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Abstract

Background: Enormous volumes of short read data from next-generation sequencing (NGS) technologies have
posed new challenges to the area of genomic sequence comparison. The multiple sequence alignment approach is
hardly applicable to NGS data due to the challenging problem of short read assembly. Thus alignment-free methods
are needed for the comparison of NGS samples of short reads.

Results: Recently several k-mer based distance measures such as CVTree, dS2, and co-phylog have been proposed or
enhanced to address this problem. However, how to choose an optimal k value for those distance measures is not
trivial since it may depend on different aspects of the sequence data. In this paper, we considered an alternative
parameter-free approach: compression-based distance measures. These measures have shown good performance for
the comparison of long genomic sequences, but they have not yet been tested on NGS short reads. Hence, we
performed extensive validation in this study and showed that the compression-based distances are highly consistent
with those distances obtained from the k-mer based methods, from the multiple sequence alignment approach, and
from existing benchmarks in the literature. Moreover, as the compression-based distance measures are
parameter-free, no parameter optimization is required and these measures still perform consistently well on multiple
types of sequence data, for different kinds of species and taxonomy levels.

Conclusions: The compression-based distance measures are assembly-free, alignment-free, parameter-free, and thus
represent useful tools for the comparison of long genomic sequences as well as the comparison of NGS samples of
short reads.

Keywords: Alignment-free sequence comparison, Sequence distance, Sequence compression,
Next-generation sequencing

Background
Recent advances in next-generation sequencing (NGS)
technologies have produced massive amounts of short
read data, bringing up promising opportunities in many
biomedical research areas such as RNA-seq, ChIP-
seq, de novo whole genome sequencing, metagenome
sequencing, etc [1]. The short read data also poses
new challenges to the field of genomic sequence anal-
ysis, including the problem of sequence comparison.
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Sequence distance measures are often applied to compare
long genomic sequences such as 16S rRNA sequences,
mtDNA sequences, gene encoding sequences, or even
whole genome sequences [2-4]. The obtained distances
are then used for sequence clustering and classification,
for phylogenetic tree reconstruction, for inference of the
evolution and relationship of species, etc.
However, with the development of NGS technologies,

a new type of sequence data emerges: NGS short reads
are orders of magnitudes shorter than long genomic
sequences while being generated at unprecedented high
throughput. Hence, it is highly desirable to go beyond the
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comparison of long genomic sequences to develop new
methods for the comparison of NGS samples of millions
of short reads [5].
The multiple sequence alignment (MSA) approach is

hardly applicable to large data sets of NGS short reads
due to its prohibitive computational cost and the chal-
lenging problem of short read assembly, especially for
species without any reference genomes (de novo assem-
bly). Alignment-free methods [4] could overcome these
limitations of the alignment-based approach. They are
assembly-free and scalable to large data sets. Most exist-
ing alignment-free methods use k-mers (k-tuples or
k-words) as sequence signatures to measure sequence
distances [6-10]. Markov models were also proposed for
DNA sequence comparison [11], and could be incorpo-
rated with k-mer distributions to achieve more accurate
distances [12,13].
Recently several studies have further refined existing

techniques or developed new ones for better applications
to NGS short read data. In particular, the following three
measures have shown impressive performance on both
NGS short reads and long genomic sequences: CVTree
[6,7], dS2 [14,15] and co-phylog [10]. For a given k, CVTree
and dS2 measure the distance between two NGS samples
(or two DNA sequences) based on the normalized k-mer
frequencies. co-phylog, on the other hand, computes the
distance from the average nucleotide substitution rate in
the observed k-mers.
The k-mer based measures, however, depend consider-

ably on the parameter k. A non-optimal choice of k could
lead to a dramatically worse result in some cases. In gen-
eral, a larger value of k allows the measures to use more
parameters to better capture the full characteristics of the
input sequences (or NGS samples). However, there might
not be sufficient data available for an accurate estimation
of a large number of parameters. Moreover, the optimal
k value may depend on the types of sequence data, the
species of interest, and even the taxonomy level.When the
measures are applied to NGS data, we need to consider
evenmore factors such as the NGS platform, the sequenc-
ing depth, the read length, etc. Thus, how to choose an
optimal k is a very challenging task.
In this paper, we consider an alternative parameter-free

approach: compression-based distance measures [16-18].
Roughly speaking, data compression is aimed at reducing
as much redundant information in the given data as pos-
sible. Hence, if two NGS samples share similar patterns,
compressing them together should be more efficient, that
is, should use less storage space, than compressing them
separately. The distance between the two NGS samples
can then be calculated based on the sizes of the reduced
storage space. Readers are referred to [16,17,19,20] for
more formal theory about sequence complexity, compres-
sion and distance metrics. Compression-based distances

have been successfully applied to many clustering and
classification problems with data of various types, includ-
ing DNA sequences, texts and languages, time series,
images, sound, video [16-19,21,22]. However, they have
not been tested on NGS short reads yet.
In this study we demonstrate that the compression-

based distance measures can be successfully applied not
only to long genomic sequences (including 16S rRNA,
mtDNA, and whole genome sequences) but also to
NGS samples of short reads. Extensive validation was
conducted to assess the accuracy of the compression-
based and k-mer based distances on four data sets: 29
mammalian mtDNA sequences, 29 Escherichia/Shigella
genomes, 70 Gammaproteobacteria genomes, and 39
mammalian gut metagenomic samples. The data sets
include various types of genomic sequences, in silico and
real NGS short reads, different species and taxonomy
levels. The validation results show that the compression-
based distances are highly consistent with those distances
obtained from the k-mer based methods, from the MSA
approach, and from existing benchmarks in the litera-
ture. Our results also show that the k-mer based distance
measures depend critically on the choice of k, and the
optimal k varies across different data sets. In contrast, the
compression-based distance measures are parameter-free
and thus perform consistently well on all data sets without
any optimization of parameters. The details are presented
in the following sections.

Methods
Compression-based distancemeasures
Let x and y denote the two sequences (or NGS samples) to
be compared and xy denote their concatenation. Let C(x)
denote the size (that is, the number of bytes) of x after
being compressed by a sequence compression tool. Data
compression is aimed at reducing as much redundant
information in the given data as possible. Hence, if x and y
share similar patterns, compressing them together should
use less storage space than compressing them separately,
that is, C(xy) ≤ C(x) + C(y). Specifically, if x and y are
identical, one could expect that C(xy) � C(x) = C(y). On
the other hand, if x and y share no information, one could
expect that C(xy) � C(x)+C(y). These observations sug-
gest that one could measure the similarity/dissimilarity
between x and y based on their compressed sizes.
In particular, the following distance measure called

compression-based dissimilarity measure (CDM) was
proposed in [18]:

dCDM(x, y) = C(xy)
C(x) + C(y)

. (1)

This dCDM distance ranges from 1
2 (when x and y are

identical) to 1 (when x and y share no information).
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A more mathematically precise distance was proposed
in [16] using the notation of conditional compression:

d(x, y) = C(x|y) + C(y|x)
C(xy)

. (2)

Here C(x|y) denotes the compressed size of sequence
x conditioning on sequence y. C(x|y) � 0 indicates that x
and y are identical, while C(x|y) � C(x) indicates that x
and y share no information and thus they are expected to
be independent sequences. This distance ranges from 0 to
1 and satisfies the triangle inequality [16].
The authors further refined the distance d and proposed

the following in [17] which they referred to as normalized
compression-based distance (NCD):

dNCD(x, y) = max{C(x|y),C(y|x)}
max{C(x),C(y)} . (3)

Moreover, they have shown that the dNCD distance is
a proper metric, satisfying the non-negativity, identity,
symmetry, and triangle inequality axioms. Readers are
referred to [16,17,19,20] for more formal theory about
sequence complexity, compression and distance metrics.
In principle, any sequence compression tool can be used

to compute the above distances. More efficient compres-
sion should lead to more accurate distance estimates,
but may require longer compression time. In this study,
we used the tool GenCompress [23] since it can per-
form conditional compression on x|y. We used the same
compression tool for both long genomic sequences and
NGS short reads to ensure a consistent and fair compari-
son. When applying GenCompress to an NGS sample, we
first concatenated all short reads together to form a sin-
gle sequence and then compressed it. Our experiment
results show that the compression-based distances are
quite robust against different orders of concatenating the
short reads.

k-mer based distancemeasures
In this study, we considered three k-mer based distance
measures: CVTree [6,7], dS2 [14,15] and co-phylog [10].
Given twoDNA sequences (or twoNGS samples),CVTree
measures the correlation distance between their com-
position vectors, where each composition vector is the
collection of the normalized frequencies of k-mers. The
dS2 distance is an NGS-extension of the D2, D∗

2, and DS
2

statistics which were proposed in [8,9] for the comparison
of long genomic sequences. The main difference between
dS2 andCVTree lies in the normalization of the frequencies
of k-mers. The co-phylog distance is also based on k-mers
but not in the frequency context. It measures the distance
as the average nucleotide substitution rate in the observed
k-mers of the two sequences (or samples).

We used the implementations provided by the authors.
The tools CVTree and dS2 have options to input the param-
eter k. For CVTree, we tried k from 3 to 32 as allowed by
the tool. For dS2, we were not able to run it for k > 9 due
to some “segmentation fault” error, which seems to be a
problem of handling dynamic memory in the tool. There
is no input option for co-phylog, thus we simply used its
default settings.

Data sets
We examined the above six alignment-free distance mea-
sures dNCD, d , dCDM, CVTree, dS2, and co-phylog on both
NGS short reads and long genomic sequences (including
16S rRNA, mtDNA, and whole genome sequences). The
sequences and short reads were retrieved or simulated
from four data sets: 29 mammalian mtDNA sequences
[13,17,19,24], 29 Escherichia/Shigella genomes [10], 70
Gammaproteobacteria genomes [10], and 39 metage-
nomic mammalian gut samples [14,25].
The toolMetaSim [26] was used to simulate short reads

from genomic sequences. It offers four error models: 454,
Sanger, Empirical (Illumina), and Exact, corresponding to
three different NGS platforms and the non-error case,
respectively. We set the read length to be 100 and used
default settings for other parameters. Short reads were
simulated at four sampling depths: 1×, 5×, 10×, and 30×.
For applications to real NGS data sets, we recommend

that the sequencing coverage should be 5× or higher. In
order to ensure a fair comparison, it is also desirable that
the samples are produced from the same NGS platforms,
with similar experimental conditions, sequencing cover-
age, read lengths, etc. Strictly identical numbers of reads
or identical read lengths, however, are not necessary. For
example, the real NGS data set of 39 metagenomic sam-
ples analyzed in our study was produced from the 454
FLX platform, with a total of 2,163,286 reads (an aver-
age of 55,469 ± 28,724 (standard deviation, SD) reads per
sample, 261 ± 83 nucleotides per read) [25].

Accuracy assessment
To assess the accuracy of the alignment-free distances,
we compared them with those obtained from the MSA
approach if applicable and with existing benchmarks in
the literature. The tool Clustal Omega [27] was used to
perform MSA and then the tool dnadist in the package
PHYLIP [28] was used to calculate the distance matrix
from the MSA.
Following [10,14], we used distance correlation, tree

symmetric difference, and parsimony score to measure
the accuracy of the alignment-free distances. In particular,
we computed the correlation between each alignment-free
distance and the MSA/benchmark distance to evaluate
their consistency. The correlation between two distance
matrices was calculated as follows. We first converted
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each matrix into a single vector by concatenating all of
its rows side by side and then calculated the Pearson
correlation between the two vectors.
We also assessed the alignment-free distances by exam-

ining their corresponding phylogenetic trees. For each
distance matrix, the tool neighbor in the package PHYLIP
was used to construct a phylogenetic tree using the
neighbor joining method [29]. Subsequently, the tool
treedist in the package PHYLIP was used to calculate
the symmetric difference [30] between the resulting tree
from each alignment-free distance and the corresponding
MSA/benchmark tree. Each internal node in a phyloge-
netic tree corresponds to a subset of clustered leaf nodes.
Given two phylogenetic trees with the same set of leaf
nodes, the symmetric difference between them is the
number of internal nodes that are present in one tree but
not in the other.
Finally, to assess the clustering and classification abil-

ity of the alignment-free distances, we used the parsi-
mony score to measure how different a clustering tree
is from the true classification (using tools TreeClimber
[31], mothur [32]). The parsimony score of a clustering
tree is calculated by the tool TreeClimber as follows. First,
the parsimony score is set to 0 and the leaf nodes are
labeled according to their groups in the true classifica-
tion. The algorithm traverses from the leaf nodes to the
root and determine the labels of the internal nodes. The
labels of each internal node depend on the labels of its
two immediate child nodes. If they share common labels
then these common labels are assigned to the internal
node. If the two child nodes share no label, a penalty of
1 is added to the parsimony score and the internal node
is assigned with the union of the label sets of its two
child nodes. If a clustering tree is perfect, its parsimony
score is equal to the number of groups in the true clas-
sification minus one. The higher the parsimony score is,
the more different the clustering tree is from the true
classification.
The tool TreeGraph 2 [33] was used to plot phylogenetic

trees.

Results and discussion
Alignment-free comparison of mammalianmtDNA
sequences or their NGS short reads reconfirms the
hypothesis (Rodents, (Ferungulates, Primates))
One of the key advantages of the alignment-free distance
measures over the alignment-based approach is their scal-
ability to large data sets of whole genome sequences
or NGS short reads. However, in this section we first
want to assess their accuracy on a small, but very well-
studied data set of 29 mammalian mtDNA sequences.
This data set has been widely used for validation in exist-
ing literatures and hence reliable benchmarks are available
[13,17,19,24].

Performance onmtDNA sequences
First, we applied the six alignment-free distance measures
dNCD, d , dCDM, CVTree, dS2, co-phylog to the mtDNA
sequences and compared the results with those obtained
from the MSA method and from existing benchmarks.
Additional file 1: Table S1 shows that both compression-
based distances dNCD, d , dCDM and k-mer based distances
CVTree, dS2 (for optimal choices of k) are in good agree-
ment with the MSA distance. The dS2 distance has the
highest correlation with the MSA distance, whereas the
CVTree tree has the smallest symmetric difference from
the MSA tree. The compression-based distances, lead-
ing by dCDM, performed slightly worse. The co-phylog
measure, however, failed for this data set. One possible
explanation is that co-phylog may be only suitable for
closely related species, as the authors mentioned in [10].
We also noted that the CVTree and dS2 distances varied
remarkably with respect to k (Additional file 1: Table S2).
For instance, the smallest symmetric difference between
the CVTree tree and the MSA tree is 6 (k = 10), but the
largest is up to 48 (k = 16, 17). Similarly, the highest cor-
relation between the dS2 distance and the MSA distance is
0.88 (k = 8), but the lowest is down to 0.41 (k = 3).
The MSA tree (Additional file 2: Figure S1a) is highly

consistent with existing benchmarks in the literature
[13,17,19,24]. In particular, the MSA tree is nearly iden-
tical to those reported in [13,19], except for two minor
differences in the branches of dog, cat and the branches
of non-murid rodents (fat dormouse, squirrel, guinea pig).
Additional file 2: Figures S1a and S1b show that the main
difference between the MSA tree and the dCDM tree also
lies in the group Rodents. In addition, the dCDM tree indi-
cates that pig is closer to cow and sheep than to other
species in the group Ferungulates. The branches of dog,
cat in the dCDM tree are slightly different from those in the
MSA tree, but consistent with previously reported trees in
[13,19]. The trees reported by CVTree and dS2 (Additional
file 2: Figures S1c and S1d, respectively) also show differ-
ent results for the group Rodents. The phylogeny of the
group Rodents is actually still a controversial question, as
mentioned in previous studies [13,19]. The position of the
cluster of dog, cat, and seals in the group Ferungulates
reported by CVTree is not consistent with the other trees
and the benchmarks. Overall, all four trees support the
hypothesis of (Rodents, (Ferungulates, Primates)), as sug-
gested in [13,17,19,24], and have identical phylogeny of
the group Primates. The main differences among them
include the phylogeny of the group Rodents, the positions
of pig and hippo, and the subtree of dog, cat and seals in
the group Ferungulates.

Performance on NGS short reads
Next, we ask if similar results could be obtained from
the comparison of NGS samples of short reads. We used
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the tool MetaSim [26] to simulate short reads from the
mtDNA sequences with four error models 454, Exact,
Empirical (Illumina), Sanger, and four different sampling
depths 1×, 5×, 10×, and 30×. The read length was set at
100 bp.We used k = 10 for theCVTree distance and k = 8
for the dS2 distance as suggested by their optimal perfor-
mance on the mtDNA sequences in the previous section.
Since the MSA method is difficult to apply to NGS short
reads, we still kept the MSA distance and tree obtained
from the mtDNA sequences as benchmark. At the 1×
sampling depth, we found that the alignment-free results
were considerably different from the MSA benchmark
due to the low coverage. However, at the 5× sampling
depth, all five measures dNCD, d , dCDM, CVTree, and
dS2 produced comparably accurate results as when they
were applied to the mtDNA sequences. Further increasing
the sampling depth to 10× and 30× did not significantly
improve the accuracy of the distances.
Table 1 summarizes the results for the 5× sampling

depth, similar results for 1×, 10×, and 30× can be found
in Additional file 1: Table S2. We highlighted in boldface
both the best and the second best of the tree symmet-
ric difference and the distance correlation for each error
model because they are usually not very different. As
shown in Table 1, the dS2 distance achieved the highest cor-
relation with the MSA distance, followed by the CVTree
distance.
In terms of the symmetric difference from the MSA

tree, the dCDM distance performed consistently well
for all four error models, followed by the dS2 and dNCD

distances. Figure 1 shows the phylogenetic trees recon-
structed from the dCDM, CVTree, and dS2 distances for the
NGS short reads simulated using the Empirical (Illumina)
error model. The dCDM and CVTree trees are almost

Table 1 Comparison of the alignment-free distances and
theMSA distance for NGS short reads of themtDNA
sequences

dNCD d dCDM CVTree (k = 10) dS2(k = 8)

454 14 16 10 10 6

Exact 8 8 8 8 8

Empirical 6 8 4 8 12

Sanger 10 14 8 14 8

454 0.68 0.66 0.68 0.75 0.88

Exact 0.69 0.68 0.68 0.71 0.88

Empirical 0.69 0.69 0.66 0.69 0.81

Sanger 0.67 0.67 0.65 0.74 0.87

The short reads were simulated from the mtDNA sequences using four error
models 454, Exact, Empirical, and Sanger of the toolMetaSim at 5× sampling
depth. The two smallest tree symmetric differences and the two highest
distance correlation coefficients for each error model are highlighted in
boldface. Similar results for 1×, 10×, and 30× sampling depths can be found in
Additional file 1: Table S2.

identical to the MSA tree (Additional file 2: Figure S1a)
and existing benchmarks in the literature [13,17,19,24],
supporting the hypothesis (Rodents, (Ferungulates,
Primates)).
The dS2 tree, however, has more inconsistent branches

in the group Ferungulates, although it has the highest cor-
relation with the MSA distance. Last but not least, we
also noted that the alignment-free results obtained from
the simulated NGS short reads were consistent with their
corresponding counterparts obtained from the mtDNA
sequences in the previous section, especially for the non-
error (Exact) model (Table 2).
When applying GenCompress to an NGS sample, we

concatenated all short reads of the sample to form a sin-
gle sequence and then compressed it. Hence, it is also
important to examine if the compression-based distances
are robust against different ways of concatenation. We
repeated the experiment with the Empirical (Illumina)
samples for 10 different runs in each of which the reads
from each sample were concatenated in a random order.
Additional file 1: Table S8a shows that the compression-
based distances obtained from those runs are highly
consistent with each other. We also compared those dis-
tances with theMSA distance and the performance results
(Additional file 1: Table S8b) are similar to those reported
earlier in Table 1.
In summary, we have shown that all five alignment-

free distance measures dNCD, d , dCDM, CVTree, and dS2
can be successfully applied to both mtDNA sequences
and their NGS short reads. The distances obtained from
the NGS short reads were consistent with those obtained
from the mtDNA sequences, and they were all in good
agreement with the MSA distance as well as with exist-
ing benchmarks in the literature. The compression-based
measures dNCD, d and dCDM produced comparably accu-
rate distances as those optimal results obtained from the
k-mer based measures CVTree and dS2. The compression-
based distances were also shown to be quite robust against
different concatenations of short reads.
The CVTree and dS2 distances varied remarkably with

respect to k, and the optimal k was selected according
to the MSA benchmark. This may pose a challenging
problem when there is no benchmark available for vali-
dation. In contrast, the compression-based measures are
parameter-free and hence no optimization of any param-
eter is required.

Phylogeny of closely related Escherichia/Shigella genomes
In this section we assess the accuracy of the alignment-
free distances on a data set of 29 Escherichia/Shigella
genomes. Two main differences between this data set
and the previous one are: (i) it consists of whole genome
sequences and (ii) the species are closely related bacte-
ria in the genus Escherichia and the genus Shigella. This
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Figure 1 Phylogenetic trees reconstructed from NGS short reads of 29mtDNA sequences using: (A) dCDM, (B) CVTree (k = 10), (C)
dS
2(k = 8). The short reads were simulated from the tool MetaSim using the Empirical model and 5× sampling depth. The group of three species

platypus, opossum, and wallaroo was used as the outgroup to root the tree.

data set has been studied previously in [10,34] and the
authors have shown that the co-phylog distance was highly
consistent with the MSA distance in terms of both tree
symmetric difference and distance correlation. Hence, to
avoid the time-consuming MSA, we used the co-phylog
distance as benchmark.

Performance onwhole genome sequences
We first applied the five measures dNCD, d , dCDM,
CVTree, and dS2 to the whole genome sequences and
compared the results with the benchmark obtained from

Table 2 Comparison of the phylogenetic trees
reconstructed from themtDNA sequences and from their
NGS short reads

dNCD d dCDM CVTree (k = 10) dS2(k = 8)

454 10 14 8 8 4

Exact 2 0 4 2 2

Empirical 8 6 6 6 10

Sanger 12 10 8 10 8

The short reads were simulated from the mtDNA sequences using four error
models 454, Exact, Empirical, and Sanger of the toolMetaSim at 5× sampling
depth. The two smallest tree symmetric differences for each error model are
highlighted in boldface. Similar results for 1×, 10×, and 30× sampling depths
can be found in Additional file 1: Table S2.

the co-phylog measure. Table 3 shows that the dCDM dis-
tance performed the best in terms of both tree symmetric
difference and distance correlation. The results of dNCD

and d are also better than the best results of CVTree and
dS2, especially with the remarkably high correlation with
the benchmark co-phylog distance. The dS2 distance failed
for this data set and its correlation with the benchmark
co-phylog distance is much lower than that of the other
measures. The phylogenetic trees produced by theCVTree
distance are inconsistent for different values of k: it is
not clear whether the genus Shigella violates the mono-
phyleticity of the genus Escherichia (k = 15) or the mono-
phyleticity of the E.coli strains (k = 9, 21) (Additional
file 2: Figure S2). This was also mentioned previously
in [10].

Performance on NGS short reads
Next, we tested the measures on the data sets of NGS
short reads which were simulated from the whole genome
sequences. We used MetaSim with four error models and
different sampling depths as described earlier. Interest-
ingly, even at the lowest 1× sampling depth, we already
obtained accurate results from the three compression-
based distances dNCD, d , and dCDM. Figure 2 shows the
case of the dCDM distance in which the phylogenetic tree
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Table 3 Comparison of the alignment-free distances and the benchmark co-phylog distance for 29 Escherichia/Shigella
genomes

dNCD d dCDM CVTree (k = 9) CVTree (k = 15) CVTree (k = 21) dS2(k = 8)

Symmetric difference 16 14 12 20 20 16 24

Distance correlation 0.97 0.95 0.99 0.80 0.79 0.80 0.20

The two smallest tree symmetric differences and the two highest correlation coefficients are highlighted in boldface.

reconstructed from the NGS short reads (Exact model) is
almost identical to the tree reconstructed from the whole
genome sequences. Moreover, both trees are very similar
to the benchmark co-phylog tree. The main difference is
that in the benchmark co-phylog tree the group of S.boydii
and S.sonnei is clustered with E.coli first, whereas in the
dCDM trees this group is clustered with S.flexneri first.
Table 4 clearly shows that the compression-based dis-
tances dNCD, d , and dCDM outperformed the CVTree and
dS2 distances for all NGS data sets, in terms of both tree
symmetric difference and distance correlation.
We also noted that while the results of the compression-

based distances for the whole genome sequences (Table 3)
and for the NGS short reads (Table 4) were comparable,
the performance of the CVTree and dS2 distances became
worse when they were applied to the NGS short reads.
Similar results for the NGS data sets obtained from the
5× sampling depth can be found in Additional file 1:
Table S3.

In summary, the compression-based distances dNCD, d ,
and dCDM were consistent with the benchmark co-phylog
distance on both types of data, whole genome sequences
and NGS short reads of 29 Escherichia/Shigella bacte-
ria. They outperformed the two k-mer based distances
CVTree and dS2, which either failed or produced incon-
sistent results for different values of k. The results in
this section further emphasize the wide applicability and
the consistency of the compression-based distances. They
represent useful measures for accurate comparison of dif-
ferent types of long genomic sequences and NGS short
read data, for both mammalian and bacteria species.

Classification of 70 genomes in the class
Gammaproteobacteria into their correct orders
The previous section has focused on closely related bac-
teria at the genus level. We next applied the MSA and the
alignment-free distance measures to a larger data set at a
higher taxonomy level. In particular, the data set consists

Figure 2 Phylogenetic trees reconstructed from 29 Escherichia/Shigellagenomes using (A) co-phylog, (B) dCDM, and from NGS short reads
using (C) dCDM. The short reads were simulated from the toolMetaSim using the Exact model and 1× sampling depth. Escherichia Fergusonii was
used as the outgroup to root the tree.
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Table 4 Comparison of the alignment-free distances and the benchmark co-phylog distance for NGS short reads of 29
Escherichia/Shigella genomes

dNCD d dCDM CVTree (k = 9) CVTree (k = 15) CVTree (k = 21) dS2(k = 8)

454 16 14 12 22 22 54 50

Exact 12 10 10 22 24 36 50

Empirical 16 12 14 24 18 42 54

Sanger 12 10 10 28 24 40 50

454 0.96 0.96 0.97 0.74 0.87 0.31 0.04

Exact 0.97 0.97 0.98 0.82 0.82 0.61 0.05

Empirical 0.96 0.96 0.96 0.77 0.85 0.38 0.01

Sanger 0.97 0.97 0.97 0.78 0.86 0.36 0.04

The short reads were simulated from the Escherichia/Shigella genomes using four error models 454, Exact, Empirical, and Sanger of the toolMetaSim at 1× sampling
depth. The two smallest tree symmetric differences and the two highest correlation coefficients for each error model are highlighted in boldface. Similar results for 5×
sampling depth can be found in Additional file 1: Table S3.

of 70 genomes that were randomly chosen from 15 orders
of the classGammaproteobacteria (Additional file 1: Table
S4). As the number of genomes is large and they come
from different groups, it is interesting to ask if the dis-
tance measures can cluster and classify those genomes
into their correct orders. We used the parsimony score to
measure the difference between a clustering tree and the
true classification [31,32].
As the number of groups is 15, the optimal parsimony

score is 14. The higher the parsimony score is, the more
different the clustering tree is from the true classification.
This data set has been studied previously in [10] and the
authors found that the co-phylog distance did not perform
well because the bacteria of interest are not closely related.

Performance on 16S rRNA sequences
As it is challenging to perform MSA of 70 whole genome
sequences, we applied the MSA method to 16S rRNA
sequences of those 70 genomes to obtain the benchmark
distance and clustering tree (Additional file 2: Figure S3,
parsimony score = 18).
We then applied all six alignment-free distance mea-

sures dNCD, d , dCDM, CVTree, dS2, and co-phylog to the

16S rRNA sequences. Table 5 shows that the alignment-
free distances are highly correlated with the MSA dis-
tance and they all have similar parsimony scores (17-18),
except for the co-phylog distance. Overall, the dNCD dis-
tance performed slightly better than the others in terms
of parsimony score, tree symmetric difference, and dis-
tance correlation. Its clustering tree in Figure 3 shows
that the genomes of six orders Aeromonadales, Enter-
obacteriales, Legionellales, Pasteurellales,Vibrionales, and
Xanthomonadales are all correctly classified into their
groups. Most of the genomes in the remaining orders are
also well clustered.

Performance onwhole genome sequences and their NGS
short reads
Then, we applied the alignment-free distance measures to
the 70 whole genome sequences and their simulated NGS
short reads.
The clustering results obtained from the NGS short

reads are comparable to those obtained from the whole
genome sequences, and both are worse than those
obtained from the 16S rRNA sequences (Table 5). Since
this experiment was conducted at a high taxonomy level

Table 5 Comparison of the alignment-free distances and the benchmarkMSA distance for 70 Gammaproteobacteria
genomes

dNCD d dCDM CVTree dS2 co-phylog

parsimony score 17 18 18 17 18 25

16s rRNA sequences tree symmetric difference 50 52 52 50 62 108

distance correlation 0.93 0.90 0.93 0.92 0.92 0.65

parsimony score 22 22 21 21 31 26

Genome sequences tree symmetric difference 80 78 76 84 110 110

distance correlation 0.47 0.46 0.47 0.67 0.50 0.45

parsimony score 21 19 23 24 32 28

NGS short reads tree symmetric difference 90 70 84 88 114 116

distance correlation 0.60 0.58 0.53 0.63 0.48 0.42

The NGS short reads were simulated from the whole genome sequences using the Exact model ofMetaSim at 1× sampling depth . The two smallest parsimony scores,
the two smallest tree symmetric differences and the two highest correlation coefficients are highlighted in boldface. For CVTree, we used k = 7 for the 16S rRNA data
set and k = 12 for the whole genome and NGS data sets. For dS2, we used k = 6 for the 16S rRNA data set and k = 8 for the whole genome and NGS data sets.
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Acidithiobacillales
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Cardiobacteriales

Chroma�ales
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Methylococcales

Oceanospirillales
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Thiotrichales

Vibrionales

Xanthomonadales

Outgroup

Figure 3 Clustering tree reconstructed from 16S rRNA sequences of 70 Gammaproteobacteria genomes using the dNCD distance. Those 70
genomes belong to 15 orders which are indicated by different colors in the figure.

and the species were selected from different orders of
the class Gammaproteobacteria, one could expect that
the 16S rRNA sequences should be more reliable for the
classification than the whole genome sequences and their
short reads. It can also be seen from Table 5 that the four
distances dNCD, d , dCDM, and CVTree performed slightly
better than the other two distances, dS2 and co-phylog,

especially for the whole genome sequences and NGS short
reads. Last but not least, we noted that the optimal k of
CVTree and dS2 for the whole genome sequences were dif-
ferent from those for the 16S rRNA sequences (Additional
file 1: Table S5). The optimal k was selected to opti-
mize the parsimony score of the clustering trees. This
will not be possible if we have no prior knowledge about
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the true classification, which is usually the case in real
applications.

Classification of metagenomic samples from
mammalian gut reveals the diet and gut physiology of
the host species
In this section we consider a real metagenomic data set
that includes NGS short reads of 39 fecal samples from
33 mammalian host species. The host species can be clas-
sified into four groups according to their diet and gut
physiology: foregut-fermenting herbivores (13 samples),
hindgut-fermenting herbivores (8 samples), carnivores
(7 samples), and omnivores (11 samples) (Additional file 1:
Table S6). This data set has been studied previously in
[14,25]. In [14] the authors applied the CVTree and dS2
distances to these 39 metagenomic samples and found
that the sequence signatures (that is, the k-mers) of the
samples were strongly associated with the diet and gut
physiology of the host species. Hence we want to test if
the compression-based distance measures dNCD, d and
dCDM can also reveal any interesting results from this
metagenomic data set.

Performance on the sub-data set with 11 omnivore samples
excluded
Following [14,25], we first excluded 11 omnivore sam-
ples due to their complicatedmicrobial compositions. The
remaining 28 samples belong to three groups: foregut-
fermenting herbivores, hindgut-fermenting herbivores,
and carnivores. Since there is no benchmark tree for this
clustering problem, we only used the parsimony score to
evaluate the clustering trees. The optimal parsimony score
is 2 as there are only three groups in the true classification.
Table 6 shows that the parsimony scores of the CVTree

and dS2 distances for the optimal k are better than
those of the compression-based distances dNCD, d , and
dCDM. We also noted that the parsimony score of the
CVTree distance varied considerably (up to 11), while that
of the dS2 distance was more stable (Additional file 1:
Table S7).
The optimal tree obtained from the dS2 distance (k = 5,

parsimony score = 3) is shown in Additional file 2: Figure
S6. Only two samples Rock Hyrax 1 and 2 were wrongly

Table 6 Parsimony score for the classificationof 39
metagenomic samples using the alignment-free distances

dNCD d dCDM CVTree dS2

Sub-data set 6 7 5 3 3
(omnivore samples excluded)

Full data set 9 12 12 10 10

For CVTree, we used k = 6 for the full data set and k = 4 for the sub-data set in
which the omnivore samples were excluded. For dS2, we used k = 7 for the full
data set and k = 5 for the sub-data set. The two smallest parsimony scores for
each data set are highlighted in boldface.

classified to the group of hindgut-fermenting herbivores.
Although the optimal tree obtained from the CVTree
distance (k = 4) also has the same parsimony score of
3, it seems to have a serious mistake when classifying the
two carnivores Polar Bear and Lion to the groups of her-
bivores (Additional file 2: Figure S7). The clustering tree
obtained from the dCDM distance (parsimony score = 5)
is shown in Additional file 2: Figure S8. It correctly distin-
guished carnivores from herbivores. However, it wrongly
classified Rock Hyraxes, Colobus and Visayam Warty Pig
to the group of hindgut-fermenting herbivores.

Performance on the full data set
Then, we added back the 11 omnivore samples and
repeated the experiment with the full data set. As there
are now four groups in the true classification, the optimal
parsimony score is 3.
We found that the best parsimony score was obtained

from the dNCD distance, followed by CVTree (k = 6) and
dS2 (k = 7) (Table 6). It should be noted that the optimal
k of the CVTree and dS2 distances for the sub-data set and
for the full data set are different (Table 6, Additional file 1:
Table S7).
The clustering tree of the dNCD distance is shown in

Figure 4. The samples from foregut-fermenting herbivores
were well clustered together, except for Rock Hyraxes,
Colobus, and Visayam Warty Pig, which were classified
to the group of hindgut-fermenting herbivores. This is
similar to the earlier observation when the 11 omni-
vore samples were excluded. Figure 4 also shows that the
carnivore samples were grouped together. The omnivore
samples, however, were scattered throughout the groups
of herbivores and carnivores. This indicates the diversity
of the gut microbial communities of omnivores, as men-
tioned previously in [14,25]. Another important observa-
tion from Figure 4 is that the primates samples, including
Baboon 1 and 2, Chimpanzee 1 and 2, Orangutan, Gorilla,
Callimicos, Saki, Black Lemur, were clustered together
into one group. This may suggest that those primates
share common features in their gut microbial environ-
ments. Finally, it can be seen that two samples of the same
host species were often clustered close to each other such
as Chimpanzee 1 and 2, Lion 1 and 2, Okapi 1 and 2,
Bighorn Sheep 1 and 2, supporting the accuracy of the
classification and the dNCD distance.
The results obtained in this section have demon-

strated another application of the alignment-free mea-
sures of sequence distance: comparison and classification
of metagenomic samples of NGS short reads. This task
is of critical importance for the understanding of micro-
bial communities. Both k-mer based and compression-
based distance measures have revealed interesting results
about the microbial communities of mammalian gut from
their metagenomic samples. In particular, the information
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Herbivore Foregut Herbivore Hindgut Carnivore Omnivore
Figure 4 Clustering tree reconstructed from 39 metagenomic samples using the dNCD distance. The host species’ colors indicate their diet
and gut physiology: foregut-fermenting herbivores (green), hindgut-fermenting herbivores (yellow), carnivores (red) and omnivores (blue).

contained in the samples was found to be strongly asso-
ciated with the diet and gut physiology of herbivores,
carnivores, and omnivores. This agrees well with previous
studies in [14,25]. Moreover, our results obtained from
the compression-based distance measures also discovered
a strong similarity between the gut microbial communi-
ties of the primates. This interesting finding has not been
observed in previous studies.

Conclusions
In this paper we studied the application of compression-
based distance measures for the problem of sequence
comparison, with a special focus on NGS short read data.
Their key advantages are assembly-free, alignment-free,
and parameter-free. We conducted extensive validation
on various types of sequence data: NGS short reads, 16S
rRNA sequences, mtDNA sequences, and whole genome
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sequences. The sequence data was obtained from several
mammalian and bacteria genomes at different taxonomy
levels, as well as from microbial metagenomic samples.
The results show that the compression-based distance
measures produced comparably accurate results as the k-
mer based methods, and both were in good agreement
with the alignment-based approach and with existing
benchmarks in the literature.
The k-mer based distance measures, however, may pro-

duce inconsistent results depending on the parameter k,
the type of sequence data, or the species under con-
sideration. For example, the co-phylog measure was not
applicable to species with far evolutionary distances from
each other (data set of 29 mammalian, data set of 70
Gammaproteobacteria, data set of 39 metagenomic sam-
ples). The dS2 measure failed for the data set of 29 closely
related Escherichia/Shigella bacteria. The CVTree mea-
sure produced inconsistent results for the data set of
29 Escherichia/Shigella bacteria. The compression-based
measures, although not always producing the best dis-
tances, performed consistently well across all data sets
in the study without any optimization required. We
believe such a consistent performance is due to their
parameter-free feature. On the other hand, choosing
an optimal parameter k for each data set is of criti-
cal importance for using the k-mer based methods. This
task would become daunting when there is no bench-
mark (e.g., true phylogenetic trees or true classifica-
tions) available to guide the analysis and the selection
of k.
One possible drawback when using the compression-

based distance measures is the running time. Obviously,
compressing a DNA sequence (or an NGS sample) takes
longer time than counting its k-mers. Moreover, the
compression-based methods need to perform pairwise
compression of the input sequences, whereas the k-mer
methods only need to calculate one frequency vector for
each input sequence. However, in general one may also
need to test a wide range of k to find the optimal results
when using the k-mer methods.
As an example, for the data set of 39 metagenomic sam-

ples in our study, the running time of theCVTreemeasure
was ∼1-7 minutes for each k = 2, 3, . . . , 10, and ∼10-60
minutes for each k = 11, 12, . . . , 20. Thus, a test cov-
ering all values of k = 2, 3, . . . , 10 only took less than
20 minutes, but if all the values of k = 11, 12, . . . , 20
were included, the running time increased up to ∼8
hours.
The running time when using GenCompress to cal-

culate the compression-based measures for this data set
was ∼25 hours, about 3 times longer than that of CVTree.
Compression tools developed specifically for NGS short
reads such as BEETL [35] and SCALCE [36] can be applied
to reduce the running time. We also expect that such NGS

compression tools should be more efficient and hence
provide more accurate distances. Our future research will
focus on reducing the running time and studying the
effects of different compression tools.
In this study we have demonstrated the accuracy

and the consistency of the compression-based distance
measures on both NGS short reads and long genomic
sequences. Those findings underscore the advantages
of the compression-based distance measures, suggest-
ing that these measures represent useful tools for the
alignment-free sequence comparison. An implementation
of the compression-based distance measures is provided
in the attached Perl scripts (Additional file 3).
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