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Abstract

Background: Microarray-based comparative genomic hybridization (aCGH) is used for rapid comparison of genomes
of different bacterial strains. The purpose is to evaluate the distribution of genes from sequenced bacterial strains
(control) among unsequenced strains (test). We previously compared the use of single strain versus multiple strain
control with arrays covering multiple genomes. The conclusion was that a multiple strain control promoted a better
separation of signals between present and absent genes.

Findings: We now extend our previous study by applying the Expectation-Maximization (EM) algorithm to fit a mixture
model to the signal distribution in order to classify each gene as present or absent and by comparing different methods
for analyzing aCGH data, using combinations of different control strain choices, two different statistical mixture models,
with or without normalization, with or without logarithm transformation and with test-over-control or inverse signal
ratio calculation. We also assessed the impact of replication on classification accuracy. Higher values of accuracy have
been achieved using the ratio of control-over-test intensities, without logarithmic transformation and with a strain mix
control. Normalization and the type of mixture model fitted by the EM algorithm did not have a significant impact on
classification accuracy. Similarly, using the average of replicate arrays to perform the classification does not
significantly improve the results.

Conclusions: Our work provides a guiding benchmark comparison of alternative methods to analyze aCGH results
that can impact on the analysis of currently ongoing comparative genomic projects or in the re-analysis of published
studies.
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Findings
Background and purpose
This manuscript is an update of a previous work [1] on
the analysis of microarray based comparative genomic
hybridization (aCGH) using multistrain arrays. aCGH is
a tool used in the investigation of the genetic content of
closely related microorganisms and screening for viru-
lence factors [2,3].
The idea behind this technology is to generate micro-

arrays from sequenced genomes, and then hybridize
genomic DNA from other sources to these arrays. The
aim is to detect similarities and differences in genomic
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reproduction in any medium, provided the or
content through the characterization of test and control
samples given the genes common to both samples and
those that are specific to the control sample [2].
In two color aCGH experiments, the control sample

is composed of DNA from one or more strains with se-
quenced genomes represented in the array. The test strain
is composed of DNA from a non-sequenced strain. Each
sample is labeled with a different fluorochrome and
hybridized to the microarray [1].
The analysis of aCGH experiments aims to classify the

genes as present or absent. Many approaches have been
applied [2,4-7], but most of these methods base their
results on the logarithm of the intensity ratio (log-ratio
or LR = log2 (T/C)) of both fluorescent signals (test (T)
and control (C)). Genes present in both genomes will give
a clear fluorescence signal in both channels (LR close to
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0), and absent genes in the test sample are expected only
to have a signal in the control channel (negative LR).
Concerning the control used when arrays are designed

with multiple sequenced genomes, there is no consensus
about the best option. Some studies have used a single
strain control [8-11] while others adopted a mixed con-
trol approach [6,12]. Some of the studies argue that
a multi-strain mix control, while generating a control
signal for every spot on the microarray, leads to an in-
creased signal intensity of core genome spots (that rep-
resent genes present in all strains) in the control channel
and can complicate data analysis based on ratios [9,11].
In order to clarify these approaches, we previously per-
formed a comparative study with a multi-strain array for
Streptococcus pneumoniae [1], covering the genomes of
three sequenced strains: TIGR4 (T4), R6 (R6) and G54
(G54). We used two different controls: a single strain
(T4) and an equimolar mix of the three strains repre-
sented in the array (T4 + R6 + G54) and hybridized them
with the tests strains (R6 and G54). We concluded that
the use of a single strain control increases the error rate
in genes that are part of the accessory genome, where
more variation across unsequenced strains is expected,
justifying the use of the mix control. This conclusion
was derived from the comparison of the discriminatory
power of the LR values, using the known presence/ab-
sence classification for each gene. No statistical method
was used to estimate the best threshold LR value to div-
ide present from absent genes. This step is necessary in
the real application scenario, were the genome sequence
of the test strain is not available. The present work com-
plements our previous study by applying an expecta
tion-maximization (EM) algorithm to estimate the best
\threshold for the same experimental results. We will
re-validate our previous conclusions about the choice of
control and optimize several processing steps of mi-
croarray data analysis. In particular, we will evaluate the
impact of the logarithm transformation and the norma-
lization steps, which are common steps in analysis of
expression microarrays and in CGH analysis. We also wish
to test if using an inverse ratio (C/T instead of T/C or log2
(T/C)) provides better results with the EM algorithm. In
the traditional ratio the present signals distribute around 1
and the absent signals are compressed between 0 and 1.
The logarithm transformation alleviates this compression,
but we hypothesize that the two classes of signals can be
further separated if the C/T ratio is used.

Experimental data
Part of the data analyzed in this study was obtained with
a multi-strain Streptococcus pneumoniae CGH microar-
rays already analyzed in a previous study [1]. The array
was designed at PFGRC/JCVI (Streptococcus pneumoniae
Version 5), with 3425 oligonucleotide probes covering the
genomes of three pneumococcal strains: R6, T4 and G54.
Each probe was 70 base long and replicated four times
in each array. The annotation file provided by the array
manufacturer was used to define which gene, from any
of the three reference genomes, was represented by
which probe. For each different pair of test strain and
control, four replicates were done, resulting in a total of
16 hybridizations. The four different hybridizations were
R6 versus T4, R6 versus MIX (T4 + R6 +G54), G54 versus
T4 and G54 versus MIX (T4 + R6 + G54). Dye swaps
were applied in each set of four replicates. Microarray
hybridization raw data was deposited in the ArrayExpress
public database with accession number E-MEXP-1390.
The images of the microarrays were analyzed using

Feature Extraction 9.1 software (Agilent Technologies,
Palo Alto, CA). For each spot the signal was background
corrected by subtracting the minimum feature signal
in the array. The intensity-specific bias was removed
through loess global normalization. The resulting spot
average pixel intensities were used to compute several
signal ratio measures: the test/control signal ratio (T/C)
and the corresponding logarithm signal ratio (log (T/C)),
and the control/test signal ratio (C/T), before and after
normalization. Since each gene was spotted four times per
array, data retrieved from each of the valid spots were
averaged for a particular gene.
Additional data analyzed in this study was obtained

from a published dataset [2] using a Staphylococcus aureus
array (PFGRC/JCVI Staphylococcus aureus Version 5). Raw
data files were imported from ArrayExpress (E-MEXP-
2007). The hybridizations with a test strain represented
in the array design were selected. This selection allowed
the definition of which gene was present or absent in
the test sample by using the information available in the
array annotation files provided by the manufacturer. All
the hybridizations used a single strain control. The ana-
lysis was conducted using only the probes representing
a gene present in the control sample. Raw data files
were generated by GenePix image analysis software. For
each probe, the F633 median and F532 median were
used to define the T and C signals.
Instead of hybridizations where the test strain is se-

quenced, we could have tested the different analysis
methods with microarray results of genes that were con-
firmed by PCR assays. Although these assays are com-
mon in published studies, they are not well suited for
our purpose. In each dataset the number of genes con-
firmed with PCR is normally low. We would have to
analyze a high number of experiments to achieve a reason-
able statistical confidence on the results. Additionally,
PCR results may disagree with microarray result, even if
both are physically correct. If the array is based on short
oligos, that sequence can be conserved while the regions
targeted by the PCR primers can be divergent (or the
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other way around). Moreover, the selection of genes for
PCR verification is not random. Genes can be selected
because they are biologically more interesting, or be-
cause they are more likely to confirm the microarray re-
sults. This bias would make it more difficult to see any
accuracy differences between C/T and T/C ratios using
genes verified by PCR.

Multi strain spot signal correction
The Streptococcus pneumoniae microarrays were designed
with three reference strains. The control sample can be a
mixture of DNA of the same three strains. Thus, the mi-
croarrays where the samples are hybridized contain se-
quences that identify genes in one strain (group 1), two
strains (group 2) or three strains (group 3). According to
our previous study [1] when the mix control is used and
the gene is present in the test strain, it is expected that the
ratio of intensities T/C should be 3 if the gene is present
in one strain (group 1), 3/2 if the gene is present in two
strains (group 2) and 1 if the gene is present in three
strains (group 3). When the gene is absent of the test sam-
ple, it is expected that T/C reach values close to 0. So we
chose to analyze corrected T/C values by multiplying the
factors, 1, 2/3 or 3, according to each gene group (1, 2 or
3, respectively). To obtain C/T corrected values the inverse
factors are applied. When the single strain (T4) control is
used, there are also two groups of spots: some contain
sequences that identify T4 genes (group 1) while others
contain sequences that do not identify T4 genes (group 2).
In this case we only need to correct the signal for the
group 2. Here, to calculate the signal ratio, the value of C
is exchanged by a surrogate value that is the average of the
C values for group 1 spots. All these corrections allow the
application of the same classification algorithm to all spots
in the array.

Present/absent classification
For each different signal ratio measure we applied the
Estimation-Maximization (EM) algorithm to fit mixture
models and to classify genes as present or absent. A
mixture model is a convex combination of probability
distributions that allows modeling data sets composed
by different subsets, each of which is modeled by its
own distribution. The mixture models used in this study
were: the Normal-Uniform (NU) model and Gamma-
Gamma (G) model. The first considers that signal ratios
from present genes are shaped by the Normal distribution,
while the missing genes are modeled by the Uniform
distribution [13]. The Gamma-Gamma mixture model
assumes that the signal ratio follows a Gamma distribu-
tion both for present and for absent genes, although
with different parameters [14].
The EM algorithm is an efficient tool in the estimation

of mixture model parameters and classification of each
gene in one of two distinct groups. Iteratively, it finds the
parameters of both distributions in the mixture model that
maximize the likelihood of obtaining the given observa-
tions. At each step it computes for each gene the probabil-
ity that it belongs to the present gene distribution. After
the algorithm converges to a stable parameter set, each
gene is considered present if the probability that it belongs
to the present gene distribution is greater than 0.5.
In this work the EM algorithm successfully converged

in all occasions. The G model was not fitted to log(T/C)
ratios because they present negative values, for which
the Gamma distribution is not defined. Log(C/T) ratios
were not evaluated because they have the symmetrical
value of the log(T/C) ratios. As such, similar but sym-
metric fits would be expected for both ratios, yielding
the same classification accuracies.

Evaluation of classifications
The produced classifications were compared with the
known classification. For each classification we identi-
fied each gene as a true positive (TP) or true negative
(TN) if the EM classification agreed with the known
genome, and as a false positive (FP) or false negative
(FN) if the EM classification did not agree. A gene is
considered positive (either TP or FP) when the EM clas-
sification predicted that gene to be present. With the
number of TP, TN, FP and FN we can calculate the ac-
curacy (Acc), that is, the proportion of correct results.

Acc ¼ TPþ TN
TPþ TNþ FPþ FN

To compare the results obtained with the mix and the
single strain control, Wilcoxon rank sum tests for inde-
pendent samples were used to detect significant differ-
ences in the respective average accuracies, obtained from
8 independent arrays for each control choice. To compare
the results obtained with different signal ratios of mixture
models, Wilcoxon signed rank tests for paired samples
were used, since the variant methods were applied to the
same replicate arrays. Differences were considered signifi-
cant when p <0.05.

Results
Figure 1 shows the accuracy values for the pneumococ-
cal arrays. The combinations of methods that have been
tested were ordered according to the mean accuracies
achieved. The highest accuracies were obtained with
the mixed strain control, using the C/T ratio without
normalization or logarithm transformation and fitting
a normal-uniform mixture model.
To compare the performance of both control types,

the best analysis options for each kind of control were
used. The mixed strain control (with C/T ratio, NU model
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Figure 1 Accuracy for the methods of analysis applied. Each dot represents one Streptococcus pneumoniae array. The left plot represents the
8 arrays using the TIGR4 control, and the rights plot the 8 arrays using the mix control. The bottom boxes along the x-axis identify the different
combinations of methods tested: the mixture model is either based on the Gamma distribution (Gamma) or in the Normal and Uniform distributions
(Norm./Unif.); ratios can be normalized with the loess procedure (Normalization); and the signal ratio can be Test over Control signal (T/C), logarithm of
the Test over Control (Log(T/C) or Control over Test (C/T). The order of the different method combinations is defined by the resulting mean accuracy.
Each method combination was applied to all the 16 arrays.

Cardoso et al. BMC Research Notes 2014, 7:148 Page 4 of 8
http://www.biomedcentral.com/1756-0500/7/148
and without normalization) reaches accuracies that are
on average 0.05 superior (p < 0.001) to the single strain
control (with normalized C/T ratio and NU model). This
accuracy difference may translate in more 50 to 350 cor-
rectly classified genes, considering bacterial genomes with
1000 to 7000 genes.
The impact of normalization and the mixture model

choice are not clear from the analysis of Figure 1. Re-
sults obtained with respect to the mixture model used
are contradictory when the ratio is C/T or T/C. NU
mixture model performs better with C/T ratios, while G
mixture model produces higher accuracies when applied
to T/C ratios.
The choice of the ratio has a clear impact in the

resulting accuracies. Independently of the control type,
C/T ratios perform better than T/C ratios, and log(T/C)
ratios present intermediate accuracies (Figure 1). To
confirm this pattern, we re-analyzed a set of 6 CGH
hybridizations where genomic DNA from sequenced
Staphylococcus aureus strains was hibridyzed with a
S. aureus microarray using a single strain control. Al-
though these arrays are also based on 70-mer probes,
they were designed for a different species and analyzed
with different image analysis software. Figure 2 shows
for each of the 16 pneumococcal, plus the 6 S. aureus
microarrays the accuracies obtained by using the T/C, Log
(T/C) or C/T ratio. The pattern observed in Figure 2 is ex-
tremely consistent across arrays. The C/T ratios lead to
0.05 average increase in accuracy (p < 0.001) when com-
pared with the Log(T/C) ratio applied to the same array.
To understand the impact of the ratio choice in the

mixture model fit, we analyzed the distribution of ratio
values in one of the pneumococcal arrays (Figure 3). It is
possible to observe that if the gene is present in the test
strain (T ≠ 0), all the three ratios can be represented in
terms of location by Normal distributions and, in the
case of T/C and C/T ratios, by Gamma distributions.
However, the fitted distributions show more dispersion
than the histograms, not achieving sufficiently high
densities in the distribution peaks. The Normal distribu-
tion does not fit to any ratio distributions when the gene
is not present in the test strain (T = 0). T/C and C/T ra-
tios are better described by Gamma distributions when
T = 0. This observation would predict better accuracies
for the G mixture model with the T/C and C/T ratios.
This prediction is correct for the T/C ratio, but the NU
model leads to higher accuracies for the C/T and Log
(C/T) ratios (Figure 1). The distributions of these two ra-
tios when the T = 0 do not appear to be uniform. However,
when compared with the corresponding distributions
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Figure 2 Array-wise accuracy values with different signal ratios. The blue bars correspond to Test over Control ratio (T/C), green bars to the
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Figure 3 Histograms of signal ratio values. A and D represent histograms of the Test over Control ratio (T/C) values. B and E represent
histograms of the logarithm of the Test over Control ratio (Log(T/C) values. C and F represent histograms of the Control over Test ratio (C/T) values. A, B
and C histograms were drawn with ratio values of probes where the gene was absent in the test sample. D, E and F histograms were drawn with ratio
values of probes where the gene was present in the test sample. Red lines are best fits of a Normal distribution to the drawn histogram. Blue lines are best
fits of the Gamma distribution to the corresponding histograms. Due to the negative values of some Log (T/C) ratios, it was not possible to fit a Gamma
distribution to the histograms in B and E. All the histograms where based on one Streptococcus pneumoniae microarray using the mix control.
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when T ≠ 0, they have much lower densities across a much
larger range of values. This might explain the success
of the NU model with C/T and Log (T/C) ratios. When
T = 0, the distribution of T/C presents high densities,
comparable with the densities of the T/C distribution
when T ≠ 0. Additionally, for T = 0, the T/C values range
from 0 to 1, presenting a large overlap with the T/C dis-
tribution when T ≠ 0. It is possibly this overlap that is
responsible for the lower accuracies obtained when the
T/C ratio is used.
Aiming to quantify the advantage in averaging replicate

arrays, we combined the four available replicates of each
hybridization into the possible sets of 2, 3 or 4 replicates
and evaluated the accuracy of the resulting classifications,
shown in Figure 4. In this evaluation we used the C/T ra-
tios with the NU mixture model, as this option produced
the best results without replication. Although there is a
small increment in accuracy due to replication, no signifi-
cant difference is found, justifying the use of just one or
two replicates per sample in this particular application.

Discussion
Other authors [2,3] have previously recognized that some
methods applied to analyze aCGH experiments were
inherited from microarray gene expression analysis, with-
out specifically evaluating their adequacy for aCGH data.
Our results highlight this problem, showing that loess
normalization generally has no significant impact in gene
classification as present or absent.
Logarithm transformation also has a negative impact

when compared with the C/T ratio. In the analysis of
gene expression, the aim is to identify genes that are
either over or under expressed. The logarithm trans-
formation is useful to make both types of changes quan-
titatively comparable. In aCGH experiments applied to
bacterial genomes, genes are either present or absent
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Figure 4 Accuracy obtained with replicate averaging. The blue
(red) dots correspond to accuracies of different arrays or combinations
of replicate arrays using the mix control (TIGR4 control). The blue (red)
line represents the evolution of the mean accuracies with increasing
replicate numbers for the mix (TIGR4) control.
(which includes genes with divergent sequences). The
use of the C/T ratio expands the signal scale in the most
interesting range for this type of analysis, facilitating the
statistical segregation of signal distributions between
present and absent genes. We should note that using
the C/T ratio instead of log(T/C) (or of T/C ratio) only
reverses the order of observed gene signals, without
ranking changes. This implies that the optimal threshold
separating present and absent genes with all three ratio
variants will produce the same maximum accuracy. What
changes is the capacity of the EM algorithm to adjust the
mixture model to the available data, leading to better re-
sults with the C/T ratio. Previous studies have showed that
fitting mixture models to aCGH data provided better re-
sult than several other methods [7,15]. Their comparison
was based in the use of log(T/C) ratios. Our study reveals
that the success of mixture model fitting in aCGH analysis
can be improved with the use of the C/T ratio.
The present results also confirm our previous study

[1], in which the advantages of the use of a mix control
were first observed. We believe that the presence of a
present signal in the control channel of all the spots in
the array is important for the resulting classification
obtained through the fitting of a mixture model to the
observed C/T signal ratios. The choice of a mix or a sin-
gle strain control is posed when working with arrays rec-
ognizing genes from multiple genomes. As the number
of available genome in the array increases, the mix con-
trol may loose its superiority, as genes that are only
present in one of the reference genomes will have an
increasingly weak control signal, approaching 0. Other
authors [2] have presented alternative methods for the
analysis of bacterial aCGH experiments that use the
signal distribution of the control channel independ-
ently of the test channel. These methods apparently
reduce the need for a mix control. Nevertheless, our
work shows that the mix control performs significantly
better with an array designed for three reference ge-
nomes and analyzed with a mixture model approach.
Nowadays, comparative genomic studies in bacteria

are migrating from the microarray technology to high
throughput sequencing methods. This happens due to
the decreases in the costs associated with sequencing, but
also due to a gain in information: from present-absence
status to a detection of diverging sequences. Still, some
ongoing projects keep using microarrays, justifying the
usefulness of the methodological comparison we are pre-
senting [16-22]. Furthermore, our conclusions about the
impact of the C/T ratio can justify the re-analysis of many
already published and publicly available datasets, as we
have demonstrated by analyzing the S. aureus arrays.
Our results must be interpreted taking into account

some limitations of our study. We tested arrays from
two species using a similar array design strategy and
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manufacturer. Additionally, only one normalization algo-
rithm and two different mixture models were compared.
Although we are confident that the observations are
sufficiently general to apply in other contexts, we cannot
anticipate the effect of different genomes, microarray plat-
forms, normalization procedures or mixture models using
different distributions. We could, for example, expand our
study to include a higher number of different organisms,
in order to generalize our conclusions. The advantages of
the C/T ratio are not necessarily valid for every organism.
Nevertheless, as our study shows that for two species the
choice of ratio has a significant impact in classification
accuracy, we can conclude that, when working with a
different organism, it is worthy to conduct a similar
study to optimize the signal ratio used for analysis.
Two aCGH analysis problems were not approached in

our work. One is the detection of multiple gene copies.
If there are more copies of a given gene in the genome
of control strains than in the test strains, the gene can
be erroneously classified as absent. From the array de-
sign it should be possible to identify probes targeting
genes with multiple copies in the control strains, and
perform a separate analysis in case they where classified as
absent. Probes with a single copy in the control strains
and multiple copies in the test strain will most likely be
classified as present. A subsequent analysis of probes
classified as present can be developed to quantify the
number of copies, but it is expectable that as the copy
number grows, there should be saturation in the fluor-
escence signal.
The second analysis problem is the quantification of

sequence divergence. Our analysis returns a probability
of gene presence in the test strain. When that probability
has intermediate values (around 0.5), one can suspect of a
divergent gene. However, the same values can be equally
originated by excessive noise. Even if there are very low
noise levels, a sequence divergence determined by micro-
array just implies a sequence difference along the region
targeted by the microarray probe. The remaining sequence
of the gene can be highly conserved or highly divergent.
The method proposed by Snipen and colleagues [2] uses
the signals from the control channel to adjust a quanti-
tative function relating sequence divergence and signal
intensity. Although this method gives a quantitative an-
swer to this problem, it is still affected by the noise
levels and by the diversity of divergent sequences in the
control sample. Sequencing studies provide a better
approach to detect and quantify divergent regions.

Conclusions
We performed a comparison of several alternative methods
to analyze bacterial aCGH datasets. All alternatives had in
common the use of the EM algorithm to adjust a mixture
model to the observed signal distributions. The results
validated a previous study advocating the use of a strain
mix as a control in aCGH experiments with multi-genome
arrays, instead of a single strain control. Additionally, we
found that loess normalization or the choice of mixture
model distributions did not have a clear impact on the re-
sults. The method variant that induced a greater improve-
ment in achieved classification accuracies was the use of a
control-over-test signal ratio, which is the inverse of the
ratio traditionally used to analyze this type of results.
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