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Abstract

Background: Japanese amberjack/yellowtail (Seriola quinqueradiata) is a commonly cultured marine fish in Japan.
For cost effective fish production, a breeding program that increases commercially important traits is one of the
major solutions. In selective breeding, information of genetic markers is useful and sufficient to identify individuals
carrying advantageous traits but if the aim is to determine the genetic basis of the trait, large insert genomic DNA
libraries are essential. In this study, toward prospective understanding of genetic basis of several economically
important traits, we constructed a high-coverage bacterial artificial chromosome (BAC) library, obtained sequences
from the BAC-end, and constructed comprehensive female and male linkage maps of yellowtail using Simple
Sequence Repeat (SSR) markers developed from the BAC-end sequences and a yellowtail genomic library.

Results: The total insert length of the BAC library we constructed here was estimated to be approximately 11
Gb and hence 16-times larger than the yellowtail genome. Sequencing of the BAC-ends showed a low fraction of
repetitive sequences comparable to that in Tetraodon and fugu. A total of 837 SSR markers developed here were
distributed among 24 linkage groups spanning 1,026.70 and 1,057.83 cM with an average interval of 4.96 and
4.32 cM in female and male map respectively without any segregation distortion. Oxford grids suggested conserved
synteny between yellowtail and stickleback.

Conclusions: In addition to characteristics of yellowtail genome such as low repetitive sequences and conserved
synteny with stickleback, our genomic and genetic resources constructed and revealed here will be powerful tools for
the yellowtail breeding program and also for studies regarding the genetic basis of traits.
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Background
Species of yellowtail (family Carangidae) are widely distrib-
uted in the world’s ocean and are major target species for
fisheries and aquaculture. The Japanese amberjack/yellowtail
(Seriola quinqueradiata) is one of the most popular fish for
consumption in Japan, where about 150,000 tons of farmed
fish are produced each year. Although there is a huge mar-
ket demand, seeds of this fish mostly rely on wild catch and
hence artificial seed production is required for stable cultiva-
tion and breeding as well as reducing the negative effects of
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large-scale sampling of seed fish on natural stock. It is well
known that using cultured brood fish for seed production
reduces the environmental impact and allows the selection
of commercially important traits and in such a case,
marker-assisted selection (MAS) breeding based on studies
regarding quantitative trait locus (QTL) is powerful and cost
effective choice. Indeed, QTL studies have been performed
in several fishes so far to improve production and life-
history traits such as disease resistance and enhance growth
rate [1]. To enable the QTL studies, linkage maps are re-
quired. In yellowtail, although a female linkage map has
been constructed with 180 microsatellite markers [2,3], the
number of markers is not sufficient for fine QTL mapping
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Table 1 Repeat content of the yellowtail BESs

Number of
elements

Length
occupied (bp)

% of sequence

Retroelements 284 60380 1.96

SINEs: 57 6098 0.20

Penelope 6 1229 0.04

LINEs: 124 28193 0.92

L2/CR1/Rex 81 16689 0.54

R1/LOA/Jockey 2 112 0.00

R2/R4/NeSL 7 1703 0.06

RTE/Bov-B 24 6124 0.20

L1/01 N4 6 2453 0.08

LTR elements: 103 26089 0.85

BEL/Pao 19 9346 0.30

Ty1/Copia 1 629 0.02

Gypsy/DIRS1 65 14242 0.46

Retroviral 4 881 0.03

DNA transposons 281 40242 1.31

hobo-Activator 73 5609 0.18

Tc1-IS630-Pogo 96 20720 0.67

PiggyBac 13 1887 0.06

Tourist/Harbinger 11 1349 0.04

Unclassified: 15 1165 0.04

Total interspersed
repeats:

101787 3.31

Small RNA: 69 21563 0.70

Satellites: 12 1797 0.06

Simple repeats: 1842 76925 2.50

Low complexity: 237 11293 0.37
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and/or MAS in yellowtail breeding programs. Therefore, a
higher-density linkage map is still required.
To isolate simple sequence repeats (SSRs) such as

microsatellites and to further investigate the genetic
basis of the traits, genomic information is essential. The
sequences were isolated from genomic library and of the
genomic library, one using bacterial artificial chromo-
some (BAC) system, called the BAC library, has been
frequently used such as to generate whole-genome phys-
ical maps by DNA fingerprinting [4], to develop sequence-
tagged connectors [5], and to sequence the genome itself
[6] because of their insert size capacity, reproducibility and
stability as the DNA sample [7]. By integrating BAC clones
into linkage maps using BAC-derived sequences such as
BAC-end sequences (BESs), BAC library also play import-
ant roles in genetic studies and subsequent positional clon-
ing [8]. BAC libraries have been developed in several
domestic animals, e.g. cattle [9], pig [10] and sheep [11],
and in fishes, salmon [12], catfish [13], rainbow trout, carp,
tilapia [14,15], European sea bass [16,17] and barramundi
[18] but in yellowtails a BAC library has not yet been
constructed.
In this study, to advance yellowtail genomic and gen-

etic resources and for understanding of the genetic basis
of several traits, we constructed a high-coverage BAC li-
brary, obtained BESs for preliminary survey of the gen-
omic content and constructed comprehensive genetic
linkage map of yellowtail.

Results and discussion
BAC library construction and BAC end sequencing
The yellowtail genomic DNA content, represented as
C-value, was estimated to be 0.7 pg/cell (data not
shown) using flow cytometric analysis and hence the
genome size was calculated to be approximately
685 Mb. Of 100 randomly selected BAC clones, 71
(71%) contained inserts, indicating that approximately
78,520 (71% of 110,592 clones) clones had an insert.
The size distribution of the 71 clones with inserts was
from about 20 kb to 220 kb and average insert length
was 140.7 kb (data not shown). Therefore, it is estimated
that the total length of the yellowtail BAC library insert
DNA was approximately 11 Gb and was 16-times larger
than the yellowtail genome. It is known that a minimum
of 5-10 × coverage across the entire genome is required
for a BAC library to be useful for positional cloning, phys-
ical mapping, and genome sequencing [19]. Therefore, the
yellowtail BAC library is sufficient for further genomic/
genetic analysis except for studies regarding W-linked
genes because of our ZZ male derived DNA source [20].
By sequencing both ends of randomly-selected 2,960

BAC clones, a total of 5,920 raw reads were obtained,
and of those reads, 4,956 reads (2,471 in the SP6 side
and 2,485 in the T7 side) were qualified for subsequent
repeat identification and BLAST search (GA867436 -
GA872391). Total length of the qualified BESs was
3,074,133 bp with an average size of 620 bp, represent-
ing approximately 0.45% of the yellowtail genome. The
GC content was estimated to be 41.36%, which is almost
the same as other fishes (Takifugu rubripes: 45.46%;
Gasterosteus aculeatus: 44.60%; Oryzias latipes: 40.46%;
Tetraodon nigroviridis: 46.43%) (http://esper.lab.nig.ac.jp/
genome-composition-database/).

Preliminary survey of genomic content using BESs
Repeat content
The repeat elements were searched and screened from
the qualified BESs. Total 211,184 bp (6.87%) of the
qualified BESs are assigned to the repeat elements, of
which 60,380 bp (1.96%), 40,242 bp (1.31%), 21,563 bp
(0.70%) and 76,925 bp (2.50%) were classified as retroe-
lements, DNA transposons, small RNA and simple re-
peats, respectively (Table 1). Assuming that the BAC
library represents the genome of target specie, the
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abundance of the repetitive sequence in yellowtail gen-
ome is lower than the majority of teleost fishes studied
so far such as rainbow trout (59.5%) [21], common
carp (17.3%) [15], channel catfish (11.9%) [22] and Nile
tilapia (14.0%) [23] and comparable to that in Tetrao-
don (6.2%) and in fugu (4.3%) [24].
A total of 1,845 simple sequence repeats (SSRs) were

identified from the BESs (Table 1). Of the SSRs, di-
nucleotide repeats, particularly AC/GT repeats including
CA/TG repeats, were the most abundant (Table 2).

Homology to other teleost genomes
To identify the homology between yellowtail and other
fishes, the yellowtail qualified BESs were subjected to
BLASTx and BLASTn searches against eight teleost pro-
teomes and genomes respectively. The highest number
of top hits, highest average bit score and % identity were
observed in yellowtail-Nile tilapia in both BLAST results
(Table 3). Total length of the queries in BLASTx hits be-
tween yellowtail and Nile tilapia was estimated to be
198,090 bp indicating that 6.4% of the qualifed BESs was
protein coding sequence. The high sequence similarity
between yellowtail and Nile tilapia can be explained by
their phylogenic positions where they are both assigned
Table 2 SSR distribution in the yellowtail BESs

Repeat Type Number

Monomer A/T 234

G/G 12

Dimer AC/GT 589

AG/CT 116

AT/AT 75

Trimer AAT/ATT 64

AGC/GCT 29

AAC/GTT 20

ATC/GAT 20

CTC/GAG 20

AGG/CCT 16

Others 41

Tetramer AAAT/ATTT 48

AAAC/GTTT 28

AGAT/ATCT 25

ACAG/CTGT 16

Others 145

Pentamer 132

Hexamer 141

Heptamer 63

Octomer 5

Nanomer 5

Decamer 1
in the order Perciformes [25]. In the BLASTn result, the
second-highest number of top hit was observed in the
yellowtail-stickleback comparison (Table 3). The high se-
quence similarity between stickleback and species in Per-
ciformes such as striped bass and gilthead seabream has
been reported and therefore our data is consistent with
the previous observations [26,27].

Genetic linkage map
Out of the 743 primer pairs designed from the qualified
BESs, 373 primer pairs (27 mononucleotide repeats, 285
dinucleotide repeats, 31 trinucleotide repeats, 26 tetra-
nucleotide repeats, 3 pentanucleotide repeats and 1 hex-
anucleotide repeat) produced amplicons. In addition to
the 464 microsatellite markers derived from the genomic
library Ohara et al. developed [2,3], 837 markers in total
were included in the yellowtail genetic linkage maps
(Additional file 1). No segregation distortion was ob-
served in any markers and hence lethal allele-linked
markers were not included in our marker set.
Resultant yellowtail female and male genetic map con-

sists of 715 and 702 markers including 232 and 271
framework markers, spanning 1,026.65 and 1,057.83 cM
Kosambi with an average interval 4.96 and 4.32 cM on
24 linkage groups respectively (Table 4, Figure 1). The
number of chromosomes in yellowtail has been reported
to be 2n = 48 and hence the SSR markers we developed
are distributed throughout the yellowtail genome [28].
The “gaps” observed in Squ21 and 24 in male and both
map respectively might be caused by “recombination
hot-spots” where recombination occurs frequently (Figure 1).
The genome length was estimated to be 1,274.64 (L1) and
1,284.34 (L2) cM in the female and 1,282.35 (L1) and
1,285.45 (L2) cM in the male map by the two different
methods respectively (see Materials and Methods). Using
formula c= 1 – e-2dn/L and estimated genome length L,
coverage of the female and male map is estimated to be 83.3
to 83.9% respectively (Table 4). Considering the average
interval less than 10 cM and the genome coverage, we con-
cluded that the yellowtail genetic map was sufficient for fur-
ther QTL studies [29].

Identification orthologous chromosomes with other fishes
In addition to the BAC or whole genome sequence,
comparative genome analysis especially conserved syn-
teny would be helpful for fine-scale QTL analyses and/
or understanding the genetic basis of the traits [30,31].
BLAST searches of the 818 mapped yellowtail loci
against medaka, Tetraodon, stickleback, fugu and zebra-
fish proved that 25.7, 23.0, 42.2, 24.4 and 9.4% of the loci
were mapped to each genome sequence. Oxford grids
showed that eighteen linkage group pairs between
yellowtail and stickleback retained a one-to-one relation-
ship, and another three stickleback and six yellowtail



Table 3 Summary of BLAST searches of the yellowtail qualified BESs against eight fish genomes and proteomes

BLASTx BLASTn

Species No. of top hits E-value* Bit score* % identity* No. of top hits E-value* Bit score* % identity*

Atlantic cod 630 2.2E-11 99.1 75.6 720 2.7E-11 125.5 88.8

Medaka 672 1.7E-11 102.7 77.2 1,122 1.6E-11 145.6 88.9

Nile tilapia 768 1.8E-11 1085 80.8 2,162 1.2E-11 172.7 90.0

Platyfish 714 1.9E-11 105.4 77.8 1,339 1.5E-11 147.5 89.2

Tetraodon 670 1.6E-11 104.2 77.6 891 1.5E-11 144.9 89.0

Stickleback 704 2.0E-11 107.1 80.4 1,718 1.8E-11 160.4 89.8

Fugu 695 2.1E-11 106.8 78.6 1,136 3.4E-11 131.3 89.6

Zebrafish 640 2.8E-11 98.8 72.5 361 4.2E-11 114.4 87.7

*Average value of the tophits.

Table 4 Summary of the yellowtail genetic map

Female map Male map

No. of markers Genome length No. of markers Genome length

All Framework Length (cM) L1 (cM) L2 (cM) All Framework Length (cM) L1 (cM) L2 (cM)

Squ1 33 11 48.19 58.11 57.83 34 15 49.28 57.91 56.32

Squ2 49 14 49.27 59.19 56.85 48 18 43.45 52.09 48.56

Squ3 29 10 40.17 50.09 49.10 29 18 54.97 63.60 61.43

Squ4 28 9 42.82 52.74 53.52 25 3 5.57 14.20 11.14

Squ5 38 9 59.51 69.43 74.39 39 17 50.24 58.87 56.52

Squ6 30 5 50.31 60.23 75.47 23 11 42.62 51.26 51.15

Squ7 29 14 50.66 60.58 58.45 32 11 40.41 49.04 48.49

Squ8 26 8 54.83 64.75 70.49 23 12 51.60 60.24 60.99

Squ9 37 10 30.22 40.14 36.94 36 10 52.89 61.53 64.65

Squ10 35 7 40.60 50.52 54.13 36 7 28.60 37.24 38.14

Squ11 10 1 0.00 9.92 0.00 11 6 59.19 67.82 82.86

Squ12 26 12 26.74 36.66 31.60 27 10 52.09 60.73 63.67

Squ13 26 10 48.03 57.95 58.71 25 10 42.63 51.27 52.10

Squ14 34 9 56.36 66.28 70.45 33 11 45.39 54.02 54.47

Squ15 35 14 37.23 47.15 42.96 36 11 55.44 64.07 66.52

Squ16 25 8 36.12 46.04 46.44 27 14 51.66 60.29 59.61

Squ17 20 10 40.32 50.24 49.28 22 7 44.55 53.18 59.39

Squ18 37 10 45.12 55.04 55.15 33 13 57.00 65.64 66.51

Squ19 30 9 40.52 50.44 50.65 26 14 58.45 67.08 67.44

Squ20 22 9 51.21 61.13 64.01 24 10 40.38 49.02 49.36

Squ21 29 12 44.90 54.82 53.06 3 2 1.11 9.75 3.33

Squ21′ N/A N/A N/A N/A N/A 25 5 7.78 16.42 11.68

Squ22 26 12 45.87 55.79 54.21 26 11 54.03 62.67 64.84

Squ23 25 7 41.67 51.59 55.56 26 10 44.03 52.67 53.82

Squ24 4 4 15.67 25.59 26.12 29 11 17.79 26.42 21.34

Squ24′ 32 8 30.31 40.23 38.97 4 4 6.68 15.31 11.13

Average 29 9 41.07 50.99 51.37 27 10 40.69 49.32 49.44

Total 715 232 1,026.65 1,274.64 1,284.34 702 271 1,057.83 1,282.35 1,285.45

Genome coverage c (%) 83.56 83.33 83.88 83.81
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Squ1f Squ1m Squ2f Squ2m Squ3f Squ3m Squ4f Squ4m 

Squ7f Squ7m Squ8f Squ8m Squ5f Squ5m Squ6f Squ6m 

Squ11f Squ11m Squ12f Squ12m Squ9m Squ9f Squ10m Squ10f 

Squ13f Squ13m Squ14f Squ14m Squ15m Squ15f Squ16m Squ16f 

Squ17f Squ17m Squ18f Squ18m Squ19m Squ19f Squ20m Squ20f 

Squ23f Squ23m Squ24f Squ24m Squ21f Squ21m Squ22f Squ22m 

Figure 1 Yellowtail female (left) and male (right) maps for linkage groups Squ1- Squ24. Total lengths of linkage groups are expressed in
Kosambi cM. BES-derived SSR markers are coded “BAC” after a number, and microsatellite markers developed from genomic library are
coded “TUF”.
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linkage groups had a one-to-two relationship, implying
that chromosomal fusions or breakages occurred after di-
vergence from ancestor of both species (Figure 2). Never-
theless, the result suggests conserved synteny between
yellowtail and stickleback and hence the stickleback gen-
ome data would be useful as a reference of yellowtail
genome.

Conclusions
We herein constructed a high-coverage BAC library and
comprehensive genetic linkage map including BES-
derived SSR markers of yellowtail (Seriola quinquera-
diata). A survey of BESs showed a low frequency of re-
petitive sequences as much as that of Tetraodon and
fugu. BLAST searches and Oxford grids against five fish
genomes clearly showed conservation between yellowtail
and stickleback genome. Generally, a high repetitive se-
quence frequency hampers chromosome walking and
makes the positional cloning difficult [32]. A low fre-
quency of repetitive sequences and relatively small gen-
ome size suggest that yellowtail would be an ideal
species to study the genetic basis of economically im-
portant traits. In addition, conserved genome architec-
ture with stickleback would be helpful for synteny-based
identification of new genetic markers and genes in the
target genomic segments. We have already started stud-
ies regarding several traits such as sex determination
and disease resistance [20,33]. We anticipate that the
genomic and genetic resources we constructed will be
powerful tools for further studies of these traits.

Methods
Ethics statements
Field permits are not required for this species in Japan.
Since all fish treatments were performed in Goto Branch
of Seikai National Fisheries Research Institute of Fisheries
Research Agency, fish handling, husbandry and sampling
methods were approved by Institutional Animal Care
and Use Committee of National Research Institute of
Aquaculture (IACUC-NRIA No. 03).

BAC construction and BAC-end sequencing
The BAC library was constructed according to Katagiri
et al. with some modifications [14]. Briefly, at first, ap-
proximately 5 × 107 frozen sperm cells taken from one
male yellowtail were embedded in agarose plugs,
digested with proteinase K overnight at 37°C and stored
in 0.5 M EDTA following proteinase K inhibitor treat-
ment until use. The plugs were dialyzed in 0.5 × TE, par-
tially digested with MboI and size fractionated by pulse-
field electrophoresis. The fraction containing 150 to
250 kb genomic DNA was excised from the gel and was
recovered as high molecular weight (HMW) genomic
DNA. The HMW genomic DNA was then integrated
into BamHI site of pBACe3.6 vector and reactions were
transfected to E. coli DH10B strain. Finally, a total of
110,592 recombinant BAC clones were picked and stored
in 288 384-well microtiter plates. The length of the insert
DNAs was estimated by analyzing 100 BAC inserts
digested with NotI.
The BESs were obtained from eight 384-well plates

containing 3,072 clones. The BAC DNAs extracted by
conventional alkaline lysis method were sequenced from
SP6 and T7 sides with BigDye Terminator v3.1 Cycle
Sequencing Kit (Life Technologies) following the manu-
facturer’s instructions and reactions were electropho-
resed with Applied Biosystems 3730 DNA Analyzer (Life
Technologies). All raw reads were processed using
PHRED software with default parameters except for
the trimming error probability was set at 0.01 [34,35],
and vector and bacterial sequences were masked by
CROSS_MATCH implemented in PHRAP software.
The masked BESs of more than 100 bp in length, here-
after called “qualified BES”, were extracted using our
in-house perl script. The GC content of the extracted
BESs was estimated using the geecee program included
in the EMBOSS package [36].

Sequence data analysis
Repetitive DNA elements in the qualified BESs, such as
transposable elements and SSRs, were identified and masked
using Crossmatch search engine (v1.090518), “teleostei” re-
peat database implemented in Repbase RepeatMasker
Edition (20120418) and RepeatMasker program (see
http://www.repeatmasker.org/ for details).
The repeat-masked qualified BESs were subjected to

homology search. The eight fish proteome data sets (At-
lantic cod: gadMor1.70, Tetraodon: TETRAODON8.70,
medaka: MEDAKA1.70, Nile tilapia: Orenil1.0.70, platyfish:
Xipmac4.4.2.70, stickleback: BROADS1.70, fugu: FUGU4.70
and zebrafish: Zv9.70) were obtained from Ensembl (ftp://
ftp.ensembl.org/). Only the longest protein for each gene
was extracted and used for in-house database construction.
For construction of genomic sequence database, the
genomic sequences of stickleback (gasAcu1) and fugu
(fr3) were downloaded from UCSC genome browser
(http://hgdownload.soe.ucsc.edu/) and others from Ensembl.
BLAST searches were performed with qualified BESs

as query with cut-off e-value e−9. The top hit query-
subject pairs were extracted using in-house perl script
under the criteria in which if multiple query-subject
pairs were observed and were overlapped each other,
only the most significant pair was considered significant.

Development of SSR markers
The SSR motifs and primer pairs in the qualified BESs
were searched by WebSat online application (http://
wsmartins.net/websat/) with default settings except for

http://www.repeatmasker.org/
ftp://ftp.ensembl.org/
ftp://ftp.ensembl.org/
http://hgdownload.soe.ucsc.edu/
http://wsmartins.net/websat/
http://wsmartins.net/websat/


Figure 2 Oxford grids between yellowtail and five model fish genomes. Numbers in boxes indicate the number of orthologous gene pairs.
Boxes containing more than ten, seven and five orthologous gene pairs are highlighted in red, yellow and blue respectively.
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product size, which was set to 100–200 bp. For each
BAC clone, the SP6-side BES was at first analyzed and if
no SSR motif or primer-binding site was found in the se-
quence, T7-side BES of the same clone was alternatively
used. In both sides, the SSR motifs containing over six
repeats were considered as real SSRs. In the case where
more than two SSR motifs were found in one read, the
longest one was used as a representative. Finally, 743
SSRs (89 mono-, 550 di-, 68 tri-, 31 tetra-, 4 penta- and
1 hexa-nucleotide repeats) were selected for primer
design.
In addition to the BES-derived SSRs, we also devel-

oped microsatellite markers from the genomic library
constructed by Ohara et al. [2,3]. The microsatellites
containing CA/GT repeat motifs were isolated according
to the protocol of Ohara et al. and primers were de-
signed as described above [2,3].

Mapping panel
The mapping panel consists of ninety progenies pro-
duced by artificial fertilization. Parent fish were caught
off Goto Island, Nagasaki Prefecture, Japan and reared in
a sea cage until they were matured with approximate
body weight 7 kg. Human chorionic gonadotropin (ASKA
Pharmaceutical) was intramuscularly administered to the
parent fish at 600 IU/kg body weight and eggs and sperm
were taken at 45 hours after administration. Fertilized eggs
were kept in 500 L seawater at approximately 19°C with
0.5-1 L/min aeration until hatching. The juvenile fish were
reared in 500 L seawater at 20-25°C until their body
length reached 10 cm. The caudal fin was partially clipped
from each progeny as the DNA source and kept in abso-
lute ethanol until use. Genomic DNA of each fish was
extracted using DNeasy Blood and Tissue Kit (Qiagen)
according to manufacturer’s instructions.

Data acquisition
Genotyping was performed in an 11 μl reaction volume
containing 0.5 pmol/μl of unlabelled primer, 0.05 pmol/
μl of fluorescence-end-labeled primer with [5’-TET], 1 ×
buffer, 2.0 mM MgCl2, 0.2 mM dNTP, 1.1 μg of BSA,
0.025 U of EX Taq DNA polymerase (Takara) and 25 ng
of template DNA. PCR was performed on a GeneAmp®
PCR System 9700 (Applied Biosystems), and the pro-
gram conditions were 95°C for 2 min for initial denatur-
ation, followed by 30 cycles of 30 sec at 95°C, 1 min at
the annealing temperature (52-55°C), 1 min at 72°C and
10 min at 72°C for final extension. Amplification prod-
ucts were mixed with an equal volume of loading buffer
(98% formamide, 10 mM EDTA, 0.05 w/v% bromophe-
nol blue), heated for 10 min at 95°C and then immedi-
ately cooled on ice. 2 μl of each sample was loaded onto
a 6% PAGE-PLUS gel (Amresco) containing 8 M urea
and 0.5 × TBE buffer. Electrophoresis was performed in
0.5 × TBE buffer, and after electrophoresis, the gel was
scanned and imaged using a FLA-9000 image scanner
(GE Healthcare).
Linkage map construction
Genotype data obtained above were subjected for linkage
analysis for the male and the female meiosis independ-
ently. Marker genotypes were analyzed with LINKMFEX
ver. 2.3 (http://www.uoguelph.ca/~rdanzman/software.htm).
Linkage analysis was performed using genotype data con-
verted to a backcross format. As the grandparent genotypes
were unknown, pairwise analyses were performed, and
markers were sorted in linkage groups at a minimum LOD
score of 4.0. A goodness-of-fit for Mendelian segregation
distortion was tested for all alleles using the chi-square test
(p < 0.05, d.f. = 1). Finally, the marker order was determined
and double recombination events were checked with
MapManagerQTX version 2.0 [37]. The resultant genetic
map was visualized using MapChart version 2.2 [38].
The genome length L was estimated using two diffe-

rent methods following Fishman et al. [39]. In the first
method (L1), average marker interval was estimated by
dividing the summed length of all linkage groups by the
number of intervals, and twice the average marker inter-
val was added to each linkage group. In the second
method (L2), the length of the each linkage group was
multiplied by the factor (m + 1)/(m - 1), where m is the
number of framework markers on the linkage groups. Fi-
nally, genome coverage c of the linkage map was esti-
mated by calculating c = 1 - e-2dn/L, where d is the
average interval of markers, n is the number of markers,
and L is the genome length estimated above.
Identification orthologous chromosomes with other fishes
The flanking sequences obtained from all SSR markers
assigned to the yellowtail linkage groups were used for
the BLASTn search against genomic sequences of me-
daka, Tetraodon, stickleback, fugu and zebrafish with a
cut-off e-value of 0.01. The top hit query-subject was ex-
tracted using in-house perl script. In the case where
multiple hits were obtained, we defined orthology as fol-
lows; let us consider only the first, second and third top
hit, if query position of the first and second/third top hit
is overlapped each other and quotient of e-value of the
first hit divided by that of the second/third hit is greater
than 10−3, the hit is considered to be an unclear ortholo-
gous pair and rejected. The substantial hits were proc-
essed for constructing Oxford grid using Grid Map ver.
3.0a (http://cbr.jic.ac.uk/dicks/software/Grid_Map/).
Availability of supporting data
All the supporting data are included as additional files.

http://www.uoguelph.ca/~rdanzman/software.htm
http://cbr.jic.ac.uk/dicks/software/Grid_Map/
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Additional file

Additional file 1: SSR markers in the yellowtail map. Marker name,
linkage group, polymorphic information (1: polymorphic in both female
and male, 2: polymorphic in only female, 3: polymorphic in only male),
genotype of dam and sire, kind of repeat motif number, repeat type,
primer sequences, annealing temperature, PCR product size, and
GenBank accession number are shown.
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