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Abstract

Background: The genus Burkholderia is widespread in diverse ecological niches, the majority of known species are

soil bacteria that exhibit different types of non-pathogenic interactions with plants. Burkholderia species are versatile
organisms that solubilize insoluble minerals through the production of organic acids, which increase the availability
of nutrients for the plant. Therefore these bacteria are promising candidates for biotechnological applications.

Results: Burkholderia sp. (R 3.25 isolate) was isolated from agricultural soil in Ponta Grossa-PR-Brazil and identified
through analysis of the 16S rDNA as a strain classified as Burkholderia gladioli. The expression of membrane-bound
acid phosphatase (MBACP) was strictly requlated with optimal expression at a concentration of phosphorus 5 mM.
The apparent optimum pH for the hydrolysis of p-nitrophenylphosphate (PNPP) was 6.0. The hydrolysis of PNPP

by the enzyme exhibited a hyperbolic relationship with increasing concentration of substrate and no inhibition by
excess of substrate was observed. Kinetic data revealed that the hydrolysis of PNPP exhibited cooperative kinetics with
n=13,V,=1135U/mg and Ky5 =65 uM. The PNPPase activity was inhibited by vanadate, p-hydroxymercuribenzoate,
arsenate and phosphate, however the activity was not inhibited by calcium, levamisole, sodium tartrate, EDTA, zinc,
magnesium, cobalt, ouabain, oligomycin or pantoprazol.

Conclusion: The synthesis of membrane-bound non-specific acid phosphatase, strictly requlated by phosphate, and its
properties suggest that this bacterium has a potential biotechnological application to solubilize phosphate in soils with

low levels of this element, for specific crops.
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Background

The genus Burkholderia is widespread in diverse ecological
niches; however, the majority of known species are soil
bacteria that exhibit different types of non-pathogenic in-
teractions with plants [1,2]. Following the pioneering work
of Yabuuchi et al. [3], which described the Burkholderia
genus, several investigators have studied Burkholderia spe-
cies that are phylogenetically distant from the Burkholderia
cepacia complex (Bcc species), which are promising candi-
dates for biotechnological applications [4,2], although their
environmental distribution and relevant characteristics for
agro-biotechnological applications are not well known.
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Burkholderia species are versatile organisms that
solubilize insoluble minerals through the production of
organic acids, which increase the availability of nutrients
for the plant [5-7]. Interactions between plant roots and
mineral phosphate solubilizing (MPS) microorganisms
can play an important role in phosphorus nutrition and
growth of most plants, microorganisms and crop pro-
duction. As far as we know, the present report is the first
systematic study to show that the membrane-bound acid
phosphatase expressed by Burkholderia is strictly regu-
lated by phosphorus. In addition, little is known about
the enzyme’s potential applications to improve plant
growth by association with the bacteria.

Phosphorus is an essential nutrient that is required in
large amounts to maintain levels of key cell molecules,
including ATP, nucleic acids, and phospholipids; phos-
phorus is also a pivotal mediator in the regulation of
many metabolic processes, such as energy transfer,
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protein activation, regulation of enzyme activities, gene
activity control, as so in carbon and amino acid meta-
bolic processes [8].

The uptake of nutrients from different natural envi-
ronments depends on the secretion of an enormous var-
iety of hydrolytic enzymes, which demonstrate catalytic
activity that is specific for the cleavage of a particular
substrate. This uptake process is tightly regulated and
contains a variety of biochemical reactions that involve
the acquisition, storage, and release of enzymes [9]. The
study of these processes may provide new insights for
the elucidation of gene expression that controls not only
the synthesis but also the secretion of enzymes by
eukaryotic cells in response to environmental factors,
such as pH and levels of carbon, nitrogen, sulfur and
phosphorus [10,11].

In this paper, we report the expression and kinetic
characterization of a membrane-bound acid phosphatase
produced by Burkholderia gladioli that was isolated from
the rhizosphere of Zea mays, which was collected from
an agricultural soil in Ponta Grossa-PR-Brazil.

Methods

Isolation and identification of Burkholderia sp.

The isolation of Burkholderia sp. bacteria from surface-
sterilized roots of Zea mays, which were collected from
agricultural soil in Ponta Grossa-PR-Brazil, was de-
scribed by Pedrinho et al. [12], and the bacteria was
identified through partial 16S rRNA gene sequencing,
using the specific oligonucleotides fD1 and rD1 [13].

The partial sequencing of the 16S rRNA gene was per-
formed by the use of 1,0 uL. of DNA Sequencing-Big Dye
Terminator Cycle Sequencing-Ready ABI Prism (Version
3); 3.2 pmols of fD1/rD1 oligonucleotide, 60 ng of DNA,
4.6 pL of buffer (400 mM Tris—HCl, pH 9; 10 mM
(MgCl2); and mili-Q (Millipore) H20 for a 10 mL volume.

The amplicons were sequenced using the model ABI
3100 capillary sequencer (Applied Biosystems, Foster
City, CA, USA). The fasta sequence was analyzed by
comparison using a local tool BLASTN [14] from NCBI
(National Center of Biotechnology Information) and
classified by RDP (Ribosomal Database Project).

The evolutionary history was inferred using the
Neighbor-Joining method [15]. The optimal tree with
the sum of branch length =0.19803035 is shown. The
percentage of replicate trees in which the associated taxa
clustered together in the bootstrap test (1000 replicates)
are shown next to the branches [16]. The tree is drawn
to scale, with branch lengths in the same units as those
of the evolutionary distances used to infer the phylogen-
etic tree. The evolutionary distances were computed
using the p-distance method [17] and are in the units of
the number of base differences per site. The analysis
involved 11 nucleotide sequences. Codon positions
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included were 1st + 2nd + 3rd + Noncoding. All positions
containing gaps and missing data were eliminated. There
were a total of 733 positions in the final dataset. Evolu-
tionary analyses were conducted in MEGAS5 [18]. The
16S rDNA sequence obtained is registered at the Inter-
national Gene Bank (GenBank), having the access num-
ber: JN 700991.

Growth conditions and membrane-bound enzyme
isolation

Burkholderia sp. was grown in a liquid medium contain-
ing 2% glucose, 0.1% magnesium chloride, 0.025% magne-
sium sulfate, 0.1% ammonium sulfate, 0.02% potassium
chloride, and with or without potassium phosphate. The
liquid growth medium, prepared in 250-ml conical flasks,
was incubated for 72 h at 30°C under constant rotary
shaking at 140 rpm. Actively growing cells were collected
by centrifugation, washed twice with 50 mM sodium
acetate buffer at pH 6.0, resuspended in 8 mL of the same
buffer and then disrupted by sonication at 50 microtips/
second with cycles of 30 seconds with a Branson Sonifier
model 250. The integral cells were removed by centrifuga-
tion at 5,000 g for 15 min. The supernatant was subjected
to a two-step differential centrifugation, first at 12,000 g
and then for 1 h at 160,000 g to obtain soluble proteins
and membrane bound enzyme. The pellet, which corre-
sponds to the membrane-bound enzyme, was resuspended
in the same buffer. Aliquots (1.0 ml) were frozen in liquid
nitrogen and stored at —20°C without appreciable loss of
activity when stored for less than 2 months.

Enzymatic activity measurements

Acid phosphatase activity was determined discontinu-
ously at 37°C, 50 mM acetate buffer, pH 6.0, through
the formation of p-nitrophenolate (e = 17600 M~ cm ™,
pH 13) at 410 nm from the hydrolysis of 1 mM p-nitro-
phenylphosphate (SIGMA®). The enzymatic reaction was
initiated by the addition of the enzyme extract to the
reaction medium, interrupted by adding 1 ml of 1 M
NaOH, and the absorbance was determined at 410 nm.

The determinations were performed in triplicates and
the initial velocities remained constant during the incuba-
tion time to ensure that substrate hydrolysis was inferior
to 5%. In each determination standards were included to
estimate the non-enzymatic hydrolysis of substrate.

A unit of enzyme activity was defined and expressed
as the amount of enzyme that releases one nmol of
p-nitrophenolate per minute, per milligram of protein
present in the enzymatic extract, under test conditions.

Thermal inactivation of membrane-bound acid
phosphatase

Samples of membrane-bound enzyme in 50 mM acetate
buffer at pH 6.0 were incubated in a water bath at
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different temperatures for variable periods of time. Im-
mediately after the water bath treatment, samples were
chilled in an ice-water bath to stop the inactivation
process, and the remaining PNPPase activity was assayed
as described above.

Effect of several compounds on the p-nitrophenylphosphatase
activity

Reactions were carried out in 50 mM acetate buffer at
pH 6.0, containing 1 mM of PNPP and the following
compounds: phosphate (10 mM); EDTA (10 mM); arsen-
ate (1 mM); magnesium (2 mM); calcium (1 mM); zinc
(1 mM); cobalt (1 mM); levamisole (10 mM); sodium
tartrate (10 mM); bafilomycin Al (1 mM); oligomycin
(1.5 mg/ml); ouabain (1.3 mM); pantoprazol (6 mM);
PHMB (1 mM); and vanadate (0.5 mM), in a final vol-
ume of 1.0 ml. The reaction was initiated by the addition
of the enzyme and stopped by the addition of 1.0 ml of
1.0 M NaOH at the appropriate time. In each determin-
ation standards were included to estimate the non-
enzymatic hydrolysis of substrate.

Effect of pH on p-nitrophenylphosphate hydrolysis by
membrane-bound acid phosphatase

Assays were buffered with 50 mM acetate for the pH range
3.5-6.5, and 50 mM Tris—HCI for the pH range 6.5-8.0;
each reaction contained 1 mM of PNPP. There was no sig-
nificant difference among the two buffers used at pH 6.5.
The pH before and after each kinetic determination did
not differ by more than 0.05 units. The reaction was initi-
ated by the addition of the membrane-bound enzyme and
stopped with 1.0 ml of 1.0 M NaOH at the appropriate
time. In each determination standards were included to es-
timate the non-enzymatic hydrolysis of substrate.

Determination of protein concentrations

Protein concentrations were determined according to
the method described by Hartree [19]. Bovine serum
albumin was used as the standard in both cases.
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Estimation of kinetic parameters

V, v, Ko 5 and n obtained from substrate hydrolysis reac-
tions were fit using a microcomputer as described by
Pizauro et al. [20]. Data are reported as the mean of
triplicate determinations that differed by less than 5%.

Results and discussion

To quickly and reliably determine if the isolate belonged
to the Burkholderia species, the amplified 16S rDNA was
compared with the most similar found in databases, and
phylogenetic analysis showed that the strain belonged to a
Burkholderia species (Figure 1). This isolate clustered with
a set of Burkholderia strains classified as Burkholderia
gladioli (GenBank Banklt accession n° JN 700991).

Figure 2 shows the effect of increasing concentrations
of phosphate in the medium used to grow Burkholderia
gladioli. The acid phosphatase activity was maximal at
5 mM phosphate, and reduced activity was observed
when Burkholderia gladioli was grown in medium con-
taining higher concentrations of phosphate. These re-
sults suggest that acid phosphatase in Burkholderia
gladioli is synthesized exclusively under Pi-limiting con-
ditions, which is characterized as Pi-repressible activity.
The behaviors observed here show that acid phosphatase
activity is downregulated by exogenous Pi concentration,
suggesting that there is a tight coupling among the
utilization of exogenous Pi, mobilization of endogenous
reserves, and derepression of acid phosphatase. In fact,
several phosphatases from plant and fungal origins were
shown to be induced by phosphate deficiency [21-24].

The benefits to use differential centrifugation to obtain
the membrane-bound acid phosphatase is that this
method is easy to reproduce, fast and highly reprodu-
cible. This method resulted in the separation of two frac-
tions. The supernatant containing soluble proteins,
which represented less than 5% of total activity and the
pellet, corresponding to the membrane-bound enzyme,
which represented more than 95% of total activity, and

NR 044378.1 B. gladioli

99
JTL
34 NR 102846.1 B. glumae

R 102848.1 B. cepacia

N
2 —%D NR 041720.1 B. vietnamiensis
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52
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Figure 1 Dendrogram of the partial sequences of 16S rDNA, proving the similarity of the isolated R 3.25 with Burkholderia gladioli.
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Figure 2 Expression of PNPPase activity of membrane-bound
acid phosphatase in Burkholderia that was grown in medium
containing increasing concentrations of phosphate.

showed specific activity of 103.9 U/mg for the chromo-
genic substrate; this fraction was used in further studies.

Membrane-bound enzyme was stable after 6 h of incu-
bation at 45°C in 100 mM acetate buffer at pH 6.0, but
the enzyme was inactivated at higher temperatures, exhi-
biting a t;,, that varied from 23 h at 50°C to 5 min at
70°C. When the temperature was increased from 10°C to
70°C, enzyme inactivation followed first order kinetics,
and no break in the inactivation curves was observed
from 10°C to 25°C (Figure 3), suggesting that this en-
zyme is associated with lipids in the membrane but is
not an intrinsic membrane-bound enzyme [25]. This
behavior is consistent with that reported for alkaline
phosphatase from rat bone matrix-induced cartilage
[26], which is anchored to the membrane by phos-
phatidylinositol [27,28], and acid phosphatase with phy-
tase activity from Mucor hiemalis [29]. In addition,
according to Kondo et al. [30], acid phosphatase from

(%) Residual Activity

Time Minutes

Figure 3 Thermal inactivation of membrane-bound acid
phosphatase. The residual activity was determined by the addition
of 50-uL aliquots to 50 mM acetate buffer, pH 6.0, containing 1 mM
PNPP, in a final volume of 1.0 ml. Values are the mean of triplicates
determinations that differed by less than 5% variation. (e) 50°C; (A)
70°C; (m) 60°C; (o) 65°C; (0) 55°C. Inset: Arrhenius plot for the

above data.
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Burkholderia is a glycoprotein that is translocated during
glycosylation from the cytoplasm to the outer membrane
and then excreted into the environment.

The rate of hydrolysis of PNPP (Figure 4) by mem-
brane-bound enzyme reached a maximum at pH 6.0,
and this pH was selected as the incubation medium for
the activity assays of acid phosphatase. This value for the
optimum pH is similar to those reported for bacterial
nonspecific acid phosphohydrolases [31], acid phosphat-
ase from Aspergillus ficuum [21], and Burkholderia
cepacia [32].

The hydrolysis of PNPP by the enzyme exhibited a
hyperbolic relationship with increasing concentration of
substrate and no inhibition by excess of substrate was
observed. The specific activity of the enzyme for the
hydrolysis of PNPP was 113.5 U/mg and Kgy5=65 puM
(Figure 5). Kinetic data revealed that the hydrolysis of
PNPP exhibited cooperativity with n =1.3.

The ability of this enzyme to dephosphorylate phos-
phoesteres and the observed magnitudes of the kinetic
values are consistent with those obtained for acid phos-
phatase from other sources [33,31]. In addition, the
enzymatic properties of acid phosphatase were virtually
identical to the acid phosphatase of E. histolytica [34],
which catalyzes p-nitrophenylphosphate hydrolysis under
acid pH conditions.

The effects of several compounds on p-nitrophenyl-
phosphatase activity of the enzyme are shown in Table 1.
EDTA and tartrate reagents that were present in concen-
trations up to 10 mM showed only minor effects on
enzymatic activity. The lack of inhibition by EDTA
and sodium tartrate on PNPPase activity and the lack of
dependence on magnesium, calcium, cobalt and zinc
was also observed, suggesting that metal ions are not

3 4 5 6 7 8 9
pH

Figure 4 pH sensitivity of the catalysis of membrane-bound
acid phosphatase from Burkholderia gladioli. Enzymatic assays
containing 1 mM PNPP were buffered with 50 mM acetate for the
pH range 3.5-6.5, and 50 mM Tris—HCl for the pH range 6.5-8.0.
There was no significant difference between the two buffers used
at pH 6.5. The pH before and after each determination did not differ
by more than 0.05 units, and the reaction was initiated by the
addition of membrane-bound enzyme.
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Figure 5 Effect of substrate concentration on phosphohydrolytic
activity of membrane-bound acid phosphatase from Burkholderia
gladioli. The PNPPase activity was assayed discontinuously at 37°C.
Standard assessment conditions were 50 mM acetate buffer, pH 6.0,
and containing increasing concentrations of substrate from 0.1 uM
to 10 mM.

involved in maintaining enzyme activity [35-37,26,38].
The significant inhibition observed for vanadate (94%),
does not imply, unequivocally, that this membrane-
bound enzyme is a specific P-type ATPase. This inter-
pretation is supported by the lack of inhibition by
ouabain, which is an inhibitor of the Na'/K'-ATPase.
Bafilomycin is also a highly specific inhibitor of vacuolar

Table 1 Relative effectiveness of several reagents on the
activity of membrane-bound acid phosphatase from the
R 3.25 isolate

Reagent Residual activity
Phosphate (10 mM) 38
EDTA (10 mM) 95
Arsenate (1 mM) 14
Magnesium (2 mM) 96
Calcium (1 mM) 94
Zinc (1 mM) 97
Cobalt (1 mM) 94
Levamisole (10 mM) 93
Sodium tartrate (10 mM) 95
Bafilomycin A1 (1 mM) 98
Oligomycin (1.5 mg/ml) 93
Ouabain (1.3 mM) 92
Pantoprazol (6 mM) 95
PHMB (1 mM) 5
Vanadate (0.5 mM) 6

Specific activity of 100% corresponds to 109.27 U/mg.
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H"-ATPases (V-ATPase) type in animal cells, plant cells
and microorganisms [20] and does not inhibit the en-
zyme studied here. In addition, vanadate ions form a tri-
gonal bipyramidal transition state at the active site of
phosphatase, which bears some resemblance to the
metastable intermediate occurring during the hydrolysis
of phosphate esters [39]. Phosphate and arsenate are
well known as inhibitors of acid phosphatase activity;
the inhibition of PNPPase activity by phosphate and the
more efficient inhibition by sodium arsenate, which is
its structural analog, suggest a common mode of binding
to the active site [40]. Similar to other phosphohydro-
lases, membrane-bound acid phosphatase is signifi-
cantly inhibited by sodium orthovanadate [41,42] and
p-hydroxymercuribenzoate [43,44], which suggests that
the sulfhydryl residue of cysteine is essential for its activity.

The main mechanism for mineral phosphate solubili-
zation is the production of organic acids, and acid phos-
phatases play a major role in the mineralization of
organic phosphorous in soil [45]. Considering that acid
phosphatase is bound to the external membrane sur-
face and therefore exposed to extracellular medium,
our results bring an important insight on the me-
chanism of mineral phosphate solubilization by this
bacterium and on plant nutrition through the increase
in P uptake by the plant, mainly in soils with low levels
of phosphate that are found in many regions of the
world.

Although Burkholderia gladioli is known as a patho-
gen in some plant species [2] and causes opportunistic
infection in severely immunocompromised humans [46],
Bae [47] reported that a strain of this species have the
ability to suppress pathologies caused by Pythium ulti-
mum. In addition, B. gladioli has been described as a
possible biofertilizer because of its capacity to fix nitro-
gen, mobilize phosphorus and stimulate plant growth
[48-50]. It should be emphasized that B. gladioli also
promotes beneficial effects as plant growth and nitrogen
fixation in sugarcane crops [50]. Therefore, it may be
possible to use this bacterium as a biofertilizer for spe-
cific crops, besides biochemical studies can contribute to
elucidate its mechanisms.

Conclusion

Through analysis of the 16S rDNA our strain was classi-
fied as Burkholderia gladioli (GenBank BankIt accession
n° JN 700991), therefore, phylogenetically distant from
the Burkholderia cepacia complex (Bcc species). The syn-
thesis of membrane-bound non-specific acid phosphatase,
strictly regulated by phosphate, and its properties suggest
that this bacterium has a potential biotechnological appli-
cation to solubilize phosphate in soils with low levels of
this element for specific crops.
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