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Isolation and characterization of 11 novel
microsatellite loci in a West African leaf-nosed
bat, Hipposideros aff. ruber
Heather J Baldwin1,2*, Peter Vallo1,3, Michael G Gardner4,5, Christian Drosten6, Marco Tschapka1,7 and Adam J Stow2
Abstract

Background: Noack’s leaf-nosed bat, Hipposideros ruber, is a cryptic species within the Hipposideros caffer species
complex. Despite a widespread distribution in Africa and being host to potentially zoonotic viruses, the genetic
structure and ecology of H. ruber is poorly known. Here we describe the development of 11 novel polymorphic
microsatellite loci to facilitate the investigation of genetic structure.

Findings: We selected 20 microsatellite sequences identified from high throughput sequence reads and PCR
amplified these for 38 individuals, yielding 11 consistently amplifying and scorable loci. The number of alleles per
locus ranged from two to 12, and observed heterozygosities from 0.00 to 0.865. No evidence of linkage
disequilibrium was observed, and nine of the markers showed no departure from Hardy-Weinberg equilibrium.
We demonstrate successful amplification in two closely related species and two divergent lineages of the H. caffer
species complex.

Conclusions: These new markers will provide a valuable tool to investigate genetic structure in the poorly
understood Hipposideros caffer species complex.
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Findings
Noack’s leaf-nosed bat Hipposideros ruber (Noack, 1893)
is one of two recognised cryptic species within the Hip-
posideros caffer (Sundevall, 1846) species complex. These
bats are widespread throughout sub-Saharan Africa and
among the most abundant mammals on the continent
[1,2]. Mitochondrial evidence has shown the existence of
several deeply divergent lineages within the H. caffer
complex, which most likely constitute more than the
two species [3]. Recently, they have been discovered to
host viruses with zoonotic potential [4], emphasizing the
need for knowledge about their ecology in order to gain
insight into zoonotic processes and risk factors for pub-
lic health. Microsatellites provide a powerful tool to
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investigate the poorly known ecology and life history of
these bats, including genetic structure, social arrange-
ments and mating systems. Assessment of nuclear gene
flow through microsatellite analysis may thus help to
shed light also on the taxonomy of this species complex.
We isolated and characterized 11 microsatellite loci

from a single, exclusively West African mitochondrial
lineage of Hipposideros ruber, determined by sequencing
of the cytochrome b gene [lineage D; 3]. This lineage is
henceforth called H. aff. ruber due to its distant evolu-
tionary relationship to H. ruber s. str. from East Africa,
and may represent a distinct species [3]. Hipposideros
aff. ruber has been previously identified in central Ghana
[5] and seems to be the most abundant of the three main
lineages of the H. caffer complex in this region (unpub-
lished data). The markers described herein represent, to
our knowledge, the first suite of microsatellites for an
African hipposiderid bat.
DNA was extracted from wing tissue from eight indi-

viduals sampled from the Brong Ahafo and Volta regions
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in central Ghana. DNA was extracted using an innu-
PREP DNA mini kit (Analytik Jena, Jena, Germany). Five
micrograms of pooled DNA from eight individuals was
sent to AGRF (www.agrf.com.au), where high through-
put sequencing was performed on a Roche GS FLX 454
sequencing machine as described elsewhere [6-8]. QDD
1.3 [9] was used to screen for di- to hexanucleotide re-
peat motifs with a minimum of eight repeats. From the
1689 microsatellites identified, a total of 32 primer pairs
flanking tetranucleotide repeats with 11–15 repeat mo-
tifs were designed using PRIMER3 [10]. Twenty primer
pairs for which the annealing temperatures were most
similar for each primer were selected for initial amplifi-
cation trials. Amplification products from these primer
pairs were visualised by electrophoresis on an agarose gel,
from which 13 pairs with strong, stutter-free amplification
bands were selected for optimisation. Forward primers for
these 13 loci were directly labelled with a fluorochrome
at the 5′ end. Twelve of these loci were successfully
amplified by polymerase chain reaction (PCR), with one
Table 1 Characteristics and thermocycling conditions for 11 p
Hipposideros aff. ruber

Locus Accession # Repeat
motif Primer sequences (5′ – 3′) M

Hr1 KM370156 (GATA)13
F:TGGCAAGGTTAACACGAACC

2
R:TCTCCCTCCCGCTCTTATCT

Hr2 KM370157 (TCTT)15
F:GAAGCACTGCTGGAAAGGTT

2
R:GTTGAACTGGGTGGCCTTTA

Hr5 KM370160 (GAAG)14
F:TGGGTGTTTCAGTTTCATGC

2
R:TGGTCTATTTGTTTCCTTCCGTA

Hr6 KM370161 (TCTT)13
F:GGGTTTCTTCAAATGTGTTTTC

2
R:GCCTCCAAGACAAACAGAGG

Hr7 KM370162 (ATTT)11
F:AGCCAATGACAAGACTGCCTA

2
R:CCAGTGAAGCAACGTCCTCT

Hr8 KM370163 (ATCT)12
F:CTCAGCCCAAAGTCAAGGAG

2
R:TGGCTATACGAATACAAAGATTAGACA

Hr9 KM370164 (TCTA)12
F:TGCTATCTTCCATGAGGTCAGA

2
R:TCTCTGTTGCTGAAGGAAAACTT

Hr10 KM370165 (TTAT)11
F:TCCACTGGAGTAAGAGATGTGTG

2
R:GCACTGCAACAGTGAAAAGC

Hr11 KM370166 (TTTC)14
F:CTCTTGCAATGAAGGCAATG

2
R:CTGCCATGAGCTACCATGAG

Hr12 KM370167 (GATA)12
F:TTGGTTTTCAGATCTTCTGGTG

2
R:GAGTCTTCTGCCTGCTGGAC

Hr13 KM370168 (TTTC)13
F:CCGAAGCCAATCTGGTTTTA

2
R:GGGTCCTGCAGAAACACACT

PFR forward and reverse primer concentration, Ta annealing temperatures of touchd
HO observed heterozygosity, HE expected heterozygosity, HWE probability of deviat
(van Oosterhout), ns not significant., **p < 0.01, ***p < 0.001.
discarded due to the excessive amplification of non-
specific product. PCR conditions for these 12 loci were
optimized and genotyping was performed on 38 individ-
uals (16 females, 22 males) sampled in Brong Ahafo and
Volta Regions.
PCRs were performed using 10–50 ng of template DNA

and reagent concentrations as follows: 200 μM each
dNTP, one unit reaction buffer, between 2.0 and 2.5 mM
MgCl2, equal concentrations of forward and reverse pri-
mer (0.25–1.0 μM) and one unit Taq polymerase (see
Table 1). PCR amplification consisted of an initial de-
naturation at 94°C for 3 min followed by six touch-
down cycles of 94°C denaturation for 30 s, annealing
for 30 s with temperatures decreased by 2°C per cycle
(55–47°C, 60–50°C, or 65–55°C; Table 1), and poly-
merase extension step at 72°C for 45 s. An additional
35 cycles were conducted, of denaturation (94°C, 30 s),
primer annealing (final touchdown temperature, 45 s),
and polymerase extension (72°C, 45 s), followed by a
final extension (72°C, 10 min). PCR products were
olymorphic microsatellites in the African leaf-nosed bat

gCl2/PFR Ta (°C) Size (bp) N NA HO HE HWE PNULL

.0 mM/0.5 μM 60-50 238-258 38 6 0.74 0.79 ns 0.028

.0 mM/0.25 μM 60-50 311-339 34 8 0.77 0.76 ns −0.009

.0 mM/0.5 μM 65-55 186-234 34 9 0.82 0.82 ns −0.006

.0 mM/0.5 μM 55-47 204-240 37 8 0.70 0.73 ns 0.012

.0 mM/0.5 μM 65-55 144-172 33 8 0.42 0.68 *** 0.173

.0 mM/0.5 μM 60-50 221-241 36 6 0.72 0.68 ns −0.042

.0 mM/0.5 μM 60-50 218-234 38 5 0.63 0.73 ns 0.061

.0 mM/1.0 μM 65-55 258-282 38 7 0.79 0.74 ns −0.040

.0 mM/0.5 μM 65-55 106-154 37 12 0.87 0.86 ns −0.018

.5 mM/0.5 μM 60-50 277-293 38 4 0.42 0.60 ** 0.140

.0 mM/1.0 μM 65-55 321-329 34 2 0.00 0.06 ns 0.157

own cycles (see Methods), N number of individuals, NA number of alleles,
ion from Hardy-Weinberg equilibrium, PNULL null allele frequency estimate
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Table 2 Cross-amplification success in other Hipposideros species or lineages

Taxon Hr1 Hr2 Hr5 Hr6 Hr7 Hr8 Hr9 Hr10 Hr11 Hr12 Hr13

H. abae + + + + + + + + + + +

H. tephrus + + + + + + + + – + +

H. ruber (lin. B)§ + + + + + + + + + + +

H. ruber (lin. C)§ + + + + + + + + + + +

+successful amplification with 1–2 bands visualised of expected size, − no PCR product observed.
§sensu Vallo et al. 2008. lin. = lineage.
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electrophoresed using an ABI3130 Genetic Analyzer
(Applied Biosystems, Foster City, CA, USA). Allele
sizes were determined via manual inspection using the
software PEAK SCANNER 1.0 (Applied Biosystems),
followed by automated binning performed using TANDEM
1.09 [11]. We reanalyzed 20% of individuals to evalu-
ate data integrity. One locus (Hr3) was discarded due
to high rounding error in the TANDEM analysis, in-
dicating poor marker quality. MICRO-CHECKER 2.2.3
was used to assess the probability of scoring errors, allelic
dropout and the presence of null alleles [12]. No scoring
errors or allelic dropout were detected, although there
were potentially null alleles at loci Hr7 and Hr12. Locus
Hr13 may also suffer from null alleles, though low allelic
variability (one common and one rare allele) did not
allow this to be confirmed (Table 1).
The program CERVUS was used to calculate number

of alleles, observed (Ho) and expected (He) heterozygos-
ities, and probabilities of identity [13]. All 11 loci were
determined to be polymorphic, with a range of 2–12
alleles per locus (Table 1). Tests for pairwise linkage dis-
equilibrium and deviations from Hardy-Weinberg equi-
librium with Bonferroni corrections were calculated
using FSTAT 2.9.3 [14]. Two loci (Hr7, Hr12) deviated
significantly from the Hardy-Weinberg equilibrium with
a homozygote excess (Table 1). No linkage disequilib-
rium was detected between any loci. The probability of
identity for the 11 loci was low at 1.6E−10 overall, and
8.7E−10 and 3.1E−9 for the Brong Ahafo and Volta local-
ities, respectively. Probability of sibling identity was
1.4E−4, 2.2E−4 and 2.8E−4 for overall, Brong Ahafo and
Volta, respectively.
In order to explore utility in closely related taxa, we

tested whether these loci could be amplified across four
related taxa in the genus Hipposideros using the PCR
conditions specified above (Table 2). All but one locus
successfully amplified PCR product across the tested
taxa.
These microsatellite loci provide useful resources for

the study of population genetic structure of bats in the
Hipposideros caffer complex, and likely also related spe-
cies in this genus. These findings will help to address
questions regarding connectivity, social behaviour, and
zoonotic disease ecology in African leaf-nosed bats.
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