ples. The candidates chosen for the study included
microRNAs with predicted binding sites in a set of
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Table 2 Correlations between mir-10b levels and other microRNAs when data is normalized to different

endogenous controls

Normalized to U6

Normalized to RNU6B Normalized to mir-152 and mir-23b

target x target y r*

hsa-miR-10b hsa-miR-10a 0.967
hsa-miR-10b hsa-miR-128a 0.856
hsa-miR-10b hsa-miR-138 0.834
hsa-miR-10b hsa-miR-148a 0922
hsa-miR-10b hsa-miR-150 0.803
hsa-miR-10b hsa-miR-23a 0939
hsa-miR-10b hsa-miR-27b 0.898

r* r*

0.939 0.748
0.741 0.041

0.59 0.231
0.824 0.205

067 0.343
0.717 0.304
0.712 —0452

*Pearson’s correlation coefficient.

hepatic drug metabolizing genes and associated tran-
scription factors. Mammalian U6 and RNU6B were in-
cluded as the potential endogenous controls.

To identify the best endogenous controls for use in
data analysis, we next evaluated the amplified candi-
dates for their stability (least variability) in expression
using Normfinder and GeNormplus, two commonly
used programs [20-22]. Normfinder uses a linear mixed
effects model for estimating the amplification variabil-
ity, and if groups are specified, provides estimates of
inter-group as well as intra-group variability for each
candidate. GeNormplus on the other hand, analyzes
each candidate for its pairwise variation with all other
candidates being analyzed. The candidate with the
highest average pairwise variation is eliminated sequen-
tially and the data recalculated for remaining candi-
dates at each step. A reiteration of this process is used
to identify the genes with the most stable expression.
To avoid any bias due to genes expressed differentially
between males and females, we excluded the genes identi-
fied by Normfinder to be having large male—female
variability. We also excluded microRNAs with missing
data and included only one microRNA per family. This is
especially important as GeNormplus calculates stability
based on pairwise variation and thus GeNormplus analysis
may be susceptible to artifacts when genes, which are
co-regulated (and hence, correlated in expression), are
analyzed [16].

Both Normfinder and GeNormplus identified U6 to be
among the least stable of all the candidates analyzed.
Based upon Normfinder analysis, U6 was in fact identi-
fied as the candidate with the most inter-group variation
(difference in expression between males and females; U6
was more highly expressed in males compared to fe-
males) and also the candidate with the most intra-group
variation (variation within male and female groups).
Normalizing the data to U6 would thus have indicated
all other candidates as having higher levels in females
than in males.

The GeNormplus analysis of all male and female livers
combined also identified U6 to be the least stable of all can-
didates analyzed. RNU6B, though not as variable as U6, was
also identified as being highly variable by both programs.

Both Normfinder and GeNormplus identified mir-152
and mir-23b as the two most stable candidates. An ana-
lysis using GeNormplus to identify the minimum num-
ber of endogenous controls required, identified this
number as two, with the combination of mir-23b and
mir-152 being the most stable. As mir-23b is much more
abundant than mir-152, it makes sense to take a geomet-
ric mean of both for data normalization.

As the use of variable controls such as U6 in data
normalization is likely to introduce added variability in
real time PCR results, we analyzed our data for the po-
tential impact of normalizing to U6 or RNU6B, and
compared the RQ results obtained to when the data was
normalized to a combination of mir-152 and mir-23b,
(the most stable pair identified by both Normfinder and
GeNormplus). Significant gender differences (females <
males) were observed in mir-150 expression when data
was normalized to mir-152 and mir-23b, but when not
data was normalized to U6. There was also little to no
correlation in the RQ results obtained when data was
normalized to U6 and when it was normalized to a com-
bination of mir-152 and mir-23b.

Normalizing to U6 (and RNU6B also) showed mir-10b
as having very high correlations (r>0.8) to all the other
microRNAs tested, which is highly improbable. However,
normalization to a combination of mir-152 and mir-23b
allowed us to discriminate more accurately between the
microRNA relationships and identified mir-10a as the only
microRNA with high correlation to mir-10b expression.
This correlation is both plausible and likely given that both
mir-10a and mir-10b belong to the same microRNA family
and microRNAs from the same family are significantly
more likely to be co-expressed [23]. At the same time, nor-
malizing to a combination of mir-152 and mir-23b also
allowed us to identify a negative relationship between mir-
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10b and mir-27b. Although we do not know the biological
relevance of this association, especially in context to hep-
atic compartment, inverse relationships of mir-10b and
mir-27b have been previously observed in other studies too
[24,25]. For example using a steatotic LO2 cell model,
Zheng et al. [24] demonstrated that mir-10b was up-
regulated, and mir-27b was down-regulated in non-
alcoholic fatty liver disease (NAFLD). Additionally, up
regulation of miR-10b and down-regulation of miR-27b
has been observed in oesophageal cancer [26].

Our results suggest that U6 which has been frequently
used as an endogenous control, is not an appropriate con-
trol when evaluating expression profiles of miRNAs in
liver. Although we identified mir-152 and mir-23b miR-
NAs as most stable and appropriate endogenous controls
for normalizing expression of hepatic miRNAs involved in
regulation of drug metabolizing genes, the relevance and
applicability of these findings to other disease conditions/
tissue types should be systematically evaluated before
making a decision on the choice of appropriate endogen-
ous controls. As a further expansion of this work, we are
planning to evaluate the utility of miR-152 and mir-23b as
endogenous controls in hepatic carcinoma samples.

U6 and RNU6B are commonly used as normalizing
genes in microRNA quantitation studies. Despite limited
evidence to suggest that they indeed demonstrate invari-
ant expression across normal tissues or disease samples,
U6 (as also RNU6B) continue to be used in large numbers.
A search for 2012 papers on Google scholar for “normalized
to U6” AND (hepatic OR liver) terms identified 163 papers.
We are not aware of any study that has tested the suitability
of U6 and/or RNU6B as endogenous controls in human liver
tissues. It is important to publish our findings as a large
number of pharmacogenomic studies focusing on microRNA
mediated regulation in the hepatic compartment continue to
use U6 and RNUG6B as endogenous controls.

Finally, an additional challenge presented by micro-
RNA quantitation is the relatively low amounts of the
microRNAs present. microRNAs are suggested to con-
stitute around 0.01-0.1% of the total RNA present and
the use of highly expressed endogenous controls such as
U6 will likely not follow similar amplification kinetics as
that of low abundance microRNAs. Hence, normalizing
the data to microRNAs instead of small RNAs can lead
to better results.

Conclusion

In conclusion we recommend that prior to their use as
endogenous controls, any candidate/s should be tested
for their stability. There are a number of freely available
programs that allow the assessment of reference genes
for stability. The use of U6 or RNU6B should be dis-
couraged for hepatic expression profiling studies as their
use can lead to incorrect conclusions/interpretations.
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