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Abstract

Background: MicroRNAs (miRNAs) are endogenous ~22 nt RNAs that are identified in many species as powerful
regulators of gene expressions. Experimental identification of miRNAs is still slow since miRNAs are difficult to isolate
by cloning due to their low expression, low stability, tissue specificity and the high cost of the cloning procedure.
Thus, computational identification of miRNAs from genomic sequences provide a valuable complement to cloning.
Different approaches for identification of miRNAs have been proposed based on homology, thermodynamic
parameters, and Cross-species comparisons.

Results: The present paper focuses on the integration of miRNA classifiers in a meta-classifier and the identification
of miRNAs from metagenomic sequences collected from different environments. An ensemble of classifiers is
proposed for miRNA hairpin prediction based on four well-known classifiers (Triplet SVYM, Mipred, Virgo and EumiR),
with non-identical features, and which have been trained on different data. Their decisions are combined using a
single hidden layer neural network to increase the accuracy of the predictions. Our ensemble classifier achieved 89.3%
accuracy, 82.2% f-measure, 74% sensitivity, 97% specificity, 92.5% precision and 88.2% negative predictive value when
tested on real miRNA and pseudo sequence data. The area under the receiver operating characteristic curve of our
classifier is 0.9 which represents a high performance index.

The proposed classifier yields a significant performance improvement relative to Triplet-SVM, Virgo and EumiR and a
minor refinement over MiPred.

The developed ensemble classifier is used for miRNA prediction in mine drainage, groundwater and marine
metagenomic sequences downloaded from the NCBI sequence reed archive. By consulting the miRBase repository,
179 miRNAs have been identified as highly probable miRNAs. Our new approach could thus be used for mining
metagenomic sequences and finding new and homologous miRNAs.

Conclusions: The paper investigates a computational tool for miRNA prediction in genomic or metagenomic data.
It has been applied on three metagenomic samples from different environments (mine drainage, groundwater and
marine metagenomic sequences). The prediction results provide a set of extremely potential miRNA hairpins for
cloning prediction methods. Among the ensemble prediction obtained results there are pre-miRNA candidates that
have been validated using miRbase while they have not been recognized by some of the base classifiers.
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Background

MicroRNAs (miRNAs) are short (~22 nucleotides),
endogenously-initiated non-coding RNAs that control
gene expression post transcriptionally, either by the degra-
dation of target mRNAs or by the inhibition of protein
translation.

The prediction of miRNA genes is a challenging prob-
lem towards the understanding of post transcriptional
gene regulation. The two frontier strategies for miRNA
prediction are experimental cloning and in silico [1]. How-
ever, due to the difficulty of miRNA prediction using
experimental techniques, computational approaches have
been developed to conquer some of the technical difficul-
ties of the experimental approaches.

The miRNA identification problem is usually defined
over pre-miRNAs because their lengths are larger than
that of mature miRNAs and, hence, more information
can be extracted from their sequences. Moreover, the
hairpin stem loop secondary structure of pre-miRNAs is
an essential feature used in the computational identifica-
tion of miRNAs. However, many sequence fragments in
a genome have a similar stem-loop hairpin structure, in
spite of not being genuine miRNA precursors [2].

Two major computational prediction strategies are con-
sidered, either by using homology or by using machine
learning methods. Most miRNA prediction methods
were developed to find out homologous miRNA in
closely related species. These methods use comparative
genomics information besides structural features that are
extracted from the typical hairpin structures of known
pre-miRNAs. ‘Blastn’ adopts the homology principle in
miRNA prediction [3].

Comparative genomics is used to filter most of the
hairpins that are not conserved in related species. This
filtration step makes the method unable to recognize new
miRNAs for which there are no known close homolo-
gies. Therefore, the attitude turned to focus on machine
learning methods to distinguish real pre-miRNAs from
other hairpin sequences with similar stem loop features
(pseudo-miRNA) [4]. The early machine learning methods
used to discriminate real versus pseudo-miRNAs are miRScan
[5], miRseeker [6], miRfinder [7] and miRCheck [8].

An amazing extensive wide variety of support vector
machine systems have been built, aiming to get better
results in predicting miRNAs. The first two of these sys-
tems are miR-abela [9] and Triplet-SVM [2].

The miR-able algorithm succeeded to predict between
fiftty and hundred novel pre-miRNAs [9]. 30% of these
have been verified experimentally as real miRNAs.

Triplet-SVM has been prominent due to its simplic-
ity [2]. In this method, a set of features are extracted,
and provided to a support vector machine classifier to
differentiate between real and pseudo-miRNAs. 90%
recognition rate has been achieved.
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RNAmicro is a compound prediction method [10]. It
first applies a homology strategy to recognize conserved
almost-hairpins in a multiple sequence alignment. Then
it computes a vector of numerical descriptors from each
almost-hairpin that is used by a support vector machine
classifier.

Two other systems have been derived from Triplet-SVM
approach: MiPred [4], and miREncoding [11]. MiPred
annexed two thermodynamical features (Minimum Free
Energy MFE, and the P-value), and succeeded in getting
better results by using Random Forests instead of SVM.
MiREncoding added several new features and tried to
enhance the SVM classification performance by using a
feature selection algorithm.

Another SVM, miPred [12], improved the accuracy of
the previous SVM-classifiers by making extensive use of
thermodynamical features. It uses normalized features
which are computed on a large number of shuffled ver-
sions of a given pre-miRNA. However, this method is
not reinforced by biologists due to its lack of biologi-
cal plausibility. In addition, the normalization process is
computationally time consuming.

The microPred [13] is another forceful SVM classi-
fier that obtained more effective results than the pre-
vious classifiers due to the use of a negative data set
(consisting of ncRNA and pseudo hairpins), new bio-
logically relevant features, feature selection, extensive
and systematic training and testing of the classifier
system.

Virgo is a viral miRNA precursors prediction method
[14]. The method is based on both sequence and structure
features that are extracted and fed to an SVM classi-
fier to distinguish pre-miRNA hairpin sequences from
pseudo-miRNA hairpin sequences. The method is more
efficient than other ab-initio methods for predicting viral
and mammalian miRNAs.

EumiR, being an eukaryotic microRNA precursor pre-
diction server, queries multiple sequences to determine if
they are true miRNAs or not [15]. EumiR and Virgo share
the same prediction principle. Eukaryotic pre-miRNA are
used in training EumiR.

YasMIiR is, also, an SVM for miRNA identification [16],
whose novelty is two-folded: firstly, many of its fea-
tures incorporate the base-pairing probabilities provided
by Mc-Caskill’s algorithm and secondly, its classification
performance has been improved by using a similarity
(“profile”-based) measure between the training and the
testing miRNAs and a set of carefully chosen (“pivot”)
RNA sequences.

In the present paper, a computational method is pro-
posed for the identification of miRNA precursors. The
method combines the outcomes of four previously devel-
oped classification approaches using a neural network, to
enable more accurate prediction of miRNAs.
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Our method investigates whether a given sequence is
a true or pseudo-miRNA using Support vector machines
(SVM) and Random Forests (RF), since both of them are
optimal binary classifiers.

Our de-novo miRNA prediction method is applied on
three metagenomic samples from different environments.
The prediction results provide a set of highly probable
miRNA hairpins for future laboratory testing. This may
lead to the discovery of new miRNA candidates.

Specifically, Triplet-SVM [2], MiPred [4], Virgo [14] and
EumiR [15] classifiers are used for miRNAs prediction,
and their prediction results are combined using a single
hidden layer neural network in the hope of obtaining a
more accurate miRNA predictor.

Our ensemble classifier achieved an excellent perfor-
mance. This encouraged us to rely on it in identifying
new miRNA candidates. We identified 106 sequences in
the mine drainage metagenome, 55 in the groundwater
metagenome and 18 in the marine metagenome as highly
probable miRNAs.

This paper is organized as follows. Section ‘Background’
gives an overview of the miRNA prediction techniques.
Section ‘Methods’ presents the proposed methodology.
Section ‘Results and discussions’ analyses the prediction
results. Section ‘Conclusions’ concludes the paper and
suggests future work.

Methods

This section discusses the data sets that are fed into
our ensemble classifier. Then, the mechanism of the data
preparation is described. Finally, the structure of the
adopted approach is explained in details.

Data sets

Generally, microbiology has concentrated on individual
species in pure laboratory. Therefore, the understand-
ing of microbial communities has lagged behind under-
standing of their individual members. Metagenomics is a
new tool to study microbes in the complex communities;
where they live and how they interact with their surround-
ing environments [17,18]. Metagenomics (also known
as environmental genomics or community genomics) is
the study and analysis of genomes of microbial organ-
isms recovered directly from their natural environments
[17,19].

Whole Genome Shotgun sequencing is the procedure of
breaking up a target genomic region into many segments,
and sequencing them randomly. Through whole-genome
shotgun sequencing of collected DNA from environmen-
tal patterns, metagenomics has played the role of system-
atic realization of the nucleotide sequence, followed by
analysis of the structure, regulation and function of genes.
The primary benefit of metagenomics is that it provides
the ability of effectively characterizing the genetic variety
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existing in samples, without the need for isolation and lab
refinement of individual species [18].

In this paper, an ensemble approach is used for miRNA
mining in three metagenomic sequences from differ-
ent environments. These metagenomes (mine drainage,
groundwater, and marine metagenomic sequences) have
been sequenced in whole-genome shotgun sequencing
projects. Details about these projects are available in [20-22].

Data preparation

Three samples of the considered metagenomes (mine
drainage, groundwater, and marine metagenomic
sequences): each consisting of twenty contigs from
the metagenome; have been randomly selected. As
the miRNA prediction problem is usually defined over
pre-miRNA and these stem-loop precursors are approx-
imately 60~70 nucleotides [23,24], we developed a
Perl script to divide each sample into fragments (70
nucleotides each). Many studies uses the same sample size
[10,25]. Each fragment in the sample starts with only one
nucleotide shift from the start of the previous fragment
to make sure that the miRNA mining covers all possible
metagenomic sequences. This yields 97336 sequences for
the mine drainage metagenome, 24625 sequences for the
ground water metagenome, and 16709 sequences for the
marine metagenome. Then, a feature vector; extracted
from these fragments; is fed to the ensemble classifier to
decide whether it is possibly a miRNA or not.

The ensemble classifier

The proposed ensemble approach aims to combine the
decisions of four miRNA predictors that have been trained
on different data and features. The motivation behind
the assembling of the classifiers is the better performance
and results achieved by consensus predictors and meta-
classifiers in bioinformatics analysis that make the imple-
mentation of a meta-classifier a good decision for our
method. The performance of any classifier is affected by
several factors including the size of the training data set,
its dimensionality, the number of classes to be differen-
tiated and their mutual separability. Ensemble methods
have been devised to reduce over-fitting and improve
the performance of individual classifiers by fusing their
decisions [26].

Ensemble design is either based on bagging or boosting.
In bagging (bootstrap aggregating) 'm’ models are fitted
using 'm’ bootstrap samples and combined by averaging or
voting. Samples bootstrapping aims at creating diversity
in the training data while average/voting aims at improv-
ing classification performance. Boosting is implemented
either by varying the weights given to the data samples or
by forming committees. Boosting is based on the idea that
a strong classifier can be constructed from weak classi-
fiers [27]. Our proposed classifier adopts a hybrid scheme.
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Table 1 Main characteristics of the classifiers used in the proposed ensemble

Classifier Learning algorithm
Triplet-SYM SVM

Mipred RF

Virgo SVM

EumiR SVM

Ensemble-based Committee classifier

The base classifiers have, originally been trained using dif-
ferent data samples of different dimensionality. Therefore,
diversity in the training data is achieved (bagging princi-
ple). Also, it belongs to the class of "committees” (boosting
principle). Our adopted scheme offers the advantage of
being non-linear (because of the sigmoid activation func-
tions in the first layer of the proposed Neural Network).
Generally, classifiers differ in the training features, the
training data set or the classification method itself. The
choice of the four classifiers used in our proposed system
is based on these different characteristics. Triplet-SVM,
Virgo, EumiR are based on the SVM classification tech-
nique while MiPred uses Random Forests classification
technique. All of the four classifiers make use of structure-
sequence features to categorize true pre-miRNAs and
pseudo-miRNAs. However Triplet-SVM and MiPred use
the triplet elements definition to represent these features.
Moreover, Virgo and EumiR utilize a different definition
of these features. In addition to the structure-sequence
features, MiPred adds two thermodynamic features. The
data used for the training of each of the four classifiers is
different. Triplet-SVM and MiPred are based on human

Features
A vector of 32 structure-sequence features
A vector of 32 structure-sequence features, MFE and P-value
A vector of 512 structure-sequence features
A vector of 512 structure-sequence features

A vector of 4-dimensions (the outputs from the base classifiers)

Training data
Human pre-miRNAs
Human pre-miRNAs
Viruses pre-miRNAs
Different Eukaryotic pre-miRNA

Human pre-miRNAs

pre-miRNAs as positive samples. Virgo relies primarily
on viruses pre-miRNAs, and EumiR uses pre-miRNAs
from different eukaryotic species. Table 1 summarizes the
main characteristics of the classifiers used in the proposed
ensemble.

In addition to the previously mentioned classifiers, a
single hidden layer neural network is used to tune their
decisions, as shown in Figure 1. This neural network is
trained using supervised learning with the pseudo-inverse
technique. The training data set used is different than
the ones used in the training of each base classifier. The
architecture components are discussed below:

Triplet-SVM
The triplet-SVM classifier has been developed for pre-
dicting a query sequence with hairpin structure as a real
miRNA precursor or not [2]. Triplet SVM uses a set of
features that combines the local contiguous structures
with sequence information to characterize the hairpin
structure of real versus pseudo-miRNAs.

RNAfold program from the RNA Vienna package has
been used to predict the secondary structure of the query

4 i N
Triplet-SVM i
classifier
4 N
Virgo classifier >
. J
4 N
EumiR classifier ,
. J
4 N
MiPred classifier v
. 7
Figure 1 The adopted architecture for miRNA prediction ensemble-based classification approach.

Final
prediction
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sequences [28]. In the predicted secondary structure, Each
nucleotide is paired or unpaired, represented by brack-
ets "(" or ")" and dots ".", respectively. The left bracket
"(" indicates that the paired nucleotide is near the 5-end
and can be paired with another nucleotide near the 3’-
end, which is represented by a right bracket")". The study
utilizes "(" for both situations. According to the previ-
ous mentioned definition for any 3 adjacent nucleotides,
there are 8 possible structure combinations: "(((", "((.", "(..",
"G T (Y and"L", which lead to 32 (4 % 8) pos-
sible structure-sequence combinations, denoted as "U(((",
"A((.", etc... This defines the triplet elements. The triplet
elements have been used to represent the local structure-
sequence features of the hairpin. The occurrence of all
triplet elements are counted along a hairpin segment,
developing a 32-dimensional vector of features, which is
then normalized to be the input vector to the SVM [2].

The SVM classifier is formerly trained depending on
the triplet element features of a set of real human pre-
miRNAs from the miRNA Registry database [29] as well as
a set of pseudo-miRNAs from the NCBI RefSeq database
[30]. The training set contains 163 human pre-miRNAs
(positive samples) and 168 pseudo-miRNAs (negative
samples) randomly chosen.

A 90% accuracy in distinguishing real from pseudo-
miRNA hairpins in the human genome and up to 90% pre-
cision in identifying pre-miRNAs from other 11 species
(including C. briggsae, C. elegans, D. pseudoobscura,
D.melanogaster, Oryza sativa, A. thaliana and the Epstein
Barr virus) have been achieved.

MiPred
MiPred classifier is a Random Forest based method clas-
sifier which differentiates real pre-miRNAs from pseudo-
miRNAs using hybrid features. The features consist of
local structural sequence features of the hairpin with two
thermodynamically added features (MFE of the secondary
structure that is predicted using the Vienna RNA soft-
ware package [28] and the P-value that is the fraction of
sequences in a set of dinucleotide shuffled sequences hav-
ing MFE lower than that of the start sequence [31]. P-value is
determined using the Monte Carlo randomization test [32]).
MiPred is one of the refinements of Triplet-SVM in
which the SVM is replaced by a Random Forests ensemble
learning algorithm. The Random Forest prediction model
has been trained on the same training data set used by
the triplet-SVM-classifier. It achieved nearly 10% greater
overall accuracy compared to Triplet-SVM on a new test
dataset.

Virgo

The Virgo classifier is an efficient prediction classifier that
differentiates true pre-miRNAs from pseudo-miRNAs
[14]. The classifier has been developed based on sequence
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structural features. The feature space consists of both
sequences and their structural context. A sequence is
folded using RNA-fold and the structural context of over-
lapping triplets is determined. Sequence structure feature
space can have 64 possibilities and each nucleotide can
have two states, ‘1’ if it is bound and ‘0’ if it is unbound.
Thus, such a feature (eg AUG001, AUGO010 ... etc) can have
a total of 512 possibilities.

A support vector machine classifier(SVM“€"*)trained on
these feature elements is used for efficient distinction
between miRNA precursor hairpins and pseudo-miRNA
hairpins. The hairpin sequences for the eukaryotes used to
train Virgo were derived from miRBase (release 8.0) [33]
and the pseudo-miRNA sequences were derived from coding
regions of genes with no alternate transcripts. The coding
sequences were batch downloaded from Ensembl [34].

Virgo adopts a K-folding like technique for the train-
ing phase and selects the classifier that achieves the best
specificity. Another advantage of Virgo is using the ker-
nel idea (a Radial Basis function) to find the hyper sur-
face that optimally separates true from pseudo-miRNA
hairpins.

Virgo classifier performs better than recently reported
methods for machine learning prediction of viral and
mammalian pre-miRNAs. The algorithm is fast and efficient
and can scale for genome-scale predictions not only on viral
genomes, but also on much larger eukaryote genomes.

EumiR

EumiR is an eukaryotic microRNA precursor prediction
server from IGIB (Institute of Genomics and Integrative
Biology), which is able to query multiple sequences to
decide whether they are true miRNAs or not. EumiR uses
the same principle for prediction of Virgo. RNA-fold is
used for predicting the secondary structure of the input
sequence. Sequence-structure feature space is determined
using the same definition of Virgo.

EumiR utilizes LibSVM package to differentiate pre-
miRNA hairpins from pseudo-miRNA hairpins. It is
trained using eukaryotic pre-miRNAs from different
species as positive samples. EumiR is more efficient in pre-
dicting eukaryotic pre-miRNAs, but its efficiency level is
not the same for predicting viral microRNAs.

EumiR has better accuracy and sensitivity as compared
to mir-abela and BayesmiRNAfind on viral miRNA pre-
cursors from miRbase.

EumiR server has more analysis options. It is able to
BLAST miRbase, BLAST NCBI, SSEARCH miRbase, pre-
dict the secondary structure using RNAfold, predict using
BayesmiRNA(find and predict using mir-abela.

Single hidden layer neural network
Neural networks are well known for their learning capa-
bilities. Besides, they are model free, i.e., they do not
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Table 2 The neural network parameters

The optimal hidden layer parameters

Neurons Weights Bias

Neuron 0.8523 0.7190 0.0156 03914 -0.0528

Neuron2 -0.4030 -0.3190 0.7133 0.2558 0.8994

Neuron3 -0.03238 -0.7238 -0.2314 -0.0992 -0.8330
The optimal output layer parameters

Neurons Weights Bias

Output -0.0877 -0.0166 -1.1731 -0.0336

impose any restrictions on the statistical distribution
of their input data. The specific Neural-Network-based
ensemble works according to the following theorem: A
single-hidden layer feed-forward networks with at most
N hidden neurons (including biases) can learn N distinct
input-output pairs with zero error (It is possible to tol-
erate a certain amount of error by letting the number
of hidden neurons be less than N). This remains true
whether the activation function for the hidden neurons is
the signum (hardlimit or threshold) or sigmoid (logistic)
functions. The activation function of the output neuron(s)
is linear. The main advantage of this kind of network is
that the hidden layer weights are chosen randomly while
the output layer weights can be optimally estimated using
the pseudo-inverse solution of an over-determined set of
linear equations which is, also, the solution of the least-
squares error between the inputs and outputs to/from the
neural network. In our proposed ensemble, the inputs (to
the ensemble) are the output decisions of four known clas-
sifiers; for miRNA prediction; and the output is the corre-
sponding ground truth decision. Therefore, our objective
is to learn/calculate the best network weights that map
the decisions of the adopted classifiers into a single fused
output decision [35,36].

The designed Neural Network has 4 inputs, 3 hidden
and 1 output neurons. This network has 19 parameters.

1. The hidden layer parameters (15 parameters): (w;)
are the weights between the four inputs and the three
hidden neurons plus three biases for the hidden
neurons.
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2. The output layer parameters (4 parameters): (wy;) are
the weights between the three hidden neurons and
the single output neuron plus the bias of the output
neuron.

The inputs to the neural network are the outputs of the
classifiers described previously and the teaching output is
‘I’(*-1’) corresponding to true (false) miRNA. The neural
network MATLAB toolbox has been used for modelling
and training of the network.

Sigmoid activation functions are used for the hidden
layer neurons to maintain the non-linearity of the used
classifiers. A linear weighted combination of the outputs
of the hidden neurons represents the output of the ensem-
ble. This linear combination is produced by using a linear
activation function for the output neuron as shown in
Figure 1.

The weights of the hidden layer are initialized at
random. Since the output neuron is linear, its weight
vector can be calculated optimally by solving a set of
over-determined linear simultaneous equations using the
pseudo-inverse technique. Several random initializations
of the weights of the hidden layer have been tried and the
best neural network (that achieves the minimum sum of
the squares of the errors) has been selected. The optimal
parameters of the neural network are shown in Table 2.

The training dataset consists of 500 known human
pre-miRNAs; retrieved from miRBasel9 [33]; and 1000
pseudo hairpins; extracted from human RefSeq genes [30].

Results and discussions
Performance evaluation and prediction results of our pro-
posed ensemble classifier are discussed below.

Performance evaluation of the ensemble method using the
classification statistics
A testing data set consisting of 500 known human pre-
miRNAs and 1000 pseudo hairpins - different than those
used in training - retrieved from miRBasel9 [33] and
human RefSeq genes [30]; respectively; has been used for
testing the performance of the already trained ensemble
classifier.

Four measures are estimated: true positive (TP), true
negative (TN), false positive (FP), and false negative (FN).

Table 3 Performance of ensemble-based classifier versus the other adopted classifiers

Classifier Accuracy F-measure
Triplet-SVM 78.5% 63.9%
Mipred 89% 81.7%
Virgo 74.3% 66.4%
EumiR 74.1% 66.7%
Ensemble-based Classifier 89.3% 82.2%

Specificity Precision Sensitivity NPV
89.2% 72.6% 57.2% 80.7%
96.7% 91.8% 73.6% 87.9%
73.4% 58.9% 76.2% 80.1%
72.2% 58.3% 77.8% 86.7%

97% 92.5% 74% 88.2%
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Table 4 ROC- based evaluation metrics of the adopted and
designed classifiers

Classifier AUC 95% Confidence interval Standard error
Triplet-SVYM 0.76 0.709to 0.754 0.0121
Mipred 0.89 0.83210 0.869 0.0103
Virgo 0.72 0.7251t0 0.770 0.0118
EumiR 0.73 0.727100.772 0.0117
Ensemble-based 0.9 0.8361t00.872 0.0102

Classifier

As can be seen from Figure 2, the proposed classifier
outperforms the other classifiers for five out of the six
adopted performance indices.

Performance evaluation of the ensemble method using the
receiver operating characteristic

The receiver operating characteristic curve (ROC), is a
plot which evaluates the predictive ability of a binary clas-
sifier. ROC curves show how the number of correctly
classified positive examples varies relative to the num-
ber of incorrectly classified negative examples. Figure 3
shows the ROC curve of our Ensemble-based classifier
and the four adopted classifiers. Our Ensemble classi-
fier gives a significant performance progress comparing to
Triplet-SVM, Virgo and EumiR. Our Ensemble classifier,
in general, is consistently better than MiPred classifier. It
performs better in the more conservative region of the
graph, i.e. it is better at identifying likely positives miRNAs
than at identifying likely negatives miRNAs.

The area under the ROC curve (AUC) is a very widely
used measure of classifier performance. Table 4 displays
the AUC of each adopted classifier versus our ensem-
ble classifier, the 95% confidence interval for sensitivity/
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specificity and also the standard error of the AUC (using
the method of DeLong et al. for the calculation [37]).
The obtained results indicate that our ensemble-based
classifier is consistently better.

Figure 4 presents the ROC curves of our ensemble-
based as well as MiPred classifiers drawn using Fawcett’s
linear scan algorithm for different threshold values [38].
The algorithm generates ROC points given the set of
input samples to the classifier as well as the corresponding
obtained output scores. For a classifier (like our ensem-
ble); whose output is a score (a numeric value) that repre-
sents the degree to which an input sample is a member of
a class; each point on the ROC graph can be labelled by
the score (threshold) that produces it. Hence, each thresh-
old value (or score value) produces a different point in
ROC space. A threshold of +oo produces the point (0,
0). As the threshold is reduced, the curve climbs up to
the right, ending up at (1, 1) with a zero threshold. For-
tunately, we have found that Mipred, also, produces a
confidence score for each decision regarding a given input
sample.

The plot shows that no curve dominates the other
over all possible threshold values. Also, The AUC of
our ensemble-based classifier is still better than that of
“MiPred”. It is important to emphasize, here, on the fol-
lowing idea: the data according to which the ROC curves
have been drawn (in Figure 4) belong to the set of data for
which “Mipred” has been optimized (of course, this data is
different from the data used for training). However, when
both classifiers (Mipred as well as the designed ensem-
ble) are exposed to the metagenomic data (which are
collected from different environments) one expects that
the generalization power of the ensemble should be bet-
ter (simply because the ensemble consults other classifiers
that observe different features of the input samples).
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Figure 4 Receiver Operating Characteristic performance curve of Our Ensemble Classifier as well as MiPred using Linear scan.
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Prediction results

The proposed classifier has been applied on the metage-
nomic data sets; described in Section ‘Methods’; and the
obtained results are as follows: 106 miRNA candidates
have been discovered in the mine drainage metagenome,
55 miRNA candidates have been identified in the ground-
water metagenome and 18 miRNA candidates have been
predicted in the marine metagenome.

To wvalidate the predictions, a search for similar-
ity between miRBase miRNA sequences and the pre-
dicted sequences has been performed using the BLASTN
search algorithm. The miRBase is a database for miRNA
sequences, targets, and annotations, that is freely avail-
able for online searching at http://microrna.sanger.ac.uk/
[39]. The similarity search confirms that our results are
valuable. The search demonstrates that there are existing
mature miRNAs; that are homologous to the predicted
miRNAs sequences in various species. As an example,
the secondary structure of the marine metagenome pre-
miRNA candidate is shown in Figure 5. This miRNA
candidate is similar in homology to gma-miR393f gene
that has been experimentally verified as a mature
miRNA [40]. (See the predicted sequences in Additional
file 1).

Table 5 gives more samples of our prediction results
including how many homologous miRNAs are found with
the aid of BLASTN in each case. Also, the most trusted
homologues which achieve highest similarity scores are
listed with their corresponding species.

Conclusions

A computational tool for miRNA prediction; in genomic
or metagenomic data; has been developed. It has been
tested on three metagenomic samples from different
environments (mine drainage, groundwater and marine
metagenomic sequences). The prediction results provide
a set of highly probable miRNA hairpins for cloning pre-
diction methods.

The results obtained in this paper are very promis-
ing, paving the road for future research in differ-
ent directions. These directions include miRNA mining
in genomic/metagenomic sequences, developing other
approaches for ensemble classifiers design, and apply-
ing feature selection methods to choose a reduced set of
uncorrelated features for miRNA prediction.

Availability and requirements

The proposed method is a neural network ensemble clas-
sifier. The outputs from four known miRNA prediction
methods (Triple-SVM, MiPred, Virgo and EumiR); dealing
with different miRNA features; are fed into a single hidden
layer neural network that is trained to predict the likeli-
hood that an input sample is a miRNA. The source code
of each of the considered classifiers is freely accessible
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Table 5 Samples of the obtained prediction results

Sequence Number of Most trusted homologues
homologous
Marine sequence 1 56 gma-MIR393f and oan-miR-1353
Marine sequence 9 28 0sa-miR5072 and age- miR-513c-1
Mine drainage sequence 1 45 ppt- miR1215 and pdi- miR7720
Mine drainage sequence 18 49 pma-miR-138b and osa- miR1851
Mine drainage sequence 29 12 hco- miR-5983 and sme-miR-2167
Mine drainage sequence 35 29 ppt- miR537d and hma- miR-3005
Mine drainage sequence 41 34 gga- miR-6611 and mtr-miR5037a
Mine drainage sequence 53 27 aly- miR3444 and hsa-miR-4440
Mine drainage sequence 67 71 lja-miR7526f and cte- miR-96
Mine drainage sequence 72 26 cel-miR-90 and dps-miR-2543a-1
Mine drainage sequence 88 62 hsa- miR-3167 and bdi- miR7711
Groundwater sequence 1 12 ssc-miR-486-2 and hsa- miR-661
Groundwater sequence 10 14 ¢si-miR3950 and cel-miR-87
Groundwater sequence 16 98 mmu-miR-8112 and tgu-miR-2981
Groundwater sequence 23 35 rco-miR156h and hsa-miR-4483
Groundwater sequence 37 29 0sa-miR531 and ggo-miR-760
Groundwater sequence 50 54 hsv1-miR-H17 and mmu-miR-5131

[2,4,14,15]. The code for the neural network classifier is
available as supplementary file. (See Additional file 1).

The used training and testing data sets consisting of
known human pre-miRNAs and pseudo hairpins have
been retrieved from miRBasel9 [26] and human RefSeq
genes [24]; respectively. (See the data sets in Additional
file 2).

The approach is applied on metagenomic sequences
from different environments (mine drainage, groundwater
and marine metagenomic sequences) downloaded from
the NCBI sequence reed archive [20-22]. (The Metage-
nomic Samples are listed in Additional file 3).

106 miRNA candidates have been discovered in
the mine drainage metagenome sample, 55 miRNA
candidates have been identified in the ground-water
metagenome sample and 18 miRNA candidates have been
predicted in the marine metagenome sample. (The pre-
dicted sequences are listed in Additional file 4).

Additional files

Additional file 1: Source code. This file contains the program of the
presented classifier.

Additional file 2: Datasets. This file contains the training and testing
datasets.

Additional file 3: Metagenomic samples. This file contains the
metagenomic samples.

Additional file 4: Prediction results. This file contains all the prediction
results for the three metagenomic samples.
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Species

Glycine max and Ornithorhynchus anatinus
Oryza sativa and Ateles geoffroyi
Physcomitrella patens and Brachypodium distachyon
Petromyzon marinus and Oryza sativa
Haemonchus contortus and Schmidtea mediterranea
Physcomitrella patens and Hydra magnipapillata
Gallus gallus and Medicago truncatula
Arabidopsis lyrata and Homo sapiens
Lotus japonicus and Capitella teleta
Caenorhabditis elegans and Drosophila pseudoobscura
Homo sapiens and Brachypodium distachyon
Sus scrofa and Homo sapiens
Citrus sinensis and Caenorhabditis elegans
Mus musculus and Taeniopygia guttata
Ricinus communis and Homo sapiens
Oryza sativa and Gorilla gorilla

Herpes Simplex Virus 1 and Mus musculus
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