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Abstract

sites that are sequestered within a hairpin structure.

Background: Influenza B and C are single-stranded RNA viruses that cause yearly epidemics and infections.
Knowledge of RNA secondary structure generated by influenza B and C will be helpful in further understanding
the role of RNA structure in the progression of influenza infection.

Findings: All available protein-coding sequences for influenza B and C were analyzed for regions with high
potential for functional RNA secondary structure. On the basis of conserved RNA secondary structure with predicted
high thermodynamic stability, putative structures were identified that contain splice sites in segment 8 of influenza
B and segments 6 and 7 of influenza C. The sequence in segment 6 also contains three unused AUG start codon

Conclusions: When added to previous studies on influenza A, the results suggest that influenza splicing may
share common structural strategies for regulation of splicing. In particular, influenza 3" splice sites are predicted to
form secondary structures that can switch conformation to regulate splicing. Thus, these RNA structures present
attractive targets for therapeutics aimed at targeting one or the other conformation.
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Findings

Background

Influenza virus causes more than 200,000 hospitaliza-
tions and about 3000 — 49,000 deaths per year in the
United States alone [1,2]. Influenza A, B, and C viruses
belong to the family Orthomyxoviridae and are charac-
terized by segmented, single-stranded, negative-sense (-)
RNA genomes. These viruses share a common ancestry
but are also genetically distant, such that segment reas-
sortment does not occur between each group [3]. Each
of the (-) RNA segments is used as a template to pro-
duce two types of positive-sense (+) RNA with distinct
functions: mRNA for protein production and comple-
mentary RNA (cRNA) for viral replication. Influenza B
has eight genome segments that encode at least eleven
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proteins and influenza C has seven genome segments
that encode at least nine proteins. Influenza A infects
avian, human, swine, and many other mammalian spe-
cies, whereas influenza B and C infect primarily humans
[4-6]. Influenza B and C do not undergo pandemic-
causing antigenic shifts (reassortment of segments from
different subtypes) like influenza A, because both viruses
contain only one antigenic subtype and have limited host
specificity [7,8]. All influenza viruses are able to undergo
antigenic drift, which occurs as a result of accumulation
of mutations in the antigenic sites [3,7,8]. Concern, how-
ever, has been growing, as two lineages of influenza B
(Yamagata and Victoria) have been co-circulating in the
human population [7,9]. This has led to a novel formu-
lation of a quadrivalent vaccine: against two strains of
influenza A and two strains of influenza B [10,11], rather
than the previous trivalent vaccine.
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RNA structure plays important roles in many viruses.
For example, internal ribosome-entry sites (IRES) in viral
mRNAs are heavily structured regions, which initiate
cap-independent translation by directly binding to the
ribosome [12,13]. RNA structure is also used for start
codon selection and viral replication [14], for packaging
signals [15], for RNA editing [16], and for many more
functions. RNA secondary structure also plays an im-
portant role in viral mRNA splicing regulation [17-19].
A relatively rare type of RNA structure, pseudoknots,
often plays important roles in biology [20-22]. In parti-
cular, pseudoknots are important in the regulation of
viral gene expression and genome replication [23,24].

RNA structure is also important in influenza. The 5’
and 3’ ends of each genome segment of influenza A, B,
and C are highly conserved, partially complementary,
and base pair to form a promoter region that can be
either in a panhandle or corkscrew conformation [25-27].
This structure is essential in VRNA transcription, replica-
tion, and viral packaging [28-30].

A variety of de novo methods exist to predict con-
served secondary structure in genomes [31-35]. RNA
structure can occur in protein coding regions and has
many potential functional roles [34,36]. A survey for
conserved secondary structure in the (+) and (=) RNAs
of influenza A was carried out [37] by scanning for
thermodynamically stable and conserved regions with
the program RNAz [38-40] and coupling this with evi-
dence of suppression of synonymous codon usage
(SSCU), which identifies possible constraints of se-
condary structure acting on codon diversity [34,41,42].
Twenty conserved, thermodynamically stable regions
were identified. Secondary structure is strongly favored
in the (+) RNA. Of these predicted regions, five occur at
or near functionally relevant sites [37]. Two of these,
occurring in the segment 8 (+) RNA, were previously
proposed [43-45].

This paper extends the search for influenza RNA
structure in coding regions to influenza B and C,
where conserved and thermodynamically stable re-
gions are predicted to occur at splice sites. The sec-
ondary structures of these splice sites are modeled
here. The results suggest that influenza RNA splicing
may share common structural strategies between the
three viral species.

Methods

Influenza B and C sequences

The sequences used in this study were obtained from
the National Center for Biotechnology Information
(NCBI) Influenza Virus Resource [46]. All non-
redundant sequences for each segment of influenza B
and C were downloaded for the prediction of conserved
secondary structure.
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Predicting conserved, thermodynamically stable regions
All non-redundant sequences for segments coding a sin-
gle protein were translated into amino acid sequences
via Seaview 4.3.0 [47,48] and aligned with ClustalW [49].
The aligned sequences were then converted back to
nucleotides. Non-redundant sequences of segments that
code multiple proteins were aligned according to nucleo-
tides via MAFFT with FFT-NS-i strategy and default
parameters [50,51].

Alignments were split into windows of 120 nucleotides
(nt) with a step size of 10 nt. Between 6 and 50 sequen-
ces, with an average pairwise identity of 80%, were
selected for scoring by RNAz 2.1 using the RNAz
dinucleotide-shuffling model [39,40]. For a given align-
ment, RNAz calculates a z-score as an estimate of
normalized difference in thermodynamic stability of
native versus dinucleotide randomized sequences, and a
structure conservation index (SCI), which measures the
conservation of the minimum free energy of the consen-
sus RNA fold in the alignment. RNAz then uses these as
features in a support vector machine (SVM) to output
an RNA class probability (p-class), which classifies the
RNA fragment as structured or not.

RNA secondary structure modeling
Five regions within or overlapping RNAz predicted
windows with high thermodynamic stability/conserva-
tion and/or that contain splice sites were structurally
modeled. These regions were extracted as alignments
and submitted to RNAalifold [52]. RNAalifold predicts
structure via thermodynamic energy minimization [53]
coupled with a scoring model for evolutionary conserva-
tion. The resulting consensus sequence was also sub-
mitted to RNAstructure [54], which utilizes a revised set
of nearest neighbor energy parameters to fold single
sequences [55]. The minimum free energy (MFE) struc-
ture and suboptimal structures [56] were analyzed based
on folding free energy and base pairing probability from
the calculated base pair partition function [57] and
compared to the RNAalifold results. Fragments within
these predicted structural regions were extracted for
further analysis based on having higher probability pairs
(from the partition function) than surrounding structure
and on their conservation in the alignment of all non-
redundant influenza B or C sequences (paying special
attention to evidence of consistent and compensatory
mutations). The resulting structural models were used to
constrain MC-Fold [58] calculations to suggest possible
non-canonical base pairing interactions in predicted loop
regions. MC-Fold utilizes high resolution RNA structural
information from the Protein Data Bank (PDB) to
estimate non-canonical base pairing energies.

DotKnot [59], which folds single sequences, was used
to predict pseudoknots in sequences containing splice
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sites. DotKnot extracts possible stem regions from RNA
secondary structure partition function dot plots and
assembles pseudoknots according to free energy parame-
ters. Free energies of the pseudoknots were computed
with experimentally based thermodynamic energy
models [53,60] and loop entropy parameters derived
from a diamond lattice model [61,62].

Results and discussion

The bioinformatics survey for structured RNAs in influ-
enza B and C revealed multiple regions with putative
conserved RNA structure (Table 1). Many more high
probability prediction windows were identified in influ-
enza C, but these are likely false positives due to the lack
of diversity in the input sequences. In several cases there
were as few as two influenza C sequences with which to
base predictions, versus hundreds in influenza B, and
thousands in influenza A. Nevertheless, significant pre-
dictions were made in segments 6 and 7 of influenza C,
where 28 and 50 sequences were available, respectively.
In general, fewer sequence variants for B and C are
available versus influenza A due to their lower mutation
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rate [63-67] and fewer resources for acquiring sequence
data for these groups.

Similar to results for influenza A [37], where predicted
conserved structure appears at or near splice sites, influ-
enza B and C splice sites show evidence for having stable
and/or conserved RNA secondary structure (Figure 1).
Structural modeling in these regions reveals RNA struc-
tures with similarities between influenza A, B, and C,
suggesting common strategies for regulation of splicing.
In influenza C segment 7, the region near the 3’ splice
site is not predicted to have strong structure (p-class
range of 0.01-0.12), but a pseudoknot is predicted to
occur in this region using the DotKnot program, which
is a type of motif forbidden in the RNAz folding
algorithm.

Structures predicted at 5’ splice sites of NEP mRNA in
influenza B and C

Segment 8 in influenza B and segment 7 in influenza C
both encode the nuclear export protein, NEP (NS2),
involved in vRNP export [68] and in viral transcription
and replication regulation [69]. NEP is expressed late in

Table 1 Summary of RNAz scans of predicted structured regions in influenza B and C

Segment Protein coded?® Region z-score® scP p-class®
Influenza B 8 NST, NEP 30-220 —144 (-249) 0.78 (0.86) 030 (0.94)
450-620 -2.27 (-3.29) 0.83 (091) 0.81(0.99)
720-840 -0.98 0.94 0.37
7 M1, BM2 0-170 —2.12 (-2.63) 0.66 (0.78) 0.28 (0.56)
5 NP 1040-1160 -2.29 0.86 093
4 HA 0-160 —2.22 (=3.21) 0.78 (0.87) 0.76 (0.96)
780-950 —0.81 (-14) 0.80 (0.89) 0.20 (0.67)
3 PA 630-750 -2.19 091 094
1870-1990 =225 0.66 0.31
2010-2130 -0.85 0.96 046
2 PB1 650-770 -167 081 039
1100-1220 -0.57 0.97 0.31
1 PB2 210-350 -282(-3.12) 0.68 (0.69) 0.85 (0.94)
670-810 —149 (-1.85) 0.83 (0.86) 0.38 (0.62)
1320-1450 —2.50 (=2.51) 0.76 (0.81) 0.77 (0.91)
Influenza C 7 NS1, NEP 190-400 —2.16 (-=3.55) 0.70 (0.82) 041 (0.99)
640-800 -1.39 (-2.04) 0.83 (0.87) 031 (0.79)
6 M1, CM2 0-160 —2.12 (-2.87) 0.86 (0.91) 0.72 (0.96)
160-310 -1.13 (-1.36) 0.92 (0.93) 033 (0.54)
350-470 -068 0.99 037
450-680 —1.54 (-2.65) 0.96 (0.99) 0.65 (0.98)
670-790 -1.05 097 0.54
990-1133 -097 (-1.19) 0.98 054 (0.71)

?Proteins coded via splicing are italicized.

PAverage values for overlapping windows with p-class >0.3. When the region is defined by more than one 120 nt window and the most favorable value for a 120
nt window differs from the average value of overlapping windows, it is presented in parentheses.
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Figure 1 Plots of p-class for segment 8 of influenza B and for segments 7 and 6 of influenza C. P-class for 120 nucleotide windows with
start position denoted on x-axis. The red arrows indicate splice sites and green box indicates AUG codons.

viral infection [8,69]. In influenza B and C, the mature
NEP mRNA is generated via alternative splicing [8]. A
conserved hairpin is predicted at the 5 splice site in
both influenza B (Figure 2) and C (Figure 3). In each
case the 5" splice site is contained within a helix.
Sequestering a splice site in a helical region is a mechan-
ism for regulating splicing [70]. For example, sequester-
ing the 5 splice site in a helix down-regulates splicing
in the hnRNP A1l and SMN2 pre-mRNAs [71,72]. In rat
calcitonin/CGRP pre-mRNA, a splice site appears near a
1x1 nucleotide homo-purine internal loop and mutations
that change the loop into a Watson-Crick base pair
inhibit in vitro splicing [73]; interestingly, in each of the
predicted influenza structures containing a 5" splice site,
it also occurs near a homo-purine 1x1 nucleotide inter-
nal loop (Figures 2 and 3). Non-Watson-Crick pairs are
important in RNA-protein interactions [74] and homo-
purine pairs can increase protein binding affinity [75].

These predicted hairpins in influenza B (Figure 2) and C
(Figure 3) have >99% base pair conservation. When muta-
tions occurred in stems, they most often were consistent
with base pairing. For example, in the nucleotides bor-
dering the splice sites, mutations preserve base pairing:
G36-C63 to a G36-U63 in B (Figure 2) and U186-G246 to
U186-A246 in C (Figure 3). When mutations in helixes
did not maintain canonical pairing, they most often
resulted in CA pairs. Protonated C-A" pairs are isosteric
with GU pairs and maintain A form helixes [76]. In DNA
helixes, C-A" pairs can have pKa’s as high as 7.6 [77]
suggesting a similar possibility for RNA. In the 5" hairpin
structure of influenza C segment 7, the A208-U228 pair
occurs below the C209 bulge loop and mutates to an AC
pair (Figure 3). The flanking GC pair (G207-C229) can
mutate to an AA pair. In some contexts, protonated C-A*
base pairs adjacent to AA pairs can stabilize internal loops
[78] and may be important in RNA-protein interactions
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Figure 2 Secondary structure predicted for the consensus sequence at the 5’ splice site of influenza B segment 8. Base pair counts from
an alignment of all available unique sequences are tabulated to the right of the structure. Base pairing positions (i-j) and types are given in the
table with canonical pairs to the left and non-canonical pairs to the right. “%can” column represents the percentage of canonical pairs found at
each i-j position in the alignment and the average percent conservation of the structure is given below the column. The italicized alignment
positions (i-) indicate possible non-canonical base pairing interactions in loop regions predicted with MC-Fold [58]. Mutations from canonical to
canonical base pairs are in green and from canonical to non-canonical base pairs are in orange. The mutations are also annotated on the
structure. The red arrow in the structure indicates the splice site and the dashed lines indicate possible non-canonical base pairing interactions in
loop regions predicted with MC-Fold [58]. The predicted folding free energy, AG®s;, for the consensus hairpin is —12.5 kcal/mol using parameters

from RNA structure [54,55].

[79]. Simultaneous AA (207-229) and AC (208-228)
mutations occur in one influenza C sequence (GenBank
accession: AB034159).

In contrast to influenza B and C, structures in influ-
enza A are predicted to occur near (79 and 51 nts down-
stream from), but not overlap with, the 5" splice sites in
segments 7 and 8. Segment 8 of influenza A is homolo-
gous to segments 8 and 7 of B and C, respectively, and
also produces mRNA for the NEP protein via alternative
splicing. The structure in segment 8 of influenza A has
been predicted to fold into an extended stem capped by
a multibranch [37,45] or hairpin loop, where the hairpin
is strongly favored in an avian enriched clade [37]. In
vitro mapping experiments, however, reveal a hairpin
structure for the consensus sequence that includes the
human clade [80]. The 5’ structure in influenza A
segment 7 is predicted to form an extended stem topped
with a multibranch loop and in vitro mapping is con-
sistent with this structure (Jiang T, Kierzek E, Moss
WN, and Turner DH unpublished experiments). Thus,

structure is proposed to play roles in splicing of seg-
ments 7 and 8 of influenza A [37].

Structure predicted at the 5’ splice site of influenza C
segment 6 contains in-frame start codons
A conserved hairpin is also predicted to form in segment
6 of influenza C (Figure 4), which codes for the M1 and
P42 (M1'/CM2) proteins. The essential M1 matrix pro-
tein of influenza C is produced by splicing of segment 6
mRNA, whereas in influenza A and B, M1 is produced
via un-spliced mRNA [81]. The 58 nucleotides surroun-
ding the 5" splice site of influenza C are predicted to
fold into a hairpin, with the 5" splice site contained
within the apical tetra-loop (Figure 4). Splicing ele-
ments presented in single-stranded regions of hairpin
loops can be more accessible to trans-acting splicing
factors [82-85].

CM2 is an ion channel protein, which is also involved
in packaging of vRNPs during virus assembly, and re-
lease of VRNPs during virus uncoating [86,87]. CM2 is
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Figure 3 Predicted secondary structure for the consensus sequence at the 5’ splice site of influenza C segment 7. Figure annotations

and base pair count table are as described in Figure 2. The double point mutation occurring from canonical to non-canonical is indicated in red.
The predicted folding free energy, AG®s,, for the consensus hairpin is —22.3 kcal/mol using parameters from RNAstructure [54,55].

A\

believed to be structurally and functionally equivalent to
proteins M2 of influenza A and NB of influenza B
[88,89]. CM2 was hypothesized to be produced by one
of the three in-frame AUG start codons (Figure 4), espe-
cially the start codon at position 705-707 that occurs
within a predicted strong ribosome initiation site se-
quence (RNNAUGG) [90]. It was later found that CM2
is instead produced by proteolytic cleavage of an internal
signal peptide in the P42 (M1'/CM2) protein [91,92].
The precise mechanism for the lack of translation initi-
ation at these cryptic start sites is unknown. Interest-
ingly, all three AUG codons occur in the helices of the
predicted hairpin (Figure 4). Cryptic AUG start codons
sequestered in helices are also found in Polio and Cox-
sackieviruses [93,94]. Translation initiation is commonly
reduced when start codons are embedded in RNA
secondary structure [95,96], especially when the mRNA
folding free energy near the start codon is more

favorable than roughly -12 kcal/mol [97]. Notably, the
influenza C segment 6 hairpin has a predicted folding
free energy of -13.9 kcal/mol at 37°C suggesting this
hairpin may suppress the use of these cryptic start
codons in addition to influencing splicing of M1.

The hairpin structure has 99.8% base pair conservation,
with two consistent mutations (Figure 4); U706-A745 and
A719-U734 change to UG and GU, respectively, preserv-
ing base pairing.

Structures predicted at 3’ splice sites

Stable and conserved structures are predicted for the
nucleotides surrounding the 3" splice sites in segment 8
of influenza B (Figure 5) and segment 7 of influenza C
(Figure 6). In segment 8 of influenza B, a 53 nt region
including the 3" splice site can fold into either a hairpin
or a pseudoknot [43,44]. In the hairpin (Figure 5), the 3’
splice site occurs in a helical region near a 1x1, homo-
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is —13.9 kcal/mol using parameters from RNAstructure [54,55].
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Figure 4 Secondary structure predicted at 5' splice site of influenza C segment 6. Boxed residues indicate cryptic start codons. Other
figure annotations and base pair count table are as described in Figure 2. The predicted folding free energy, AG®;;, for the consensus sequence

purine internal loop, similar to the 5" splice sites. In the
pseudoknot model proposed by Gultyaev et al. [43,44],
the 3" splice site is situated in the loop that spans both
helixes. The lower stem can be extended by 4 additional
base pairs, which would sequester the splice site and also
place it near the 1x1 homo-purine loop (Figure 5). The
basal stem encompassing the 3 splice site is common to
both the hairpin and extended pseudoknot models, thus
transitioning between the two folds would require a
modest structural rearrangement. In segment 7 of influ-
enza C, a 36 nt region encompassing the 3 splice site is
also predicted to fold into a hairpin or a pseudoknot
(Figure 6). In the hairpin, the splice site is located in the
apical loop and in the pseudoknot it is located in the 3
nt loop joining the two helices.

Three of the 3’ structures in influenza B (Figure 5)
and C (Figure 6) are 100% conserved, and the pseudo-
knot in influenza B is 99.9% conserved. The extended
pseudoknot and hairpin folds in segment 8 in B have a
frequent consistent mutation, G694-C729 to GU, in the
base pair bordering the splice site. The pseudoknotted

fold has another single mutation to a non-canonical pair:
U684-A716 to a CA pair.

The 3" splice sites of segments 7 and 8 of influenza A
can fold into a hairpin or pseudoknot in a manner similar
to that predicted for influenza B and C [37,43,44,98,99].
For segment 7 of influenza A (alternatively spliced to pro-
duce M2), native gel analysis showed that the 3" splice site
could form an equilibrium between the pseudoknot and
the hairpin [98]. Chemical and enzymatic mapping, as well
as oligonucleotide binding support both pseudoknot and
hairpin conformations [98]. In the pseudoknot conform-
ation, the 3’ splice site is sequestered in a helix and in the
hairpin conformation the splice site is exposed in a 2x2
nucleotide internal loop. The pseudoknot/hairpin confor-
mations predicted at the 3" splice site of segment 8 were
experimentally verified by Gultyaev et al. [43]. These
conformational switches are proposed to regulate splicing.
A similar switch may regulate splicing of segments 8 and
7 of influenza B and C, respectively.

Influenza B segment 6 and influenza C segment 6 en-
code ion channel proteins NB and CM2, respectively,
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Figure 5 Secondary structure conformations at the 3’ splice site of influenza B segment 8. The top structure is the predicted hairpin for
the consensus sequence and the corresponding base pair count table. Below is the alternative pseudoknot conformation and base pair count
table. These structures were also proposed by Gultyaev et al. [43]. Figure annotations and base pair count table are as described in Figure 2. The
predicted folding free energy, AG’s,, for the consensus sequence: in hairpin conformation is —9.3 kcal/mol using parameters from RNAstructure
[54,55] and in pseudoknot conformation is —6.0 kcal/mol using parameters from Mathews et al. [55] and Cao and Chen [61].

but are not predicted to form a pseudoknot/hairpin
switch. Unlike M2 in influenza A, NB and CM2 are not
produced from mRNA alternative splicing and thus,
would not be expected to maintain this structural switch
that has apparent importance for splicing regulation.

Conclusions

This study predicts regions of conserved secondary
structure in the coding regions of influenza B and C (+)
RNA, which allows comparisons to be made with RNA
structures in influenza A. In influenza B and C, regions
of high thermodynamic stability and/or base pair conser-
vation are found at splice sites. Similarly, influenza A
also has conserved structure at or near splice sites

[37,43,45]. In the alternatively spliced influenza A, B,
and C RNA segments, structure is predicted at or near
the 5" splice site. In contrast to influenza A, however,
the 5" splice sites in influenza B and C are predicted to
be part of hairpins. Four of five 3" splice sites are pre-
dicted to have a pseudoknot/hairpin structural switch.
The exception is segment 6 in influenza C. This segment
differs from other spliced segments of influenza: it
splices to form a UGA stop codon at the splice junction.

Similar to segment 8 of influenza B and segment 7 of
influenza C, structure is proposed to occur at the 5’
splice site of influenza C segment 6 (Figure 4). This
structure, in addition to containing the 5" splice site, also
buries cryptic start codons in its strong secondary structure.
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igure 6 Predicted secondary structure conformations at the 3’ splice site of influenza C segment 7. The top structure is the predicte
F 6 Predicted d truct fi t t the 3' spl te of infl C t 7. The top struct th dicted
hairpin for the consensus sequence and the corresponding base pair count table. Below is the DotKnot [59] predicted, alternative pseudoknot
conformation and base pair count table. Figure annotations and base pair count table are as described in Figure 2. The predicted folding free
energy, AG®s;, for the consensus sequence: in hairpin conformation is —3.8 kcal/mol using parameters from RNAstructure [54,55] and in
pseudoknot conformation is —9.9 kcal/mol from DotKnot [59].

This structural model provides a possible mechanism by
which these cryptic start codons are suppressed.

RNA secondary structure is known to play an import-
ant role in regulating splicing by hiding or revealing
splice sites and protein binding sites, or by changing the
distance between regulatory elements [70]. Splicing can
also be regulated via protein-induced RNA conform-
ational switching [100,101] or small molecule binding
[102,103]. Previous studies have postulated roles for
RNA secondary structure in the regulation of splicing in
influenza virus [104,105]. The predicted structures in
Figures 2, 3, 4, 5 and 6 provide further evidence for the
importance of RNA structure in influenza splicing.
These results suggest that these RNA structures may be

attractive targets for therapeutics as the targeting of
RNA splicing with drugs is a growing area of research
[106]. Knowing the structure/function relationships of
influenza RNAs may be useful in designing therapeutics
that specifically target these structures: with small mole-
cules [107-111], oligonucleotides [112-114], or aptamers
[115], for example.
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