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Abstract

Background: Brefeldin A-inhibited guanine nucleotide-exchange protein 3 (BIG3) has been identified recently as a
novel regulator of estrogen signalling in breast cancer cells. Despite being a potential target for new breast cancer
treatment, its amino acid sequence suggests no association with any well-characterized protein family and provides
little clues as to its molecular function. In this paper, we predicted the structure, function and interactions of BIG3
using a range of bioinformatic tools.

Results: Homology search results showed that BIG3 had distinct features from its paralogues, BIG1 and BIG2, with a

PHB2.

unique region between the two shared domains, Sec7 and DUF1981. Although BIG3 contains Sec7 domain, the
lack of the conserved motif and the critical glutamate residue suggested no potential guaninyl-exchange factor
(GEF) activity. Fold recognition tools predicted BIG3 to adopt an a-helical repeat structure similar to that of the
armadillo (ARM) family. Using state-of-the-art methods, we predicted interaction sites between BIG3 and its partner

Conclusions: The combined results of the structure and interaction prediction led to a novel hypothesis that one
of the predicted helices of BIG3 might play an important role in binding to PHB2 and thereby preventing its
translocation to the nucleus. This hypothesis has been subsequently verified experimentally.
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Background

Breast cancer is the most common cancer among women
worldwide [1]. The majorities of breast cancers are estro-
gen receptor-alpha (ERa) positive and depend on the hor-
mone estrogen for growth. Estradiol (E2) is known to
induce cell proliferation by binding to ERq, resulting in
the transcriptional activation of its downstream genes
[2,3]. Antagonists to ERa such as tamoxifen can block the
effects of E2 on breast cancer cells and thereby interfere
with estrogen-induced cell proliferation. Although tamoxi-
fen has been a great success and improves breast cancer
survival rates considerably [4-6], a significant proportion
of ERa-positive breast cancer is tamoxifen-unresponsive,
and tamoxifen-resistant cases have been also reported
[7,8]. The mechanism of E2/ERa signalling is not fully
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understood and a better understanding of the E2/ERa
pathway will be essential for more effective and alternate
treatments for breast cancer.

Recently, genome-wide profiling of gene expression in
breast cancer cells has identified a novel regulator of E2/
ERa signalling, brefeldin A-inhibited guanine nucleotide-
exchange protein 3 (BIG3). BIG3 has been shown to be
over-expressed in breast cancer cells but hardly detect-
able in normal human tissues [8]. Small-interfering RNA
(siRNA)-mediated knockdown of BIG3 was shown to
suppress the growth of breast cancer cells significantly
[9]. Co-immunoprecipitation and immuno-blotting as-
says have shown that BIG3 interacts with prohibitin 2
(PHB2), a protein that can repress the activity of ER.
PHB2 was shown to be localized mainly in the cyto-
plasm [10]. When BIGS3 is absent, E2 stimulation causes
the translocation of PHB2 to the nucleus and results in
the suppression of the ERa transcriptional activity. On
the other hand, when BIG3 is over-expressed, PHB2
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remains in the cytoplasm even with estrogen treatment
and it has been shown that the intracellular localization
of PHB2 is dependent on its interaction with BIG3 in
the cytoplasm. Therefore, the current hypothesis is that
BIG3 interacts with PHB2 and traps it in the cytoplasm
and thereby prevents its nuclear translocation, resulting
in increases in the transcriptional activities of ERa.

This novel mechanism of ERa regulation by BIG3 has
the potential to offer molecular details of signalling
events in ERa-positive breast cancer cells and can lead
to new ways of therapeutic intervention. The progress
has been hampered, however, by the lack of information
about molecular functions of BIG3. The BIG3 protein
consists of 2177 amino acid residues and its sequence
suggests no association with any well-characterized pro-
tein family and provides little clues as to its molecular
function. Although a series of co-immunoprecipitation as-
says identified residues 86-434 to be responsible for the
binding of BIG3 to PHB2, further attempts at narrowing
down the binding region or any other biochemical cha-
racterization had been unsuccessful until computational
predictions, described in this paper, were made and subse-
quently verified experimentally [10].

In this paper, we describe details of our predictions for
the structure, function and interactions of BIG3 using
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state-of-the-art bioinformatic tools. The prediction of
protein interaction sites, supported by consistent fold
recognition results, led to a specific hypothesis about
the nature of the molecular interactions between BIG3
and PHB2, which was a key to the successful experi-
mental verification studies.

Results and discussion

BIG3 has features distinct from BIG1 and BIG2

The BIG3 protein consists of 2177 amino acids but stand-
ard sequence-based tools such as Pfam [11] and SMART
[12] identified only two domains, Sec7 (at 592-798) and
DUF1981 (at 1246-1303) (Figure 1). The Sec7 domain
has been shown to be linked with guanine nucleotide
exchange factor (GEF) activity [13,14], although its rele-
vance to the biological function of BIG3 is unclear (see
below). DUF1981 is a functionally uncharacterized domain
defined in Pfam and it is mostly found in GEF related
proteins.

To gain further insights into the structure and func-
tion of BIG3, we split its amino acid sequence into three
segments based on the Pfam and SMART domain
assignments and ran BLAST for each segment against
the non-redundant protein (nr) database. The segment
before the Sec7 domain and that after the DUF1981

ARM repeat (Z = 10.24)
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Figure 1 Sequence analysis of BIG3. The locations of the two domains identified by Pfam and SMART are shown at the top. Shown below are
the results of secondary structure and disorder predictions: red, a-helical; grey, coil; and green, disorder. The three segments underneath, A, B and C,
indicate the query sequences for the BLAST, FUGUE and HHpred searches. The FUGUE hits are shown below and the BLAST results are summarized in
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domain were found to be conserved both in BIG3
orthologues (annotated as BIG3 in the database) and
paralogues (annotated as BIG1 and BIG2). On the other
hand, the segment between the Sec7 and DUF1981 do-
mains produced significant hits only to the orthologues
(Figure 1). When the sequences of BIG3 and the human
BIG family proteins were compared, BIG1 and BIG2
showed 74% identity overall and higher identities in
both the Sec7 and DUF1981 domains (90%). However,
BIG3 showed only 21% identities to BIG1 and BIG2,
with ~30% identity in DUF1981 and no significant simi-
larity (i.e., a BLAST e-value of > 10) found in the Sec7
domain. These observations suggested that BIG3 was
the most distinct among its paralogues, with a markedly
unique region between the Sec7 and DUF1981 domains.

BIG3, unlike BIG1 and BIG2, potentially lacks GEF ac-
tivity, despite being annotated to contain the Sec7 domain
(based on sequence similarity). Sec?, first discovered in
the SEC7 gene product of S. cerevisiae, has a central GEF
domain for the ADP-ribosylation factor family involved in
vesicular transport processes [15-17]. There is a highly
conserved motif, FRLPGE, among the Sec7 proteins, with
the last glutamate residue essential for GEF activity
[18-24]. It has also been shown that the Sec7 domain
alone is sufficient for GEF activity [17]. Alignments be-
tween BIG3 and known Sec7 proteins (generated with
both the sequence-only method CLUSTALW [25] and the
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structure-based method FUGUE [26]) were stable and un-
ambiguous in a region around the conserved motif, and
they showed that BIG3 lacked the conserved motif and
critically, the essential glutamate residue (Figure 2). This
region is conserved among the BIG3 orthologues, all of
which lack the functional motif. This observation suggests
that BIG3 is unlikely to be a GEF protein, consistent with
a previous demonstration by the GST-GAT pull-down
assay [27].

BIG3 is likely to adopt a-helical repeat structures similar
to that of the armadillo (ARM) family

We then attempted to predict the structure of BIG3
using more specialized tools. Both POODLE ([28,29]
and PrDOS [30] predicted BIG3 to adopt largely well-
defined three-dimensional structures, except for three
intrinsically disordered regions at 450-650, 1000-1100
and 1800-2100. Secondary structure prediction by PSI-
PRED suggested that BIG3 predominately consisted of
helical structures (Figure 1). No evidence was obtained
for any of the predicted helices to be coiled-coil or
transmembrane structures. Although no repeats were
detected by sequence-based methods (see Methods),
fold recognition using FUGUE and HHpred suggested
that some parts of BIG3 would consist of ARM (and
related) repeats, with statistically significant sores

BIG1/1-185 1QKEI IEQ

BIG2/1-167 1QKE I |EH
ARNO/1-183 1 RNRKMAM

GRP1/1-183 1 RNKQ | AM
GEP100/1-189 1 RKRHYR

GBF1/1-180 1 eeee s

GNOM/1-184 1 -KRRLM I

BIG3/1-207

BIG1/1-185 59 DK

BIG2/1-167 59 AR

ARNO/1-183 53 EE -L

GRP1/1-183 58 DD

GEP100/1-189 59 QKQ

GBF1/1-180 53 DR-KNIDL
GNOM/1-184 60 DE -F

BIG3/1-207 61 SLRTAALS

BIG1/1-185 116 QBQT - - - -moea
BIG21-167 116 QBQT - = =~ = = = - - - -
ARNO/1-183 116 PG - = = =« w w oo m e m -
GRPI/1-183 116 PG -« « =« « oo m e e n -
GEP100/1-189 117 PGVV - - - - = = - - - -
GBF1/1-180 110 GS - - - -~~~ ~ -~ - - -
GNOM/A-184 117 PE -« - - ===~ - ILANKBAALN
BIG3/1-207

BIG1/1-185 159
BIG2/1-167
ARNO/1-183 157
GRP1/1-183 157
GEP100/1-189

critical glutamate residue (indicated by the red asterisk).

IQYEQEQGMLGT - -

121 MHSPGFDGNSSLSFQMLMNA SLITA!HCALL LKISHGDYYRKRPTLAPGVMKD

INDsKBLPEEYLsA IMNENAGKK

GBF1/1-180 154 L Iﬁ
cnoM-184 158 INRHIINGENBL PREFLSELFHS[ICNNE |
BIG3/1-207 181 VQTSGVLMVFSQAWI EEL¥HQVL DRNM

Figure 2 Multiple sequence alignment of eight Sec7 domains. Selected members of the Sec7 family were aligned by using CLUSTALW.
(See Methods for the protein names and accessions.) Sequences are coloured by percentage identities: dark purple, >80%; purple, 60% ~ 80%;
light purple 40% ~ 60%; white, <40%. The red box shows the conserved motif in Sec7 domain. BIG3 lacks the conserved motif, especially the
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(FUGUE Z-score>7, 99% confidence and HHpred
probability > 80%; see Figure 1).

Despite the high confidence scores, however, generat-
ing alignments proved to be tricky; because of the nature
of the a-helical repeats, slightly different alignments
were produced for different hits. Figure 3 shows an
alignment with the TIP120 protein, the highest scoring
hit by FUGUE when queried with residues 86-434 of
BIG3. TIP120 is a member of the HEAT repeat family.
The HEAT repeat is related to the ARM repeat and
sometimes classified as a subgroup of the ARM family.
In this alignment, the predicted a-helices generally agree
well with the helical positions in the TIP120 structure.

The ARM repeat, first discovered in armadillo gene of
Drosophila, is an approximately 40 amino acid long tan-
dem repeat, forming a super-helix of helices. Proteins in
the ARM family are known to function in various pro-
cesses, including cytoskeletal regulation, signalling, tumor
suppression and nuclear translocation. It has been pro-
posed that ARM may mediate protein-protein interactions
but currently, no typical feature of target proteins is
known. Of particular note is that the nuclear transport
protein importin, known to recognize nuclear localization
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signals (NLSs), is a member of the ARM family. Given its
predicted structure, BIG3 might also bind to its partners
in a similar manner (see below).

Prediction of protein binding sites suggested how BIG3
could possibly inhibit the nuclear translocation of PHB2
To pursue this possibility further, we attempted to predict
protein-binding sites on BIG3 using PSIVER [32] and ex-
amined the results within the predicted ARM repeats, as
these repeats fell within residues 1-250, a region that had
been shown experimentally to be responsible for the bind-
ing of BIG3 to PHB2 [10].

Figure 3 shows the possible interaction sites on BIG3
predicted by PISVER, combined with the results of FUGUE
and PSI-PRED analyses (see Additional file 1 for the raw
data). The benchmark results of PSIVER showed that high
scoring residues would tend to cluster together near the
true interaction sites [32]. Therefore, we highlighted clus-
ters of the highest scoring residues in Figure 3 (yellow
background) and considered the residues 157-174 as the
most likely interaction site (red background). This region
coincides with a predicted «-helix [10], and a helical wheel
projection [33] of the residues (Figure 4) shows that the
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Figure 3 Predicted structure and interaction sites of BIG3. Results of secondary structure prediction (PSIPRED) and interaction site prediction
(PSIVER) were mapped on a structure-based alignment (generated with FUGUE and formatted with JOY [31]) between BIG3 (residues 86-300) and
TIP120 (PDB 1u6g, chain C). For the PSIPRED prediction, H stands for a-helices, E for 3 strands and dash for coil structures. For the PSIVER results,
scores greater than 0.39 are labelled with plus (+) signs. Clusters of the highest scoring residues are highlighted with a yellow background and
those residues with a score greater than 0.6 are indicated with red plus signs. The helix used for the helical wheel projection (see Figure 4) is
indicated with a red background. Structural environments are annotated with JOY, the formatting convention of which is as follows: red,
a-helices; blue, 3 strands; maroon, 3¢ helices; upper case letters, solvent inaccessible; lower case letters, solvent accessible; bold type, hydrogen
bonds to mainchain amides; underlining, hydrogen bonds to mainchain carbonyls; italic, positive mainchain torsion angles .
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side chains of the residues with locally maximal scores
(red plus signs in Figure 3) sit on the same face of the
helix. These results have opened a new direction for ex-
perimental research, including the construction of BIG3
mutants and the design of an inhibitory peptide. Site-
directed mutagenesis showed that substituting Q165,
D169 and Q173 (indicated with red plus signs in Figure 3)
with alanine reduced the binding affinity to PHB2 dramat-
ically (see Additional file 2: Figure S1 of [10]). The de-
signed peptide, including these PHB2-binding residues,
has been shown to inhibit the growth of ERa-positive
breast cancer cells both i vitro and in vivo [10].

Since BIG1 and BIG2, the paralogues of BIG3, share
some sequence similarity with BIG3 in their N-terminal
portions (region A in Figure 1), we generated a multiple
sequence alignment and examined the putative PHB2-
binding site, including the three verified binding residues
(Figure 5, red box). Because of the general sequence
similarity, the alignment in this region was unambiguous
and showed that, of the three PHB2-binding residues,
only Q165 was conserved among BIG1, BIG2 and BIG3.
Since the other two residues have been shown to be
critical for PHB2 binding [10], we conclude that BIG1 and
BIG2 are unlikely to form a heterodimer with PHB2,
although these paralogues may still share some other
common functions.

We also predicted protein-binding sites on PHB2.
PSIVER predicted a few regions to be possible interact-
ing sites (highlight in Figure 6), one of which (76-88) is
close to the predicted NLS. We also used PPiPD, a re-
cently developed neural network-based method for

L163

V159

M166

Figure 4 A helical wheel projection of residues 157-174 of BIG3.
The residues with the highest predicted interaction scores, Q166, D170
and Q174 (red filled circles), are located on the same face of the helix.
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predicting contacting residue pairs given a pair of amino
acid sequences [34]. A PPiPP search for interacting
pairs between residues 1-300 of BIG3 and PHB2 (full
length, 299 amino acid residues) identified R11, R17,
M19, Y34, R54, 155, R88, M101 and R289 as the most
likely interacting partners of the putative interacting re-
gion on BIG3 (157-173, Figure 3, yellow background).
By combining this analysis and the prediction results by
PSIVER, we found regions 11-21 and 44-57 to be the
most likely BIG3-binding site (Figure 6, underlined).
PHB2 is known to interact with several other proteins
(such as COPG and PTMA), as reported in BIOGRID
[35] and PPIview [36]. Whether the predicted region is
indeed involved in BIG3-binding is yet to be verified
experimentally.

PHB2 is known to be involved in several biological
processes and found in different cellular compartments,
including the nucleus, mitochondria and cell membrane
[37-40]. Although the mechanism of translocation of
PHB?2 is still unclear, one possibility is that it is mediated
by importin (or importin-like proteins), and BIG3 could
possibly dislocate importin and interact with PHB2, pre-
venting it from being transported to the nucleus. In light
of this hypothesis, it is highly suggestive that BIG3 is
predicted to adopt the same fold as that of importin.

Conclusions

Based on the differences in sequence and the lack of
conserved motif in the Sec7 domain, BIG3 was shown to
have distinct features from its paralogues BIG1l and
BIG2. Structural analysis showed that BIG3 would adopt
a-helical repeat structures similar to that of the ARM
family. Prediction of interaction sites between BIG3 and
PHB2 provided a new insight into how BIG3 would
interfere the translocation of PHB2 and suggested a spe-
cific, testable hypothesis.

Methods

Sequence analysis

Protein sequences of BIG3 [Swiss-Prot:Q5TH69] and
PHB2 [Swiss-Prot:Q99623] were retrieved from Uniprot.
Pfam (http://pfam.xfam.org/) and SMART (http://smart.
embl-heidelberg.de/) searches were performed using their
web servers. BLAST was run on the NCBI website (http://
www.ncbinlm.nih.gov/BLAST/) using default parameters.
A multiple sequence alignment of the Sec7 domains of
BIG1 [Swiss-Prot:Q9Y6D6], BIG2 [Swiss-Prot:Q9Y6D5],
ARNO [Swiss-Prot:Q99418], GBF1 [Swiss-Prot:Q92538],
GRP1 [Swiss-Prot:043739], GNOM [Swiss-Prot:Q42510],
GEP100 [Swiss-Prot:Q6ND90] and BIG3 was generated
using CLUSTALW and formatted by Jalview [41]. A mul-
tiple sequence alignment of the N-terminal portions of
BIG3 and its homologues was generated by MAFFT version
7 (http://maftt.cbrc.jp/alignment/server/). The sequences
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BIG1_ HUMAN 178 CYNIYLASKNLINQTITA-KATLTOMLNVIFARMENQALQEAKOMEKERHRQHHHLLQSPV 236
BIG1_MOUSE 178 CYNIYLASKNLINQTITA-KATLTOMLNVIFARMENQALQEAKQMERERHRQQOHLLQSPV 236
BIG1 RAT 178 CYNIYLASKNLINQTITA-KATLTOMLNVIFARMENQALOEAKOMERERHROQQHHLLOSFEV 236
BIG1_BOVIN 178 CYNIYLASKNLINQTITA-KATLTQMLNVIFARMENQALOEAKQMEKERHRQHHHLLOSPEV 236
BIG2_HUMAN 166 CYNIYLASKNLINQTITA-KATLTQMLNVIFTRMENQVLOEARELEKPIQSKP----QSFV 220
BIGZ_ MOUSE 166 CYNIYLASKNLINQTITA-KATLTOMLNVIFTRMENQVLOEARELEKPMOSKP--—--QSPV 220
BIGZ RAT 166 CYNIYLASKNLINQTITA-KATLTOMLNVIFTRMENQVLOEARELEKPIQSKP----QSPV 220
v v v
BIG3_HUMAN 142 CIETYISSCHQRSINTAVRATLSQMLSDLTLQLF----=--—==-=-=--= RORQENTIIENP- 186
BIG3_MOUSE 142 CIETYTCSCHORSINTAVRATLSQMLGDLTLOLF----—-—=-—-—--— RORQENTIIENF- 186
P T Lo e .. P L

Figure 5 Multiple sequence alignment of BIG3 and its homologues near the putative PHB2-binding site. Multiple sequence alignment of
the N-terminal portions (region A in Figure 1) of BIG3 and its homologues was generated by MAFFT (see Additional file 2 for the full alignment).
The red box corresponds to the residues in the red background in Figure 3. The verified PHB2-binding residues are indicated with black triangles.

included were human BIG1 [Swiss-Prot:Q9Y6D6] and
BIG2 [Swiss-Prot:Q9Y6D5], mouse BIG1 [Swiss-Prot:
G3X9K3], BIG2 [Swiss-Prot:A2A5R2] and BIG3 [Swiss-
Prot:Q3UGY8], rat BIG1 [Swiss-Prot:D4A631] and BIG2
[Swiss-Prot:Q7TSU1] and bovine BIG1 [Swiss-Prot:
046382].

Structure prediction

Secondary structure was predicted by using a local in-
stallation of PSIPRED [42] with the default script. Dis-
ordered regions were predicted using both POODLE-L
and POODLE-W on the POODLE server (http://mbs.
cbre.jp/poodle/index.html) and PrDOS (http://prdos.hgc.
jp/index.html). Coiled-coil was predicted using Paircoil2
(http://groups.csail. mit.edu/cb/paircoil2/) [43] and COILS
(http://www.ch.embnet.org/software/COILS_form.html)

[44]. Sequence repeats were predicted using REP (http://
www.bork.embl.de/~andrade/papers/rep/search.html) [45],
HHrep (http://toolkit.tuebingen.mpg.de/hhrep) [46] and
REPRO (http://www.ibi.vu.nl/programs/reprowww/) [47].
Fold recognition was performed using FUGUE (http://
tardis.nibio.go.jp/fugue/) and HHpred (http://toolkit.
tuebingen.mpg.de/hhpred/, with the HMM database of
pdb70_18Dec10) [48] using the three segments defined
in Figure 1 as queries.

Interaction site prediction

Interaction sites on BIG3 and PHB2 were predicted
using PSIVER [32]. The default threshold of 0.390 was
used in this study. Interacting pair positions between
the two proteins were predicted using PPiPP [34] with
default parameters.

10 20 30 40 50
PHB2 ( 1) MAQNLKDLAGRLPAGPRGMGTALKLLLGAGAVAY GVRESVFTVEGGHRAT
PSIVER s L R
60 70 80 20 100
PHB2 (51 FFNRIGGVQQDTILAEGLHFRIPWFQYPIIYDIRARPRKISSPTGSKDLQ
PSIVER B Fh— e B S
110 120 130 140 150
PHBZ2 (101 ) MVNISLRVLSRPNAQELPSMY(QRLGLDYEERVLPSIVNEVLKSVVAKFNA
PSIVER B S e e e T et T T s e e e
160 170 180 190 200
PHB2 (151 ) SQLITQRAQVSLLIRRELTERAKDFSLILDDVAITELSFSREYTAAVEAK
PSIVER B e i S Fo— b+t
210 220 230 240 250
PHB2 (201 ) QVAQQEAQRAQFLVEKAKQEQRQKIVQAEGEAEARKMLGEALSKNPGYIK
PSIVER B S B o T B s
260 270 280 290
PHB2 (251 ) LRKIRARQNISKTIATSQNRIYLTADNLVLNLODESFTRGSDSLIKGKK
PSIVER —tt—t ettt ——— +tttt——t e
Figure 6 Predicted interaction sites of PHB2. Results of the binding site prediction for PHB2 by PSIVER. Scores greater than 0.39 are labelled
with plus (+) signs. Clusters of the highest scoring residues are highlighted with a yellow background and the scores greater than 0.6 are shown
in red. The NLS region, residues 86-89, is indicated with a red background. The consensus prediction results for the BIG3 binding site by PSIVER
and PPiPP are underlined.
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http://www.ch.embnet.org/software/COILS_form.html
http://www.bork.embl.de/~andrade/papers/rep/search.html
http://www.bork.embl.de/~andrade/papers/rep/search.html
http://toolkit.tuebingen.mpg.de/hhrep
http://www.ibi.vu.nl/programs/reprowww/
http://tardis.nibio.go.jp/fugue/
http://tardis.nibio.go.jp/fugue/
http://toolkit.tuebingen.mpg.de/hhpred/
http://toolkit.tuebingen.mpg.de/hhpred/
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Helical wheel projection

The helical wheel projection was generated by a custom
script derived from the original code by Zidovetzki and

Armstrong [33].

Additional files

Additional file 1: Detailed prediction results by PSIVER for
protein-binding sites on BIG3. The columns represent: record type
(always “PRED"), residue position, binary prediction (plus for the raw score
above the threshold of 0.39 and minus otherwise), one-letter amino acid
code, raw score and z-score, respectively.

Additional file 2: Multiple sequence alignment of the N-terminal
portions of BIG3 and its homologues. Multiple sequence alignment of
the N-terminal portions (region A in Figure 1) of BIG3 and its homologues
by MAFFT.
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