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Abstract

Background: HMM-ModE is a computational method that generates family specific profile HMMs using negative
training sequences. The method optimizes the discrimination threshold using 10 fold cross validation and modifies
the emission probabilities of profiles to reduce common fold based signals shared with other sub-families. The
protocol depends on the program HMMER for HMM profile building and sequence database searching. The recent
release of HMMER3 has improved database search speed by several orders of magnitude, allowing for the large
scale deployment of the method in sequence annotation projects. We have rewritten our existing scripts both at
the level of parsing the HMM profiles and modifying emission probabilities to upgrade HMM-ModE using HMMER3
that takes advantage of its probabilistic inference with high computational speed. The method is benchmarked and
tested on GPCR dataset as an accurate and fast method for functional annotation.

Results: The implementation of this method, which now works with HMMER3, is benchmarked with the earlier version
of HMMER, to show that the effect of local-local alignments is marked only in the case of profiles containing a large
number of discontinuous match states. The method is tested on a gold standard set of families and we have reported
a significant reduction in the number of false positive hits over the default HMM profiles. When implemented on GPCR
sequences, the results showed an improvement in the accuracy of classification compared with other methods used to
classify the familyat different levels of their classification hierarchy.

Conclusions: The present findings show that the new version of HMM-ModE is a highly specific method used to
differentiate between fold (superfamily) and function (family) specific signals, which helps in the functional annotation
of protein sequences. The use of modified profile HMMs of GPCR sequences provides a simple yet highly specific
method for classification of the family, being able to predict the sub-family specific sequences with high accuracy even
though sequences share common physicochemical characteristics between sub-families.
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Background
Heuristic methods like BLAST [1] and FASTA [2] are
commonly employed for the task of assigning function
to a protein sequence on the basis of sequence similarity.
In many cases, where a close homolog with known
sequence and structure is not known, the sequence-
sequence comparison methods show poor sensitivity.
Profile Hidden Markov Model (HMM) like HMMER [3]
and SAM [4] provide increased sensitivity in detecting
remote homologs as sequence profiles are a better repre-
sentation of a set of homologous sequences than a single
sequence. Profile HMMs however have poor specificity
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in case of protein families with closely related function be-
cause of the high probability of selecting sequences from
other sub families based on fold signals common to the
family. The Pfam database [5] uses curated thresholds as
an additional aid to the E-value: a Trusted Cutoff (TC), a
Noise Cutoff (NC) and a Gathering threshold (GA), where
TC >GA >NC. These criteria do not hold uniformity
when applied to pre-classified positive and negative train-
ing sequence data because there may be cases in which
negative sequences have higher scores than positive se-
quences. Earlier work, though not in wide spread use,
have attempted to minimize the effect of non- discrimin-
ating residues for fold and function level classification
through varied concepts like using negative examples for
training HMMs, through the modification of emission [6]
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and transition probabilities [7] and through using posi-
tional entropy [8] to classify sequences both at fold and
function level. HMM-ModE [9] is a method that generates
family specific profile HMMs, through HMMER, by opti-
mizing the discrimination threshold using the mode of
average MCC (Mathews correlation coefficient) distribu-
tion from 10-fold cross validation and modifying the emis-
sion probabilities using negative training sequences. The
protocol is much faster in training because only the se-
quences selected as false positives by the subfamily HMM,
are used to modify model parameters and optimize the
discrimination threshold. It provides a significant im-
provement over the existing methods for classification of
fold and function specific signals. Another reason for the
limited use of profile HMMs in primary annotation of
functions is that the algorithms for database searching
were significantly slower than heuristic local alignment
methods. Recently, HMMER has been upgraded to a new
version which improves database search speed by several
orders of magnitude [10]. We have implemented our
method to use the recent release of HMMER. This new
version of HMM-ModE with HMMER3 will be useful for
the large scale deployment in sequence annotation pro-
jects. In this work, the performance of the method is
benchmarked using both HMMER2 and HMMER3, and
validated on a set of pre-classified enzyme superfamilies
which are clustered according to specific sequence, struc-
ture and functional criteria to be used as a gold standard
in family and superfamily clustering methods [11]. In
addition, we have also compared all the results reported in
this manuscript with the earlier version of the method.
The separation of the fold and function specific signals

is important and is a powerful way for classification when
the sequences are classified into families and subfamilies
as evident from GPCRs, protein kinase and Enzyme
classification. Another similar method and resource for
automated sub-family classification and identification was
developed earlier through a three stage process, estimating
a functional hierarchy for each protein family and sub
families; using Hidden Markov Models to model both the
family-defining and sub-family defining signatures; and
using sub-family HMMs to assign novel sequences to
functional subtypes [12]. Our focus has been to improve
the specificity for any dataset which is classified in a
hierarchical fashion. One of the examples for such dataset
is G protein coupled receptors (GPCRs).
GPCRs constitute a large family of integral membrane

proteins. They form a unique modular system for signal
transduction thereby allowing transmission of various sig-
nals across and between cells. The name GPCR reflects its
involvement in the process of receptor signalling in the
cellular environment via GTP binding proteins. They are
known to mediate a variety of cellular and physiological
signals and are also known as seven transmembrane
(7TM) receptors [13]. Found only in eukaryotes, they are
an important family of proteins both at the physiological
level, where they mediate functions like signal trans-
duction, and at the pharmacological level, serving as im-
portant drug targets. Therefore, much of the effort at the
research level is now focused on the development of
methods for accurate classification of GPCRs. However,
since GPCRs are known to have functional as well as
sequential diversity hence their classification is a daunting
task.
In recent times, one of the most comprehensive and

widely used classifications for the GPCR families is pro-
vided by GPCRDB [14]. The resource classifies GPCRs
into five classes: Class A is the Rhodopsin like, Class B is
Secretin like, and Class C is the Metabotropic glutamate/
pheromone, Vomeronasal receptors (V1R and V3R) and
Taste receptors (T2R). These classes are further classified
into sub-families and sub- subfamilies based on the func-
tion of GPCR protein and the substrate specificity.
As expected from the growing interest of both aca-

demic and industrial researchers, several methods have
been proposed for the prediction and classification of
GPCRs. Earlier methods made use of covariant discrim-
inant algorithm [15] and bagging classification tree [16]
to classify GPCR sequences based on their amino acid
composition. The discrimination power of machine lear-
ning techniques, like support vector machines, had also
been used to classify GPCRs at different levels [17].
GPCRPred [18] implemented SVM to classify GPCR se-
quences based on their dipeptide composition. There are
other methods that are implemented on the transmem-
brane pattern analysis as these regions are known to be
conserved across GPCRs of similar functionality [19].
Hidden Markov models have also been utilized to pre-
dict and classify GPCR sequences [20,21]. A majority of
these methods use the amino acid composition or the
dipeptide composition for classification, or both [22]. A
recent method PCA GPCR [23], has used a compre-
hensive set of 1497 sequence derived features to classify
GPCRs into different levels.
In the present study, we have also made an attempt to

compare the accuracy of this new version of HMM-ModE
to the existing methods available for the classification of
GPCRs. We have used the dataset used by the method
PCA-GPCR [23] for the comparative analysis.

Results and discussion
Benchmarking of the method using HMMER2 and
HMMER3
An immediate concern in the implementation of the
HMM-ModE protocol with HMMER3 is that this version
has only local-local alignments. HMM-ModE can improve
signals normally associated with substrate specificity
which are differentially conserved in protein superfamilies,
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and should implicitly benefit from global or “glocal”
(align a complete model to a subsequence of the target)
alignments.
In order to benchmark the difference, we have com-

pared the performance of our method using HMMER2
and HMMER3. The HMM-ModE protocol has earlier
been applied for large scale annotation of enzymes where
the profiles were classified into three classes, based on the
number of curated sequences present in the training data
set, which were used to assign confidence in the profile
[24]. A line diagram showing the performance of both the
versions along with default HMMER is shown in Figure 1.
A large number of profiles show the expected improve-
ment in specificity using both HMMER2 and HMMER3,
without any loss in sensitivity, with over 82.31% and
90.09% reaching a specificity of 1 respectively. There were
15 profiles - 2.1.1.114, 1.3.1.20, 3.6.3.30, 3.1.1.8, 1.12.2.1,
3.4.21.73, 1.14.16.1, 1.2.7.7, 2.5.1.30, 5.5.1.1, 1.1.1.149,
2.6.1.85, 4.2.3.19, 2.6.1.45 and 3.2.1.135 - out of total 416
enzymes, which showed improved specificity of greater
than 20% with HMMER 2 over HMMER3 and can be
considered extreme cases. All of these profiles had discon-
tinuous match states which were clearly benefited in using
a global alignment. In addition to the threshold identified
using the HMM-ModE protocol, the low specificity re-
ported during profile-building using HMMER3 should
serve as a caution in a mining or large scale annotation
Figure 1 Benchmarking the HMM-ModE protocol with HMMERv2 and
HMMER v2 – which permits Glocal alignments – and HMMER v3 which on
Specificity values reported during profile building are improved in all cases
for HMMER v3 compared to the earlier version.
exercise. Extreme cases where HMMER3 showed im-
proved specificity of greater than 20% over HMMER2
were the 6 profiles - 4.2.1.78, 1.14.12.11, 1.14.12.3,
3.4.21.20, 1.13.11.39, 4.1.3.38. These were all made up of
small numbers of sequences (<10), with continuous match
states – beneficial to the local-local alignment. The use of
small numbers of training sequences is not recommended
in the protocol, as n-fold cross-validation used to deter-
mine the threshold further reduces the positive set in each
trial. A pre-processing step of clustering sequences to seg-
regate different folds is part of the protocol which effi-
ciently separates isozymes and subunits from multimeric
proteins which are classified under the same function.
This step also allows for the identification of incorrectly
classified proteins in the training set. The sensitivity of the
HMM-ModE protocol with HMMER3 is, as expected, bet-
ter than that of HMMER2, with only six profiles from the
dataset falling below 80% against thirteen for the older
version. The reduction in sensitivity is seen in sub-families
with similar folds and differing substrate specificities,
where a false-positive may score higher than a true-
positive. As the threshold is optimised on the basis of the
highest values from the Mathew’s correlation coefficient,
there is a loss in sensitivity in these cases.
The migration of the method to newer version of

HMMER has the advantage of higher search speed of exe-
cution which is a driving feature in large scale functional
HMMERv3. The protocol was benchmarked with both versions of
ly has local-local alignments on a dataset of 416 enzyme families.
, with minimal loss in sensitivity. The specificity improvement is lower
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annotation. The speed improvements using HMMER3 is
evident from a case study, where the HMM-ModE profiles
of AGC kinase protein sub families were scanned against
the Uniprot database using 'hmmsearch’ from HMMER2
and HMMER3 as shown in the Additional file 1. However,
besides conviction in the accuracy and the size of the
training dataset, which was the criteria employed with the
HMM-ModE protocol used with HMMER2 to assign con-
fidence in the profile, it is recommended that the speci-
ficity values reported during profile building be used as an
additional criterion in the use of HMM-ModE protocol
with HMMER3. Low specificity during profile building
will point to cross-specificity with other families in the
training set, where the threshold identified using the
protocol may not be sufficient to properly discriminate
the families during a classification exercise.

Case study for performance evaluation and validation
The performance of the method is further validated on a
set of pre-classified enzyme superfamilies which are clus-
tered according to specific sequence, structure and func-
tional criteria to be used as a gold standard in family and
superfamily clustering methods [11]. These include five
superfamilies, 91 families, 4,887 sequences and 282 struc-
tures and are related proteins with diverged functions
Table 1 Performance evaluation of the new version of our me
comparison with HMM-ModE/HMMER2 [9]

SuperFamily Family #

AminoHydrolase AMP deaminase

urease

D-hydantoinase

Dihydroorotase 2

Guanine deaminase

Adenosine deaminase

Enolase Enolase

Glucarate dehydratase

Muconate cycloisomerase

Chloromuconate cycloisomerase

Crotonase Enoyl-CoA hydratase

Histone acetyltransferase

Haloacid Dehydrogenase P-type atpase

Vicinal Oxygen chelate Catechol 2,3-dioxygenase

4-Hydroxyphenylpyruvate dioxygenase

2,3-Dihydroxybiphenyl dioxygenase

Glyoxalase 1

HMM-d stands for default HMMER and # Seq stands for number of sequences in ea
calculated as TP/(TP + FN), and Sp is the specificity calculated as TP/(TP + FP). As sho
predictions with small compromise in the respective sensitivity using HMM-ModE.
The corresponding values of Se and Sp using HMM-ModE with HMMER2 is written
proposed to be useful for elucidation of the functions of
novel uncharacterized proteins. The training sequences, as
shown in Table 1, were selected from each of the five
superfamilies. The predictions after the 10 fold cross vali-
dation show a significant improvement in specificity over
the default HMMER for each of the family as shown in
Table 1. The low specificity rates in the default HMM
profiles are due to the presence of common fold signal
conserved between functionally diverse families. The in-
fluence of the fold specific signals is reduced by optimi-
zing the discrimination threshold to separate sequences
based on their function. The present method identifies
this threshold based on the lowest TP score and the
highest FP score. If the highest FP score is greater than
lowest TP score then we modify the emission probability
of the TP profile using RE score and optimize the thresh-
old using tenfold cross validation, as discussed in our pre-
vious paper [9]. Else, if the highest FP score is less than
the lowest TP, the defined threshold is much like the
gathering scores in PFAM and can classify sequences with
maximum sensitivity and specificity. However, if there are
no false positives, the default threshold of zero is used.
It is observed, from Table 1, that the specificity in-

creased in four of the five superfamilies tested - the
Amino Hydrolase, Enolase, Crotonase and Haloacid
thod HMM-ModE on ‘gold standard’ dataset and

Seq HMM-d HMM-ModE with HMMER3 (HMMER2)

Se Sp Se Sp

28 1 0.90 1(1) 1(1)

100 1 0.50 1(1) 1(1)

10 1 0.05 1(1) 1(1)

13 1 0.14 1(1) 1(1)

11 1 0.22 1(1) 1(1)

10 1 0.35 1(1) 1(1)

215 1 0.88 1(1) 1(1)

26 1 0.20 1(1) 1(1)

14 1 0.09 1(1) 1(1)

10 1 0.05 1(1) 1(1)

54 1 0.23 1(1) 1(1)

11 11 0.09 1(1) 1(1)

91 1 0.77 1(1) 1(1)

32 1 0.28 1(1) 0.88 (0.88)

26 1 0.60 1(1) 1(1)

23 1 0.20 0.95 (1) 0.71(0.63)

12 1 0.20 1(1) 1(1)

ch family. Se is Sensitivity and Sp is Specificity. Sn is the sensitivity value
wn here, there is a significant improvement in the specificity of the

in parenthesis.
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Dehydrogenase superfamilies. In most cases there was suf-
ficient difference in the scores of the positive training se-
quences and the sequences from other classes to calculate
a discriminating threshold which provided a specificity of
1.0 with the test data. In the case of Enoyl-CoA hydratase,
there were sufficient common match states between
related sub-families to provide a case study where the
HMM-ModE protocol could improve discrimination by
separating positive and negative sequences through damp-
ening from match states differentially conserved bet-
ween sub-families. The case of the Vicinal Oxygen chelate
superfamily provides two cases, 2,3-Dihydroxybiphenyl
dioxygenase and Catechol 2,3-dioxygenase where a larger
number of negative training sequences score higher than
members of the sub-family used as positive training se-
quences. In these cases, there will be a trade-off between
the sensitivity and specificity, as no perfect discrimination
can be made in classifying these sequences. However, in
general, the present findings lead us to conclude that
HMM-ModE tends to reduce the number of false posi-
tives without significantly affecting the true positive se-
quences for their classification into fold (superfamily)
and function (family) respectively. These results are sig-
nificant on this new dataset and complement our pre-
vious findings on AGC kinase and GPCR datasets [9].

Application on GPCR datasets
The GPCR profile HMMs generated, as discussed in
Methods, are combined to make a profile database that
serve as a resource for classifying novel GPCR sequences
at sub family level. Each of these profiles is provided with
a discrimination threshold generated during cross vali-
dation (See Methods). We have used different datasets
(available as Additional file 2), to evaluate and compare
our method with the existing ones as described in the fol-
lowing subsections. In addition we have also used the pre-
vious version of the method in order to show that both
the versions perform equally well but the newer version
offers more speed due to the inclusion of very fast and ac-
curate hmm searches.
Table 2 The table shows the comparison of our method with
classify D167 dataset

Dataset Sub-family Total Predicted

This paper

D167 Acetylcholine 31 29 93.54

Adrenoceptor 44 44 100

Dopamine 38 37 97.36

Serotonin 54 54 100

Accuracy is calculated as (TP + TN)/(TP + FN + TN + FP) here and throughout.
“Total” is the number of sequences observed in a sub-family, “Predicted” is the num
the other methods are directly taken from their articles. The data in bold depicts th
D167 dataset
We have scanned all the sequences from D167 dataset
using “hmmscan” from HMMER package. The threshold
separating TPs and FPs calculated from HMM-ModE is
used as the gathering threshold. The “–cut-ga” option is
utilized while scanning the query sequence files with our
profile database to make sure that only significant hits are
reported which are above this threshold. The human rea-
dable output from ‘hmmscan’ is parsed to identify the TPs
for the determination of accuracy of our method. These
values are then compared with the accuracy values from
existing methods and are tabulated in Table 2.
The D167 dataset have sequences belonging to Ace-

tylcholine, Adrenoceptors, dopamine and Serotonin sub
families from Amine family of Class A Rhodopsin like
GPCR. Except for Acetylcholine, the performance of our
method is better or equally good for each of these sub-
families. However it is pertinent to note that this is further
improved after verification of the sequences in the dataset.
Two out of the 31 Acetylcholine sequences not identified
as true positive by our method, were found to belong to
the histamine subfamiliy from GPCRDB. As the dataset
was not annotated with the original accession number
of the sequences, we retrieved this information from
UniprotKB. The results infer these to have the same
Q9QYN8 accession (HRH3_RAT) which is a reviewed
entry in UniprotKB annotated as Histamine H3 receptor
(Rattus norvegicus) and are the same sequence. The effec-
tive number of sequences in the Acetylcholine set, there-
fore, would be 29 all of which are classified accurately by
our method giving 100% accuracy for this sub family as
well. This also indicates that the use of modified profile
HMMs for the classification of GPCR sequences aid in
identification of misclassified sequences as well.

D566 dataset
The D566 dataset have subfamilies Adrenoceptor, Chemo-
kine, Dopamine, Neuropeptide, Olfactory, Rhodopsin and
Serotonin. Except for Chemokine, the accuracy is better for
our method using this dataset as well as shown in Table 3.
other methods and with HMM-ModE/HMMER2 [9] to

Accuracy

[9] [23] [15] [16] [18] [22] [25]

93.54 100 67.74 90.3 93.6 93.3 96.7

81.81 100 88.64 86.4 100 100 100

97.36 94.74 81.58 78.9 92.1 94.7 92.1

81.48 98.15 88.89 79.6 98.2 100 100

ber of sequences correctly predicted by our method. The accuracy values for
e results using HMM-ModE with HMMER3 and HMMER2.



Table 3 The table shows the comparison of our method
with PCA-GPCR and with HMM-ModE/HMMER2 [9] to
classify D566 dataset

Dataset Sub-family Total Predicted Accuracy

This Paper [9] [23]

D566 Adrenoceptor 66 65 98.48 84.84 98.48

Chemokine 92 84 91.30 91.30 97.83

Dopamine 43 41 95.34 88.37 93.02

Neuropeptide 31 31 100 96.77 96.77

Olfactory 84 84 100 100 100

Rhodopsin 183 183 100 100 98.36

Serotonin 67 67 100 77.61 97.01

“Total” is the number of sequences observed in a sub-family, “Predicted” is the
number of sequences correctly predicted by our method. The accuracy values
for the other method are directly taken from their article.
The data in bold depicts the results using HMM-ModE with HMMER3 and
HMMER2.
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As with the earlier dataset, there is one sequence among
the Adrenoceptor sequences that is not picked up by the
corresponding profile, and this sequence is probably incor-
rectly classified, being listed as Dopamine in GPCRDB. The
HMM-ModE profiles classify this sequence as belonging to
the Dopamine subfamily which infers 100% accuracy for
this subfamily instead of 98.48%. The UniprotKB accession
of this sequence is O96716 (O96716_BRALA), an unre-
viewed entry with Dopamine D1/beta receptor annotation.
In case of Chemokine subfamily, of the 92 sequences, three
are classified into subfamilies other than Chemokine as per
GPCRDB classification. These have the accession O75388
(GPR32_HUMAN) a reviewed protein with annotation
probable G-Protein Coupled Receptor 32, Q9Z2J6 reviewed
protein with annotation Prostaglandin (PD2R2_MOUSE) a
D2 receptor/GPCR44 and O88416 (GPR33_MOUSE) a
reviewed protein with annotation probable G-Protein
Coupled Receptor 32. The number of effective sequences
belonging to Chemokine sub family in the D566 dataset is
therefore 89, and the correctly predicted sequences by our
Table 4 Comparison with PCA-GPCR and HMM-ModE/HMMER

Dataset Sub-family Total

D1238 Rhodopsin like 1103

Secretin like 84

Metabotropic/glutamate/pheromone 51

D365 Rhodopsin like 232

Secretin like 39

Metabotropic/glutamate/pheromone 44

Fungal Pheromone 23

CAMP receptors 10

Frizzled/smoothened 17

The accuracy values for the method PCA-GPCR are directly taken from their article.
and HMMER2.
method are 84 which increases the accuracy to 94.38%
from 91.30% for this subfamily. This increase however is
slightly lower than the value reported by PCA-GPCR for
Chemokine subfamily.

D1238 and D365 dataset
The D1238 dataset have sequences belonging to Rhodopsin
like, Secretin like and Metabotropic/glutamate/pheromone
like GPCRs while the D365 dataset have sequences be-
longing to Rhodopsin like, Secretin like and Metabotropic/
glutamate/pheromone like GPCRs, Fungal Pheromone,
CAMP receptor and Frizzled/Smoothened GPCRs. Table 4
shows the result after scanning the sequences from both
these families. The accuracy for the each of the families in
these datasets is lower than that predicted by PCA-GPCR
except for CAMP, Frizzled/smoothened and Fungal Phero-
mone receptors. The accuracy values for these families are
reported to be 100%. The lower accuracy for the Secretin
and Metabotropic/glutamate/pheromone family for both
D1238 and D365 dataset is due to lack of well characte-
rized sequences that were available for training. Rhodopsin
on the other hand is the largest family of GPCRs but data
used for training from Uniprot does not contain a rea-
sonable number of sequences for certain subfamily level
(like Prostacyclin, Thromboxane, Neurotensin, GPR-12,
GPR- 20 and others). It is expected that as more well cha-
racterized sequences populate these subfamilies, the pro-
files built will increase their accuracy at family level.

GPCR_human dataset
Similarly, in order to assess the performance of our me-
thod another data from GPCRDB, which populates the se-
quences in the corresponding family and subfamilies by
mining sequences from NCBI’s NR database using profile
HMMs, was used. The dataset is named as GPCR_human
and was used to compare the performance of our method
against PCA-GPCR as shown in Table 5. The results show
the performance of our method in terms of accuracy for a
2 [9] to classify D1238 and D365 dataset

Predicted Accuracy

This paper [9] [23]

1030 93.38 95.10 99.91

66 78.57 78.57 98.81

47 92.15 60.78 98.04

200 86.20 87.50 95.69

23 58.97 58.97 87.18

34 77.27 54.54 88.64

23 100 78.26 95.65

10 100 100 100

17 100 100 64.71

The data in bold depicts the results using HMM-ModE with HMMER3



Table 5 This table shows the performance of our method,
HMM-ModE/HMMER2 [9] and PCA_GPCR on GPCR_human
dataset

Sub-family Total Predicted Accuracy

This paper [9] [23]

Muscarinic acetylcholine 11 11 100 100 100

Adrenocceptors 24 23 95.83 95.83 95.83

Dopamine 17 16 94.11 94.11 94.11

Histamine 16 16 100 100 75.00

Serotonin 26 25 96.15 96.15 76.92

Trace amine 23 14 60.87 60.87 78.26

“Total” is the number of sequences present in a sub-family. The data in bold
depicts the results using HMM-ModE with HMMER3 and HMMER2.
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set of subfamilies from GPCR_human dataset. We ran
PCA-GPCR on the same dataset for comparing the per-
formance with the proposed method. It is observed here
that both the methods work equally well for Acetylcholine,
Adrenoceptors and Dopamine subfamily sequences except
for a slight decrease in specificity for Adrenoceptors for
HMM-ModE. On the other hand, for Histamine and Sero-
tonin, the proposed method shows accuracy of 100% and
96.15%, whereas PCA-GPCR reaches only upto 75.00%
and 76.92% respectively. In case of Trace amine subfamily,
our method classifies 14 sequences out of the total
23 sequences leaving behind 9 sequences unclassified.
PCA-GPCR, on the other hand, classifies 18 of the 23 se-
quences correctly making the sensitivity 78.26 which is
better than our method. However, our method does not
misclassify the remaining 9 sequences into any other sub-
family while PCA-GPCR classifies the 4 out of 5 se-
quences into other subfamilies (Adenosine, Somatostatin,
Gonadotropin type 1 and Tachykinin) rather than trace
amine.

Conclusions
We have upgraded the HMM-ModE method to use
HMMER3 and shown its importance to functionally an-
notate sequences belonging to hierarchically classified
data. In general, the use of only two classes, positive and
negative in training, reduces all sequences not belonging
to the positive class into the negative class. With large
datasets, the negative training probabilities would tend
to be the same as the null probabilities. As negative
training data is significantly larger in size than positive
training data, the speed of implementation of the me-
thod HMM-ModE improves by only selecting false posi-
tives from the negative training data, thus limiting its
size to those sequences that significantly influence dis-
crimination. The protocol has now been implemented
for use with HMMER3, which will permit large scale
sequence classification projects through its improved
speed. However, besides curated and sufficiently large
training sequence datasets, it is recommended that the
specificity reported during training be used as a caution
in assigning confidence to a profile in such an exercise.
Using the GPCR dataset we also conclude that the use

of sequence profiles, which are built to discriminate bet-
ween fold and function specific signals, instead of using
sequence features like amino acid or di-peptide compos-
ition for classification of GPCR sequences at subfamily
level is important for accurate functional annotation.
The study has been validated and found to be most ac-
curate on datasets, D167 and D566, compared with the
earlier published methods. HMM-ModE also performs
better as a classifier, when tested on sequences belonging
to Homo sapiens using the GPCR_human dataset. In the
present study, we have shown the use of profile HMMs
as an important resource for accurate classification
of GPCR sequences at subfamily level. These profile
HMMs have modified emission probabilities thus ma-
king them highly specific amplified by its direct ap-
plication on sequences, without the requirement of
pre-processing to extract features. Since there is still
much to be done to tackle the complicated problem of
in-silico GPCR classification [26], it is essential to bench-
mark the algorithms with several datasets in order to
maintain a trade-off between the accuracy of the predic-
tions and the comprehensibility of the results. It is not
trivial to come up with an algorithm that takes care of
classification at several levels, though certain methods
are proposed [23]. One of the problems with GPCR clas-
sification is that there are a number of shared features
across multiple subfamilies, due to the common fold.
This is partially alleviated by increasing the number of
features – as in PCA-GPCR, which can be used to train
machine learning methods.
In the case of sequence profiles separating common

signals at the level of emission probabilities in Hidden
Markov Models, and the use of appropriate scoring
thresholds works equally well. The improvement in spe-
cificity, in terms of lesser number of false positives, over
the use of default profile Hidden Markov Models is seen
in Figure 2. It shows a remarkable reduction in number
of false positives for each of the GPCR profiles con-
structed using HMM-ModE over the default HMMER
profiles. In general, the present method serve as a useful
resource for homology based functional annotation to
classify novel protein sequences.

Methods
The HMM-ModE protocol is now modified to be compa-
tible with HMMER3. The software that implements the
protocol is written in a modular fashion that enable the
use of best of breed programs for multiple alignments,
sequence clustering and HMM profile building and
searching. The method uses BLAST [1] for performing



Figure 2 Comparison of number of false positives while using HMMER and HMM-ModE. The line diagram in this figure shows a comparison
of number of false positives picked up by each of the GPCR subfamily profiles using HMMER profiles with default threshold and the HMM-ModE
profiles with a discriminating threshold (similar to the GA1 threshold used by Pfam) generated through 10-fold cross validation as discussed in our
published work [9]. As shown in the figure, there is a remarkable reduction in the number of false positives when our method is used which is helpful
in the annotation of protein sequences with high specificity.
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all-against-all sequence comparisons and subsequently the
Markov Cluster algorithm (MCL) (http://micans.org/mcl/
lit/svdthesis.pdf.gz) for clustering of sequences, along with
MUSCLE [27] to align the sequences and also for profile-
profile alignment of the positive and negative training se-
quences. HMMER3 [28] has been used to generate profile
HMMs and for searching the modified profiles against se-
quence databases for functional annotation. The workflow
for building profiles is outlined as shown in the Figure 3.
The scripts and modules to run the method along with a
readme file and a test data of protein kinase is provided as
Additional file 3.

Dataset for benchmarking the method HMM-ModE with
HMMER3
The hierarchically classified dataset of ENZYME data-
base is used for the comparison of the present version of
HMM-ModE. We have used 19Jan2010 and 19Feb2014
release of ENZYME database. The HMM-ModE profiles
of 19Jan2010 were built using the in-house method
ModEnzA [24], which is an implementation of HMM-
ModE with HMMER2 for accurate identification of
enzymes. In order to benchmark the method using both
versions of HMMER, the dataset was filtered to only in-
clude enzyme classes which (i) did not have any change
in their size between the two ENZYME database releases
(ii) did not contain any fragment sequences and (iii)
where the sensitivity was 1 using both default HMMER2
and HMMER3. The 416 enzymes that meet with the above
criteria is listed in Additional file 4. Profiles for these en-
zyme sequences were rebuilt with HMMER3 using the
19Jan2010 ENZYME dataset for direct comparison.
To further validate the discriminating power of the

HMM-ModE protocol, a gold standard dataset previously
described [11] was pruned to include only families with
more than 10 sequences and remove silver standard se-
quences which were also included in the file. This modi-
fied dataset is provided as Additional file 5.

Dataset to construct GPCR profiles using HMM-ModE
A set of labelled GPCR sequences were downloaded from
http://www.uniprot.org/docs/7tmrlist that are classified
based on receptor ligand relationship. The total number
of sequences in the release 2012_05 of 16-May-2012 is
3071. In order to maintain only a set of well characterized
sequences for constructing the profiles, we have reduced
the dataset by applying a couple of filters. Firstly, the se-
quences that are putative, hypothetical or predictive are
removed from the dataset. Secondly, only the sequences
with seven transmembranes were kept for further analysis
and the presence of these seven-transmembrane helices in
the reduced dataset was confirmed by GPCR-HMM [29].
Thereafter, we have used 2110 sequences, which belong to
different GPCR subfamilies and each of these sub families
contain at least three sequences. A table having a list of
subfamilies taken for training purpose along with number

http://micans.org/mcl/lit/svdthesis.pdf.gz
http://micans.org/mcl/lit/svdthesis.pdf.gz
http://www.uniprot.org/docs/7tmrlist


Figure 3 Schematic flow of how HMM-ModE works on a set of pre-classified protein family sequences. The figure shows how the method
HMM-ModE works, a set of pre-classified sequences (functionally classified) are used which are clustered using MCL in order to obtain clusters of similar
sequences. These clusters are aligned separately and HMM profiles are built using ‘hmmbuild’ from HMMER package, these are known as true positive
(TP) profiles. The TP profiles are scanned against all the sequences, ideally the profile should pick sequences belonging to the same family but it always
picks up sequences belonging to other families as well due to fold specific signals shared across families. We call these as false positive (FP) sequences
and generate FP HMM profiles from them. If the number of FPs is greater than 200 then we perform random sampling and then pick a representative
set of 200 sequences to generate the FP profile. Both the TP and FP profiles are then aligned using profile-profile alignment from MUSCLE and this
alignment is then used to identify the discriminating residues and modify the corresponding emission probabilty of the TP profile. A 10-fold cross
validation is also done to identify a discriminating threshold and we use the modified profiles, known as the HMM-ModE profiles, with modified
emission probability and the defined discriminating threshold.
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of sequences in each of these subfamilies is provided as
Additional file 6. In cases, where the number of sequences
in a subfamily is small (~10 or less), it is advised to mine
similar sequences using BLAST [1] and then create the
HMM profile using our method for annotation tasks.

Dataset for comparative analysis
We have used D167 and D566 dataset from one of the
recent method, PCA-GPCR, for classification of GPCR
sequences which consist of subfamilies classified on the
basis of substrate specificity. We have also used two other
datasets D1238 and D365, from the same resource which
contain sequences at the class level having a broader
functional classification. A new dataset, GPCR_human,
have been created from the GPCRDB database [13] to test
the respective methods. This dataset contains sequences
belonging to Homo sapiens and includes Muscarinic
Acetylcholine, Adrenoceptors, Dopamine, Histamine, Se-
rotonin and Trace amine subfamilies having 11, 24, 17, 16,
26 and 23 sequences respectively.

Procedure to construct HMM-ModE profiles of GPCR proteins
In order to generate highly specific profile HMMs from
the curated GPCR dataset, the sequences of each sub-
family were aligned separately using Praline-TM [30].
The subsequent alignments of each subfamily were
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combined to create a master alignment using MAFFT
[31] profile-profile alignment. For each sub-family, a
HMM profile is generated from the alignment of its se-
quences which is then used to identify the false positive
sequences from rest of the sub-families. The True Posi-
tives (TPs) are defined as the members belonging to a
particular subfamily while the sequences belonging to
different subfamilies which are picked up by the TP sub-
family when scanned across all the sequences, are cate-
gorized as False Positives (FPs). Having known the TPs
and FPs, the master alignment is then used to retrieve
the TP and FP alignments. The purpose of using the
master alignment is to ensure that the multiple align-
ment columns are comparable between the correspon-
ding HMM match states for the true and false positive
profiles. This is a critical requirement, as the emission
probabilities from the corresponding columns are ex-
tracted directly from the HMM profile for calculation of
relative entropy, and the resultant modification of emis-
sion probability. The TP and the FP alignment are sub-
sequently used to identify the discriminating positions
for fold specific signals. The emission probabilities cor-
responding to these positions are modified using relative
entropy as discussed in our earlier work [9]. The profiles
modified in terms of changed emission probabilities are
used with a discrimination threshold, which is the value
for the threshold used in profile HMM built from
HMMER3 [28], generated through tenfold cross valid-
ation. The use of this cut off enables the profile to make
highly specific classification at a finer functional level
like subfamily. These profiles along with the discrimin-
ation threshold are made available as Additional file 7.

Availability of supporting data
The data used in the manuscript is provided as following
Additional files.

Additional files

Additional file 1: Figure showing comparison of time elapsed to
scan the AGC protein kinase sub families using ‘hmmsearch’ from
HMMER2 and HMMER3 against the Uniprot database.

Additional file 2: GPCR dataset used for comparative study in this
manuscript.

Additional file 3: Scripts to run the method along with a test data
and a readme file.

Additional file 4: List of 416 enzymes used for benchmarking the
method using both HMMER2 and HMMER3.

Additional file 5: Sequences belonging to the gold standard
families used in this study.

Additional file 6: List of GPCR subfamilies used along with the
number of sequences in each of these.

Additional file 7: Modified Profile HMM database of the GPCRs
generated using our method. It can be directly used to mine
sequences using ‘hmmsearch’ with –cut_ga option from the HMMER
package.
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