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Abstract

Background: Next-generation sequencing (NGS) is now a commonplace tool for molecular characterisation of

virtually any species of interest. Despite the ever-increasing use of NGS in laboratories worldwide, analysis of whole
genome re-sequencing (WGS) datasets from start to finish remains nontrivial due to the fragmented nature of NGS
software and the lack of experienced bioinformaticists in many research teams.

Findings: We describe SPANDx (Synergised Pipeline for Analysis of NGS Data in Linux), a new tool for high-throughput
comparative analysis of haploid WGS datasets comprising one through thousands of genomes. SPANDx consolidates
several well-validated, open-source packages into a single tool, mitigating the need to learn and manipulate individual

MiSeq/HiSeq2000 and lon PGM data.

available at: http//sourceforge.net/projects/spandx/.

NGS programs. SPANDx incorporates BWA for alignment of raw NGS reads against a reference genome or
pan-genome, followed by data filtering, variant calling and annotation using Picard, GATK, SAMtools and Snpkff.
BEDTools has also been included for genetic locus presence/absence (P/A) determination to easily visualise the core
and accessory genomes. Additional SPANDx features include construction of error-corrected single-nucleotide
polymorphism (SNP) and insertion-deletion matrices, and P/A matrices, to enable user-friendly visualisation of genetic
variants. The SNP matrices generated using VCFtools and GATK are directly importable into PAUP*, PHYLIP or RAXML
for downstream phylogenetic analysis. SPANDx has been developed to handle NGS data from Illumina, lon Personal
Genome Machine (PGM) and 454 platforms, and we demonstrate that it has comparable performance across lllumina

Conclusion: SPANDXx is an all-in-one tool for comprehensive haploid WGS analysis. SPANDx is open source and is freely

Keywords: NGS, Haploid, Pipeline, Comparative genomics, lllumina, lon PGM, Variant calling, SNP, Indel, Phylogeny

Background

The development of the first massively parallel next-
generation sequencing (NGS) platform in 2005 [1]
forever changed the medical and biological research
landscape. A decade on, NGS technologies are now
being routinely used for myriad purposes including
whole-genome re-sequencing (WGS), genome-wide as-
sociation studies, de novo- and re-assemblies, amplicon
re-sequencing, polymorphism discovery, non-coding
and coding RNA characterisation (RNA-seq), methyla-
tion studies (Methyl-seq) and protein-DNA interactions
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(ChIP-seq). The popularity of NGS has led to a rapid de-
crease in operating and reagent costs that have out-
stripped the “Moore’s law” paradigm, a common yardstick
for measuring technological success based on computa-
tional hardware speed (http://www.genome.gov/sequen-
cingcosts/). This plummeting cost has been brought about
by major technological improvements and increased com-
petition in the NGS platform market. Given continuing
improvements in cost-effectiveness and versatility of NGS
in molecular biology research, it is not surprising that
NGS has become a mainstay in both small and large re-
search laboratories across the globe.

The desire to answer important medical or biological
questions using NGS, and in particular WGS, has con-
currently driven the development of analysis tools
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designed to efficiently and accurately decode these vast
volumes of nucleic acid data. However, analysis has been
unable to keep pace with the volume of data being gen-
erated. Challenges to NGS data management and ana-
lysis include computation and storage availability and
scalability, data sharing and privacy issues, NGS software
costs and the requirement for bioinformaticists skilled in
designing, programming and running complex analysis
pipelines [2]. The technical difficulty and fragmented na-
ture of NGS software, particularly for large-scale WGS
analyses involving more than a handful of genomes,
mean that comprehensive analyses remain out of reach
for many researchers. In addition, the lack of transpar-
ent, publicly available and standardised NGS pipelines
has potentially led to non-validated variant outputs be-
ing reported and perpetuated in the literature.

To address these issues, we have developed SPANDx
(Synergised Pipeline for Analysis of NGS Data in Linux).
SPANDX is an open-source, high-throughput, compara-
tive genomic analysis tool for haploid organisms that in-
tegrates well-validated, open-source programs into a
single program, thereby simplifying and standardising te-
dious WGS analysis workflows. SPANDx incorporates
Burrows-Wheeler Aligner (BWA) [3,4] for read mapping
alignment, SAMtools [5] for read filtering and parsing,
BEDTools [6] for genetic locus presence/absence (P/A)
determination, Picard (http://picard.sourceforge.net) for
data filtering, the Genome Analysis Tool Kit (GATK)
[7,8] for base quality score recalibration, variant deter-
mination, data filtering and improved insertion-deletion
(indel) calling, VCFtools [9] for single-nucleotide poly-
morphism (SNP) and indel matrix construction, and
SnpEff [10] for variant annotation. SPANDx has been
written to analyse data generated from paired- and
single-end Illumina (both pre- and post-v1.8 quality en-
coding) platforms, as well as Ion PGM and 454 single-
end data.

SPANDx also incorporates several additional features
aimed at minimising researcher hands-on time whilst en-
abling customisability. Most notably, SPANDx automatic-
ally generates a human-readable P/A matrix from
individual BEDTools outputs, and can also construct
error-corrected SNP and indel matrices when specified.
These outputs enable quick and facile visualisation of gen-
etic variants across a large number of genomes. SNP
matrices generated by SPANDx are provided in .nex for-
mat and are directly importable into PAUP*, PHYLIP or
RAXML for downstream phylogenetic analysis. Inbuilt,
pre-optimised and customisable variant calling parameters
for Illumina and Ion PGM data obviate the need for time-
consuming optimisation of these settings, a requirement
of other programs (e.g. Galaxy [11]). Unlike many WGS
tools, SPANDx does not require the user to provide as-
sembled genomes for every strain. SPANDX is run with a
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single command and parallelises many tasks by taking ad-
vantage of Portable Batch System (PBS) job scheduling,
thereby reducing processing times for large datasets com-
prising tens through to thousands of genomes. Finally,
SPANDx has been written in relatively simple, non-
compiled, open-source code that enables users to custom-
ise the program by incorporating their preferred NGS
tools (e.g. Bowtie [12] instead of BWA for read align-
ment), or by adding new features to its workflow.

Findings

SPANDx description

The SPANDx workflow is shown in Figure 1. SPANDXx is
a shell package written for implementation in a Linux en-
vironment using Bash. SPANDx integrates multiple freely
available Linux-based programs (BWA [3,4], SAMTools
[5], Picard, GATK [7,8], VCFtools [9], BEDTools [6] and
SnpEff [10]) into a single pipeline for alignment, variant
identification, analysis and annotation from raw NGS data
derived from haploid organisms. Using data generated
from our prior WGS studies [13-16], we have tested the
performance of SPANDx using paired-end Illumina
(GAj;, MiSeq and HiSeq2000) data, and single-end Ion
PGM, Illumina, and 454 GS-FLX/FLX+ data. SPANDx is
designed to run in a cluster environment and utilises par-
allel processing for the majority of the analysis pipeline.
To facilitate parallelisation and appropriate resource allo-
cation, SPANDXx requires a Linux/UNIX system with PBS.
The SPANDx user manual (available at: http://source-
forge.net/projects/spandx/) provides detailed information
on installing, operating and where desired, customising
this program.

Variant identification and phylogenetic analysis

Variant (i.e. SNP and indel) identification is a fundamental
component of any haploid WGS analysis. For this study,
default settings for SPANDx (as detailed in the user man-
ual) were used to identify variants; optional settings were
included as follows. The -m flag was used to construct core
genome SNP matrices from the individual Escherichia coli
or Haemophilus influenzae SNP .vcf files for phylogenetic
reconstruction. The SPANDx-generated Ortho_SNP_ma-
trix.nex file was directly imported into PAUP* 4.0b10 [17]
and used to construct maximum parsimony phylogenetic
trees (Figures 2, 3 and 4). For the seven REL E. coli ge-
nomes, SnpEff was implemented (using the -a and -v flags)
to annotate SNPs.

Presence/absence (P/A) analysis of E. coli and H.
influenzae genomes

Defining the core (i.e. loci present in all taxa) vs.
accessory (i.e. loci present in at least one taxon) genome
is another fundamental application of haploid WGS.
This information can be used for many purposes
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Figure 1 SPANDx workflow for analysis of haploid next-generation re-sequencing data.

including pan-genome construction, strain-, species- or
genus-level signature identification, or for observing
patterns of genome reduction. The coverageBED
module of BEDTools has been incorporated into the
SPANDx pipeline for this purpose. BEDTools deter-
mines NGS read coverage depth and breadth across seg-
ments or ‘bins’ relative to the reference genome [6],
thereby providing an efficient way of using raw NGS
reads to identify both core and accessory genomic loci
within a dataset compared with a reference genome. For
the current study, a default 1 kb window size was used
for P/A analysis. SPANDx automatically generates

coverageBED genetic locus P/A outputs from all input-
ted genomes against the reference genome and com-
bines individual outputs into a single human-readable
matrix file (Bedcov_merge.txt). Additional file manipu-
lation of P/A matrices was performed using basic fea-
tures in MS Excel 2010 to create heat maps.

Example P/A matrices generated by SPANDx for the
E. coli and H. influenzae datasets, which highlight the
core and accessory genomes of these species compared
with the reference genome, are respectively shown in
Figures 3 and 4. We have previously used these outputs
to develop a novel speciation target for Burkholderia
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visualised with Integrative Genomics Viewer v2.3.25 [20].

Figure 2 Single-nucleotide polymorphism (SNP) variants identified by SPANDx across the genomes of seven clonal long-term E. coli
in vitro passaged cultures. The number of generations is indicated in parentheses. REL606, the ancestor for these passaged cultures, was used
for reference genome comparison [GenBankNC_012967]. As confirmed by SPANDx, REL607 is known to differ from REL606 by two SNPs [18], as
denoted by the red vertical lines. In contrast, the ~40 K strain REL10938 is a hypermutable strain [19] and SPANDx identified 607 SNPs separating
REL10938 from REL606. Phylogenetic analysis was performed using the Ortho_SNP_matrix.nex file, an output from SPANDx that can be directly
imported into PAUP* 4.0 [17]. Using maximum parsimony, a highly accurate tree (consistency index = 1.0) was generated in PAUP*. SNPs were

ubonensis [13] and to characterise genome reduction in
Burkholderia pseudomallei [14].

Optimised variant calling for lllumina and lon PGM data

Other NGS-based genomics tools such as Galaxy [11] re-
quire users to specify variant calling settings, which can be
a subjective and time-consuming task, particularly for users

unfamiliar with NGS data. To combat this issue, SPANDx
includes pre-optimised variant calling for both single- and
paired-end haploid NGS data across the Illumina and Ion
PGM platforms. Although these settings have been opti-
mised using our test datasets, they can be customised if de-
sired by altering the filtering parameters in GATK.config, a
file that comes with the SPANDx distribution.

REL1164A
REL2179A
REL4536A
REL7177A

- 1000 SNPs <

~1.6Mbp >

Figure 3 Core single-nucleotide polymorphism (SNP) phylogenetic analysis across 16 E. coli genomes (left), and comparison with the
accessory genome (right). The Ortho_SNP_matrix.nex file created by SPANDx was directly imported into PAUP* 4.0 and used for phylogenetic
construction based on 106,557 core SNPs. Using maximum parsimony, a tree with a consistency index of 0.78 was generated. The Bedcov_merge.
txt file for presence/absence analysis of loci was automatically generated by SPANDx using the coverageBED module of BEDTools [6], based on
the default 1 kb window size. Regions with <95% coverage across one or more genomes are displayed, representing ~1.6Mbp of the E. coli
genome (x-axis). Coverage is shown as a heat map, with red lines equating to low or no coverage through to green lines, which represent
uniform coverage at each 1 kb window. In combination, these tools enable facile visualisation of the core and accessory haploid genomes.
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Figure 4 Comparison of lllumina and lon PGM platforms using SPANDx. SPANDx was tested on 19 Australian Haemophilus influenzae strains [16]
with both single-end lon PGM and paired-end lllumina data. Strain 86-028NP [21] was used for reference alignment. From the Illumina data (top left),
~161,000 identified SNPs were used to construct a core genome SNP cladogram (Cl = 0.47). From the lon PGM data (bottom left), ~129,000 identified
SNPs were used to construct a core genome SNP cladogram (Cl = 048). The right-hand side panels show corresponding presence/absence data for
each strain as described in Figure 3. For lllumina, 621 kb was found to be variable, compared with 624 kb with the lon PGM data. Collectively, this
comparison shows that SPANDx provides highly consistent haploid comparative genomic outputs across multiple NGS platforms.

Phylogenetic analysis of SPANDx SNP outputs

Using a combination of VCFtools, GATK and several
quality control and filtering steps, SPANDx automatic-
ally generates error-corrected core genome SNP matri-
ces for phylogenetic analysis that can be directly
imported into the phylogenetic programs PAUP*, PHY-
LIP and RAxML, the latter two of which are open-

source software. The extensive error checking, filtering
and variant identification steps undertaken in SPANDx
using GATK ensure that the identified SNPs are as ac-
curate as possible using NGS data. Example maximum
parsimony analyses of SPANDx-generated data for the
E. coli and H. influenzae datasets are shown in Figures 2,
3 and 4.



Sarovich and Price BMC Research Notes 2014, 7:618
http://www.biomedcentral.com/1756-0500/7/618

Program comparison: SPANDXx vs. BRESEQ

We performed an in-depth comparison of SPANDx with
BRESEQ, a comparative genomics tool specifically designed
for identifying SNPs, indels and large deletions in closely re-
lated microbial-sized genomes (http://barricklab.org/twiki/
bin/view/Lab/ToolsBacterialGenomeResequencing). Due to
limitations on BRESEQ data inputs, we only compared the
six closely related E. coli REL genomes spanning 2 K to
40 K generations; REL607 was not included in the BRESEQ
study [19] and was therefore excluded in this comparison.
Default settings for SPANDx (as detailed in the SPANDx
user manual) were used to identify variants. SnpEff was im-
plemented using the -a and -v flags in SPANDx to annotate
SNPs.

SNPs

SPANDx and BRESEQ identified identical SNPs for the
2K, 5K, 10 K, 15 K and 20 K mutants (3, 9, 16, 22 and
28 SNPs, respectively) [19]. One additional SNP in the
20 K strain, located at position 2129116 of insB-15 in
REL606, was not identified by either SPANDx or BRE-
SEQ and was only discovered by Sanger sequencing [19].
This SNP was not able to be identified from NGS read
data due to the paralogous nature of the ISI insertion
sequence element in this genome. BLAST analysis of ISI
in REL606 identified 27 highly related copies (>99%
match across 100% of bases), with up to three SNPs
present among the paralogues. Using NGS data, espe-
cially data harbouring relatively small insert sizes (~80-
170 bp with this dataset), such loci cannot be accurately
mapped. Therefore, the exclusion of this SNP from both
the SPANDx and BRESEQ pipelines demonstrates the
inherent limitations of using short-read NGS data for
variant calling in large paralogous loci.

SPANDXx analysis of the 40 K strain identified only 608
SNPs separating the hypermutable strain REL10938 from
its REL606 ancestor, compared with the 626 SNPs found
using BRESEQ. Closer examination found that these 18
SNPs were either not identified by SPANDx or were ex-
cluded using the default filtering parameters due to non-
polymorphic (n=1) or ambiguous (n =11) genotypes, or
poor mapping quality and/or insufficient (<0.5x of aver-
age) coverage (n = 6). The default parameters for SNP call-
ing in SPANDx have been optimised such that the ability
to identify only ‘real’ variants is maximised; false-positives
are not tolerated with these settings, in line with GATK
recommendations. Loosening of these parameters results
in additional SNPs being identified, some of which may
turn out to be ‘real’ upon confirmation with e.g. Sanger
sequencing; however, the trade-off is that false-positives
begin plaguing the dataset (results not shown). Given
the nature of NGS data and the behaviour of NGS align-
ment programs, neither variant calling method is incor-
rect per se, but these minor differences between programs
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highlight the need to verify questionable SNPs from NGS
data using secondary methods including manual inspec-
tion of NGS read alignments in e.g. Tablet [22], or wet
laboratory-based analyses such as Sanger sequencing or
allele-specific PCR.

Indels and chromosomal rearrangements

Comparison of SPANDx and BRESEQ for identifying
small (<20 bp) indels in the REL strain cohort demon-
strated that both methods were identical (variants are de-
tailed in Supplementary Table two from [19]). Neither
method identified a known 1.49Mbp inversion [23].

Large deletions and insertions

Large insertions are not currently able to be detected
using SPANDx. However, for highly related strains these
signatures can be detected with BRESEQ, as exemplified
by the identification of ten IS element insertions with
BRESEQ that were not found by SPANDx. Identification
of large deletions (>20 bp) showed that, on a gross level,
there was good consistency between the programs. How-
ever, the size of the deletions varied between SPANDx
and BRESEQ), with SPANDx overestimating deletion size
for three of the five identified deletions by ~0.7 to
1.4 kb. BLAST analysis of these regions showed that the
additional sequence called as ‘deleted’ by SPANDx corre-
sponded with paralogous IS element loci (results not
shown). This finding was expected, being consistent with
inherent read mapping difficulties across paralogous loci
using short-read NGS data.

Program comparison: SPANDXx vs. Galaxy

Although we did not directly test Galaxy in this study, a
previous study has used this program to compare E. coli
strain REL607 with REL606 [18]. SPANDx identified that
REL607 is a dual-nucleotide variant of REL606 at the
araA and recD loci (Figure 2); no indels were found by
either program. Thus, SPANDx confirmed previous vari-
ant findings identified using Galaxy [18].

Cross-platform reproducibility of SPANDx

The performance of bioinformatics tools across multiple
NGS platforms is an important consideration for analysis
reproducibility and program utility. To address this ques-
tion, we tested the performance of SPANDx using 19 H.
influenzae strains subjected to two different NGS plat-
forms: single-end Ion PGM and paired-end Illumina
(MiSeq and HiSeq2000). SPANDx constructed almost
identical core genome SNP phylogenies with these two
datasets (Figure 4) despite being generated from platforms
with inherently different error profiles and chemistries. In
addition, P/A determination across these 19 genomes was
essentially identical with these two platforms (Figure 4).
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These data demonstrate the robustness and accuracy of
SPANDx across multiple NGS platforms.

Discussion

SPANDx is a simple-to-use, high-throughput, and open
source comparative genomics tool that has been devel-
oped for the integrated analysis of haploid WGS data from
start to finish with minimal hands-on time. SPANDx has
been written to handle multiple NGS platforms and cur-
rently can analyse single- and paired-end read data from
the Illumina MiSeq/HiSeq/GA;, platforms, and single-
end data from the Ion PGM and 454 GS FLX/FLX+ plat-
forms. Because SPANDx uses PBS resource management,
it has the capability of performing both single-core and
parallel task processing, resulting in rapid turn-around-
time, especially for medium- to large-scale WGS datasets
comprising one, ten or even thousands of genomes.

SPANDX integrates existing, freely available comparative
WGS analysis tools (BWA, Picard, the GATK, SAMTools,
SnpEff, BEDTools and VCFtools) into a single pipeline.
Importantly, SPANDx incorporates novel features for
comprehensive analysis of raw haploid WGS data, and is
aimed at simplifying downstream analysis (Figure 1) and
increasing the user friendliness of data outputs. First,
SPANDx automatically constructs P/A matrices of genetic
loci using raw outputs generated by the coverageBED
module of BEDTools. This feature enables identification
of the core genome, a common goal of comparative hap-
loid genome analyses. We have used this tool to design
highly accurate species-specific assays for B. ubonensis
[13], H. influenzae and Haemophilus haemolyticus (Price
et al., manuscript in prep.), based on the identification of
highly conserved loci that are absent in other species. Sec-
ond, SPANDXx can construct annotated, merged SNP and
indel matrices from .vcf outputs. When a SNP matrix is
generated, SPANDx will generate PAUP*, PHYLIP or
RAxML-compatible outputs for downstream phylogenetic
analysis (e.g. Figures 2, 3 and 4). Third, SPANDx contains
pre-optimised yet customisable variant calling parameters
for Illumina and Ion PGM data by default, allowing users
to run analyses without spending a large amount of time
optimising these parameters. These novel features of
SPANDx enable users to quickly compare genomic data
outputs without cumbersome and time-consuming ma-
nipulation of variant outputs.

Existing open-source comparative genomic tools for
haploid NGS data analysis include Galaxy and BRESEQ.
Galaxy (http://galaxyproject.org/) is a popular NGS tool
that does not require any knowledge of Linux. The web-
based version of Galaxy is particularly useful for small-
scale analyses. Other advantages of Galaxy include its
standardised outputs, frequent developer updates, cloud-
based computer resource availability, and the ability to
install the program locally where data privacy is of
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concern. The main limitation of Galaxy is the hands-on
time required to construct an analysis pipeline, especially
the need to manually optimise the filtering and data pro-
cessing steps.

BRESEQ [19] is a command line tool implemented in
C++ and R that is useful for finding variants (SNPs,
indels, large deletions and new junctions supported by
mosaic reads) relative to a closely related reference gen-
ome. Comparison of BRESEQ and SPANDx outputs in
the current study demonstrated that both programs gave
almost identical SNP and indel outputs, suggesting that
both tools excel for this purpose. However, less consen-
sus was found when identifying large deletion boundar-
ies, with SPANDx overestimating deleted regions in 3/5
cases due to paralogous IS element loci flanking these
regions, which cannot be mapped with short-read NGS
data. BRESEQ has an additional advantage over SPANDx
in its ability to identify larger (> ~20 bp) insertions, as
SPANDx is not currently configured for this purpose.
However, unlike SPANDx, BRESEQ is not appropriate
for WGS analysis of more distantly related genomes or
for medium- to large-scale datasets. Due to its lack of
parallel processing, users of BRESEQ are limited to a ref-
erence genome of <20 Mb, an average genome coverage
of <20x, and <1,000 expected mutations, and many
comparative genomic functions are yet to be incorpo-
rated into its pipeline. BRESEQ also requires consider-
ably more hands-on time to merge variant files than
SPANDx and is thus not practical to use for more than a
handful of genomes.

SPANDx has other advantages over existing tools and
pipelines, including error-corrected SNP and indel matri-
ces. To minimise effort and to standardise outputs across
studies, SPANDx variant calling parameters have been
optimised on our bacterial NGS datasets but can be custo-
mised to the user’s preference. Using default settings, we
have demonstrated that SPANDx performs comparably
for SNP calling across Illumina MiSeq/HiSeq2000- and
Ion PGM-generated data. To the best of our knowledge,
other pipelines have not been tested and validated across
multiple NGS platforms.

Recognised shortcomings of SPANDx include the inabil-
ity to identify SNP variation in paralogous regions, or in-
versions, although these issues were also identified in
BRESEQ and are the result of NGS data and not an inher-
ent shortcoming of these programs. Currently, SPANDx
requires PBS to perform parallel processing and cannot be
run on systems that do not possess this software. To in-
crease the utility of SPANDx future versions will include
the ability to run this pipeline with multiple resource han-
dlers. Although SPANDx uses BEDTools for identifying
large deletions, this program does not accurately pinpoint
the exact positions of large deletions and further analysis
is needed. SPANDx currently does not contain tools for
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identifying large insertions. For those wishing to identify
chromosomal rearrangements or large (>20 bp) insertions,
or to accurately characterise large deletions, it is recom-
mended that genome assemblies are used instead of
SPANDx (or similar programs).

Conclusion

The NGS era has enabled researchers to generate unpre-
cedented amounts of genomic data, but there remains a
bottleneck in analysis. Genomic analysis pipelines such
as SPANDx provide a streamlined way of decoding these
data without the requirement for researchers to “re-
invent the wheel” or learn multiple NGS programs.
SPANDX is currently written to handle only haploid re-
sequencing datasets. However, future development of
SPANDx will include the ability to use other resource
handlers (e.g. SGE), de novo assembly of accessory gen-
ome components from unaligned reads, de novo and
reference-assisted genome assemblies, tools for insertion
and chromosomal rearrangement detection and the abil-
ity to analyse diploid NGS data e.g. the human genome.

Availability and requirements

Project name: SPANDx

Project homepage: https://sourceforge.net/projects/
spandx/

Operating system: Linux

Programming language: Bash

Other requirements: Portable Batch System (TORQUE
2.5.13), Java 1.7.0_55, Burrows-Wheeler Aligner (BWA)
0.6.2, SAMtools 0.1.19, BEDTools 2.18.2, Picard 1.105,
the Genome Analysis Tool Kit (GATK) 3.0 or higher,
VCFtools 0.1.11, tabix 0.2.6 and SnpEff 3.6.

License: GNU General Public License version 3.0
(GPLv3)

Any restrictions to use by non-academics: Yes. Com-
mercial users of GATK are required to obtain a licence
for use. For further information, see www.appistry.com/
gatk. As of version 3.1, GATK is open source to not-for-
profit institutions only. SPANDx and all other software
used by SPANDx are open source.

Availability of supporting data

Two NGS datasets were used in this study. The first dataset
comprised 16 publicly available E. coli Illumina HiSeq2000-
generated genomes (Sequence Read Archive [SRA] acces-
sions ERX287459, ERX287470, ERX287479, ERX287533,
ERX287535 through ERX287538; ERX287540, SRX012986,
and SRX012988 through SRX012993). Seven are isogenic
REL isolates from long-term evolution experiments
(http://myxo.css.msu.edu/ecoli/) that span ~40,000 in vitro
generations [19] and the additional nine are other more dis-
tantly related E. coli genomes from the SRA database. The
FASTA file for the closed E. coli genome REL606 [19] was
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used as the reference for variant calling and annotation.
The second dataset comprised 20 Australian H. influenzae
strains sequenced using both the Ion PGM [16] and Illu-
mina MiSeq [16] or HiSeq2000 platforms. The FASTA file
for the closed H. influenzae 86-028NP genome [21] was
used as the reference for variant calling.
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