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Dietary Xylo-oligosaccharide stimulates intestinal
bifidobacteria and lactobacilli but has limited
effect on intestinal integrity in rats
Ellen Gerd Christensen1, Tine Rask Licht1, Thomas Dyrmann Leser2 and Martin Iain Bahl1*
Abstract

Background: Consumption of prebiotics may modulate gut microbiota, subsequently affecting the bacterial
composition, metabolite profile, and human health. Previous studies indicate that also changes in intestinal
integrity may occur. In order to explore this further we have investigated the effect of the putative prebiotic
xylo-oligosaccharides (XOS) on the gut microbiota and intestinal integrity in male Wistar rats. As changes in
intestinal integrity may be related to the expected bifidogenic effect of XOS, we additionally addressed effects
of supplementation with a commensal Bifidobacterium pseudolongum (BIF) isolated from the same breed of
laboratory rats.

Results: Changes in faecal and caecal bacterial composition determined by 16S rRNA gene sequencing and
quantitative PCR for selected bacterial groups revealed that the overall bacterial composition did not differ
markedly between the control (CON), XOS, and BIF groups, when correcting for multiple comparisons. However as
hypothesised, the relative abundance of Bifidobacterium spp. was increased in XOS-fed rats as compared to CON in
faecal samples after the intervention. Also Lactobacillus spp. was increased in both the XOS and BIF groups in
caecum content compared to CON. Intestinal permeability determined in vivo by FITC-dextran permeability and
in vitro using extracted caecum water in trans-epithelial resistance (TER) assay showed no effect on intestinal
integrity in either the XOS or the BIF groups. However, the expression of occludin, which is part of the tight
junction complex, was increased in the XOS group compared to the CON group.

Conclusions: Supplementation with XOS or a commensal Bifidobacterium pseudolongum had very limited effects
on intestinal integrity in rats as only significant change in expression of a single tight junction protein gene was
found for the XOS group.
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Background
The complex microbial community of the gut environ-
ment is thought to interact with the host organism and
to affect human health [1]. Modulation of the gut micro-
bial composition by consumption of specific substances
such as prebiotics and probiotics may therefore affect
intestinal and systemic health. Previous studies of the
modulatory effect of established prebiotics as well as pu-
tative prebiotics have mainly focused on Bifidobacterium
spp. and Lactobacillus spp. in the microbiota [2-5] as
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these are claimed to have beneficial effects on health [6].
Effects on other bacterial groups, potentially with ad-
verse effects on health, may thus have been overlooked.
The development of high-throughput sequencing tech-
niques now makes it feasible to survey the entire micro-
biota. In addition to determining the effect of pre- and
probiotics on the complete gut microbiota, it is important
to understand how such effects influence host health. An
important marker for health is intestinal integrity, as in-
creased intestinal gut permeability previously has been
connected to intestinal disorders including inflammatory
bowel diseases and coeliac disease [7,8]. Gut wall permeabil-
ity can be determined in vivo by examining the permeabil-
ity of molecules with a defined size, such as FITC-dextran
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[9] and CrEDTA [10]. In addition, effects on intestinal in-
tegrity can be estimated by determining the expression
and localization of tight-junction proteins. Effects of gut
content on intestinal integrity may also be assessed
in vitro by examining the effect of metabolites from the
community found in e.g. faecal water on trans-epithelial
resistance (TER) in epithelial cell monolayers [11,12].
Several previous studies have examined the effect of

prebiotic supplementation on pathogen invasion in ani-
mal challenge studies. Prebiotic fructo-oligosaccharides
(FOS) and the putative prebiotic xylo-oligosaccharides
(XOS) [13] have previously been found to stimulate trans-
location of Salmonella in rats [14,15] and mice [16]. Here
the prebiotics also stimulated increase in Bifidobacterium
spp. [14,17] and Lactobacillus spp. [14,15], which are both
considered to have a beneficial effect on host health. In
connection to this, FOS has been found to increase per-
meability of CrEDTA in rats, while also stimulating these
two groups of bacteria [18]. Also, we have recently shown
a trend for an inverse association between the relative
abundance of Bifidobacterium spp. in human faeces and
the effect of faecal water on trans-epithelial resistance
(TER) [11]. This however does not necessarily implicate
that bifidobacteria or lactobacilli are involved in the ob-
served adverse effects, but the effects could be attributed
to other factors, such as changes in non-investigated bac-
terial groups. The modulation of the microbiota as whole
by prebiotics may thus result in adverse effects on the in-
testinal integrity, which could be due to changes in meta-
bolic outputs of the community. Also in vitro studies
show that B. infantis produce compounds that increase
TER [19] and that UV-killed B. bifidum and B. breve in-
crease TER [20]. Furthermore in vivo studies show that
bifidobacteria increase intestinal integrity in animal dis-
ease models [21,22]. We hypothesize, that an increase in
Bifidobacterium spp. caused by e.g. consumption of pre-
biotics may affect the intestinal integrity indirectly by
affecting proliferation and/or metabolic activity of other
bacteria, causing conditions that allow increase in Sal-
monella translocation upon challenge. The aim of the
present study is thus to determine effects of XOS and
commensal bifidobacteria on the gut microbiota and the
intestinal integrity in healthy, unchallenged rats using
high throughput 16S rRNA gene sequencing quantita-
tive PCR and three different methods to determine in-
testinal permeability. The study provides new insights
into understanding interactions between gut bacterial
community composition and intestinal integrity.

Methods
Isolation of a commensal Bifidobacterium spp. from rats
Faecal samples from Wistar rats were obtained prior to
the animal studies from the same facility (Taconic, Lille
Skensved, Denmark). Bifidobacteria were isolated from
the faecal samples by plating on Bifidus Selective Medium
(BSM) agar (Fluka), incubation anaerobically at 37°C for
three days, selection for correct colony morphology (pink
or dark brown colonies) and verification by PCR using
bifidobacteria-specific primers BifF/BifR (Table 1). Univer-
sal primers 27 F (5’-AGA GTT TGA TYM TGG CTC
AG-3’) and 907R (5’- CCG TCA ATT CMT TTG AGT
TT-3’) were used for sequencing. The PCR products
obtained with the universal primers were purified by
gel-electrophoresis and the 16S rRNA gene partially se-
quenced using the same primers. Four isolates were
found to be identical and have 99.4% sequence homology
over 726 bp to Bifidobacterium pseudolongum subsp. glo-
bosum strain JCM 5820 by BLAST search [23]. Since the
four isolated strains were identical, we chose a single
strain, designated B. pseudolongum TR2_39 for this study.
Aliquots of TR2_39 (1 ml) were frozen in glycerol and
stored at −80°C.

Animals and housing
6 week-old male Wistar rats were purchased from Taconic
(Lille Skensved, Denmark) and originated from the same
stable where faecal samples used to isolate TR2_39 were
collected. On arrival the animals were housed in pairs and
had ad libitum access to chow (Altromin 1324) and drink-
ing water throughout the experiment. The environment
was controlled with 12-hour light/dark cycles, temperature
at 22 ± 1°C, relative humidity at 55 ± 5% and 8–10 air
changes per hour. Animals were observed twice a day.
Animal experiments were carried out at the National Food
Institute, Technical University of Denmark (Mørkhøj
facilities). Ethical approval was given by the Danish
Animal Experiments Inspectorate (authorization num-
ber 2012-15-2934-00089). The experiments were over-
seen by the National Food Institutes in-house Animal
Welfare Committee.
Four days after arrival the animals were weighed and

cages were allocated randomly to the three experimental
groups, namely CON (dosed with sterile water), XOS
(dosed with XOS), and BIF (dosed with B. pseudolon-
gum TR2_39) with 16 animals (8 cages) in each group.
The XOS was obtained from Shandong Longlive Bio-
Technology CO. Ltd, China as 95% pure powder ex-
tracted from corncob (zea). To limit potential effects of
co-housing and coprophagia on the gut microbial com-
position, the animals were housed together for addition-
ally 2 weeks before the dosing period was initiated.
During the acclimatization period the weight of the ani-
mals, and the water and feed intake was monitored as
intake per cage per day.
During the intervention period the animals were given

oral gavage with 1 ml milliQ water (CON), 2 ml 500 mg/ml
XOS (XOS) or 1 ml B. pseudolungum TR2_39, approxi-
mately 2.2-6.2*108 CFU/ml (BIF) every second day for



Table 1 Primers used for PCR and quantitative PCR

Target Primer Primer sequence (5’-3’) Size (bp) Ref

Bifidobacterium spp. BifF GCGTGCTTAACACATGCAAGTC 126 [24]

BifR CACCCGTTTCCAGGAGCTATT

Lactobacillus spp. LactoAll_1F AGCAGTAGGGAATCTTCCA 341 [25,26]

LactoAll_1R CACCGCTACACATGGAG

Akkermansia muciniphila AM1 CAGCACGTGAAGGTGGGGAC 327 [27]

AM2 CCTTGCGGTTGGCTTCAGAT

Universal bacteria HDA1 ACTCCTACGGGAGGCAGCAGT 200 [28]

HDA2 GTATTACCGCGGCTGCTGGCAC

Beta-actin (Actb) ACTB_A CACCCGCGA GTACAACCTT 207 [29]

ACTB_B CCCATACCCACCATCACACC

Glyceraldehyd-3-phosphate (Gapdh) GAPDH2_A CAAGTTCAACGGCACAGTCAAG 123 [30]

GAPDH2_B ACATACTCAGCACCAGCATCAC

Mucin 2 (Muc2) MUC2_A TCCCTCTTACAAGGGCAATG 123 [31]

MUC2_B TTCCAGCTGTTCCCAAAGTC

Claudin-1 CLDN-1_A TGTCCACCATTGGCATGAAG 118 [32]

CLDN-1_B GCCACTAATGTCGCCAGACC

Occludin OCLN_A GCCTTTTGCTTCATCGCTTC 125 [30]

OCLN_B AACACCATGATGCCCAGGAT

Zonula occludens-1 (ZO-1) ZO-1_A AAGCCAGTCACGATCTCCCG 106 [30]

ZO-1_B GCGCTCTTCCTCTCTGCTCC
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14–16 days. The inoculum was prepared fresh for each
dosing day from one aliquot of glycerol-frozen TR2_39,
by anaerobic cultivation in four tubes with 45 ml BSM
broth for approximately 48 hours followed by wash in
reduced PBS and resuspension in PBS. The optical
density was adjusted to OD600 = 10. Half of the animals
were euthanized (CO2 chamber and decapitation) on
day 14 and the remaining on day 16 after the initial dos-
ing. Animals in the same cage were euthainised sequen-
tially. Weight, water, and feed intake was monitored
during the intervention period, as described for the ac-
climation period. Faecal samples were collected on Day
0 prior to initial dosage, and the day before euthanisa-
tion (Day 13 or 15) by collecting defecate directly in
tubes. Samples were stored at −80°C until analysis.

In vivo intestinal permeability assay
On the day of euthanisation, intestinal integrity was deter-
mined by measuring the permeability of FITC-dextran,
using a similar approach as previously described [9]. Ani-
mals were fasted for at least 9 hours before the assay.
From each cage, one animal was orally dosed with 0.5 ml
120 mg/ml FITC-dextran (4 kDa, Sigma-aldrich FD-4) per
100 g (corresponding to 600 mg/kg animal) bodyweight
while the other was dosed with 0.5 ml PBS per 100 g
bodyweight. Two hours after dosage, animals were eutha-
nized and blood was collected from the neck directly into
50 ml Falcon tubes with 100 μl EDTA (0.5 M, pH 8,
Ambion). Blood samples were immediately centrifuged
(3800 rpm, 5 min) to collect plasma. Plasma was centri-
fuged again, diluted 1:1 in PBS and stored at 5°C until ana-
lysis on the same day. Analysis of each sample was done
in triplicate by transferring volumes of 60 μl plasma-PBS
solution to a black 96-well microtiter plate (Proxiplate-
96 F, Perkin Elmer) and measuring the florescence at
excitation 485 nm/emission 535 nm (Victor TM X4,
Perkin Elmer). Standard curves were prepared for each
of the euthanisation days, by adding fixed concentra-
tions of FITC-dextran to plasma-PBS prepared from an-
imals dosed with PBS.

Dissection of animals
Only animals not dosed with FITC-dextran were dissected
to exclude potential effects of FITC-dextran in the down-
stream analysis. Abdomens were rinsed in 70% ethanol and
dried with a paper towel before the incision. Approxi-
mately 2.5-4 cm from the caecum, an ileal section (0.5-
1.0 cm) was removed and rinsed in PBS before storage in
1 ml RNAlater® (Life Technologies). Colonic sections were
taken where the first pellet of content was visible (often
4–5 cm from caecum), and treated the same way as ileal
samples. Finally, contents from the caecum were collected,
where after the ceacal tissues were washed in PBS and
stored in RNAlater®. Caecal contents were stored at −80°C,
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while tissues in RNAlater® were stored at 5°C overnight,
and then transferred to −80°C.

Collection of caecal content and caecal water
Caecal contents were weighed and homogenized 1:1 in
MilliQ water. Slurries were centrifuged (11.000 g, 15 min)
and the pellets stored at −80°C in aliquots of approxi-
mately 250 mg. Supernatants were centrifuged again and
the pH was determined (Orion Star™ pH Benchtop Meter,
Thermo Scientific) before sterile filtration (0.2 μm pore
size, Sarstedt) and storage at −20°C.

Extraction of bacterial DNA
DNA was extracted from faecal samples collected before
the initial dosing (Day 0), the day before euthanisation
(Day 13 or Day 15), as well as from caecal samples using
the MoBio PowerLyzer® PowerSoil® DNA isolation kit
(Mobio) following the recommendations of the manu-
facturer. DNA concentrations were determined using
Qubit ds DNA HS assay kit (Invitrogen). DNA was
stored at −20°C until further analysis.

Ion Torrent sequencing
The bacterial composition was determined by sequen-
cing of the V3-region of the 16S rRNA gene in bacterial
DNA extracted from caecal contents, and from faecal
samples collected before (Day 0) and after the interven-
tion (Day 13 and Day 15) originating from animals not
used for the FITC-dextran permeability assay (i.e. total
of 24 animals). Amplification of the V3-region and sub-
sequent sequencing was performed using the Ion Tor-
rent PGM platform essentially as previously published
[33]. Briefly, the V3-region of the 16S rRNA gene was
amplified using a universal forward primer (PBU 5’-A-
adapter-TCAG-barcode-CCTACGGGAGGCAGCAG-3’)
with a unique 10–12 bp barcode for each bacterial com-
munity (IonXpress barcode as suggested by the supplier,
Life Technologies) and a universal reverse primer (PBR 5’-
trP1-adapter-ATTACCGCGGCTGCTGG-3’). PCR reac-
tions were conducted with 4 μl HF-buffer, 0.4 μl dNTP
(10 mM of each base), 1 μM forward primer, 1 μM reverse
primer, 5 ng template DNA, and 0.2 μl Phusion High-
Fidelity DNA polymerase (Thermo Scientific) in a reaction
volume of 20 μl. Reactions were run at 98°C for 30 seconds
followed by 24 cycles of 98°C for 15 seconds and 72°C for
30 seconds, before 72°C for 5 minutes and cooling at 4°C.
Products were separated on a 1.5% agarose gel with
SYBR-safe at 100 V for 90 minutes, visualized with the
Safe Imager™ 2.0 (Invitrogen) and bands of expected size
(approximately 260 bp) were excised from the gel. DNA
was extracted using MinElute Gel extraction kit (Qiagen)
following the recommendations of the manufacturer.
DNA concentrations were determined with Qubit HS
assay and a library constructed by mixing an equal
amount of PCR products from each original commu-
nity. Sequencing was performed on a 318-chip for Ion
Torrent sequencing using the Ion OneTouch™ 200 Tem-
plate Kit v2 DL. Sequence data were obtained in FASTQ
format and further processed using CLC bio genomic
workbench (Qiagen) in order to de-multiplex and re-
move sequencing primers. Further quality trimming
using default settings (quality score = 0.05, trim ambigu-
ous nucleotides = 2) and selection of reads with a final
length between 110 bp – 180 bp was performed before
exporting reads in FASTA format. The number of good
quality reads used for taxonomical assignment ranged
from 46,877 to 100,000. All sequence reads were taxo-
nomically classified using the Ribosomal Database Project
Multiclassifier tool [34]. A bootstrap cut-off ≥ 50%, was
chosen as recommended for fragments below 250 bp and
previously shown to be effective [35]. Relative abundance
of bacterial taxa (family level) were determined for each
community by comparing the number of reads assigned
to a specific family to total number of reads assigned to
the bacterial root. To limit variation between animals, the
fold-change during the intervention was determined by
calculating relative abundance before divided by relative
abundance after, and log 2 transformations of these data.
Bacterial taxa that were detected either before or after the
intervention, but not in the corresponding before/after-
sample from the same animal were set to 0.0005% analo-
gous to 1 read in 200,000 reads.

Quantitative PCR
The relative abundances of Bifidobacterium spp., Lacto-
bacillus spp., and Akkermansia muciniphila in faecal
samples from all animals as well as caecal samples were
determined using quantitative PCR in a total reaction
volume of 11 μl in 384-well microtiter plates using a
LightCycler 480 II (Roche Applied Science). Each reaction
contained 1X SYBR green mix (Roche Applied Science),
0,2 pmol/μl of each primer (Table 1), and 2 μl template
DNA (1 ng/μl) and setup in four technical replicates with
DNA from faecal samples collected before and after the
intervention run on the same plate. Reaction conditions
were: 95°C for 5 min, 40 cycles of 95°C for 10 sec, 60°C
for 15 sec, and 72°C for 45 sec, followed by melting curve
generation (95°C for 5 sec, 65 for 1 min and increasing
the temperature to 98°C with a rate of 0.11°C/sec with
continuous fluorescence detection). Data was initially ana-
lysed in the LightCycler® 480 software. Noise band and
threshold was set automatically using the LightCycler® 480
software. Average Cq-values of the four technical repli-
cates calculated by the software were used for data ana-
lysis. Single Cq values differing by more than 2 cycles
were considered outliers. The relative abundances of
each gene target normalized to the total number of 16S
rRNA genes (universal bacterial primer) were calculated
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as (1 + Euniversal)
Cq _ universal/(1 + Etarget)

Cq _ target
. Mean PCR

efficiency (E) for each primer set was calculated by use of
the LinRegPCR software [36]. If the relative abundance
was calculated to be below 0.001% of the total bacteria
(corresponding to the ratio being below 10−5), it was set to
half this value.

RNA extraction and cDNA preparation
Total RNA was extracted from approximately 20 mg of
ileum, caecum, and colon tissue using the RNeasy mini
kit (Qiagen) following the suppliers recommendations.
RNA concentration and purity was determined using
Nanodrop Spectrophotometer ND-1000 (Thermo Scien-
tific). Samples with A260/A280 between 1.8 and 2.1 were
used in the further analysis. RNA was stored at −80°C.
The cDNA was prepared immediately from 500 ng RNA
in 20 μl reactions using the SuperScript VILO cDNA Syn-
thesis Kit (Life technologies) following the suppliers rec-
ommendations and stored at −20°C until further use.

Gene expression analysis
The relative gene expression of the tight junction pro-
teins claudin-1, ZO-1, and occludin, as well as Mucin 2
(Muc2), involved in mucin production, were determined
with quantitative PCR using actin beta (Actb) and glycer-
aldehyde 3-phosphate dehydrogenase (Gapdh) as refer-
ence genes (Table 1). Reaction conditions were as above
and the reactions run under the following conditions;
95°C for 5 min, 40 cycles of 95°C for 10 sec, 60°C for
10 sec, and 72°C for 30 sec, followed by melting curve
preparation 95°C for 5 sec, 65 for 1 min and 98°C con-
tinually. As template, 2 μl 10-fold diluted cDNA was
used. The relative expression was calculated using the
geometric mean of the two reference genes.

Trans-epithelial resistance
The mammalian cell line Caco-2 (passage 15–25) were
cultured in DMEM (Gibco) supplemented with 20% heat
inactivated fetal bovine serum (Gibco), 1X Non-essential
amino acids (Thermo Scientific), and 1X Pen/strep (Bio-
logical industries) at 37°C and 5% CO2. Cells were tryp-
sinized when 60-80% confluent. A cell suspension of 105

cells/ml was prepared and 500 μl was seeded in the ap-
ical compartment of 12 mm, 0.4 μm pore size Transwell®
polyester membrane inserts (Corning, USA), while 1.5 ml
medium was added to the basolateral compartment. Cells
were cultured on the inserts for 21 days with change of
medium twice a week. At day 21 the cells were moved
to the cellZscope® (nanoAnalytics, Germany). Culture
medium was changed, and 760 μl and 1.65 ml medium
was added to the apical and basolateral compartment,
respectively. TER was monitored for 20–23 hours. 76 μl
medium was then replaced with caecal water, sterile
milliQ water (control of the dilution of the cell culture
media), or standard cell culture media (cell media con-
trol) (control of the cells), resulting in exposure to 5%
caecal water. TER was subsequently measured every
hour for 24 hours. All treatments were conducted in
three replicates. All caecal water samples obtained from
a given animal were analysed on the same day. Caecal
water from the animals were used randomly, and placed
randomly in the cellZscope®. The percentage changes in
TER were determined based on the last measured TER
before exposing the cells (t = 0). In most cases an aver-
age of the three replicates was calculated; however for a
few samples only two replicates were used.

Statistics
All data analysis was conducted in GraphPad Prims ver-
sion 5.0 for Windows (GraphPad Software, CA, USA.) if
not otherwise stated. Differences in animal weight, water
intake, feed intake, FITC-dextran plasma concentrations,
and caecal water pH between groups were assessed by
one-way ANOVA with Bonferroni post-test or Kruskal-
Wallis Dunns post-test for non-normally distributed
data. The Metastats tool [37] was used for 16S rRNA
gene sequence analysis using non-parametric t-tests based
on 1000 permutations and setting the false discovery rate
q = 0.05 as significant. For selected bacterial groups the
relative abundances and fold-changes, determined by both
16S rRNA gene sequencing and qPCR, were also com-
pared between CON and both XOS and BIF using Mann–
Whitney U-test. Log 2 transformed fold changes were
compared to a hypothetical median of zero using the
Wilcoxon signed rank test. Differences in gene expression
of tight junction proteins and Muc2 between different
types of tissue were determined for the CON group by
one-way ANOVA with Bonferroni post-test or Kruskal
Wallis test with Dunns post-test (not normally distributed
data). Differences between CON and XOS or BIF for the
individual tissues were determined using Mann–Whitney
U-test. Correlation analysis was determined using the
Spearman correlation, considering P < 0.05 to be signifi-
cant. The Χ2-test was used to compare the number of
observed differences between faecal and caecal samples
in the three groups.

Results
Animal growth, feed, and water intake
There were no significant differences in animal weight
gain between the three groups (Figure 1). Additionally,
no significant differences in water and feed intake between
the three groups were recorded (data not shown).

Bacterial composition
Bacterial community analysis at phylum level based on 16S
rRNA sequencing of faecal samples from 24 animals (one
from each cage) before intervention revealed variation in
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Figure 1 Animal weight gain during the study. Mean with SD is
illustrated for each treatment group; CON (circles), XOS (triangles),
and BIF (squares). The arrow indicates initiation of the dosing period.
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the relative abundance (Figure 2A), and markedly Actino-
bacteria varied approximately 100-fold from 0.085% to
10.9% and Bifidobacteriaceae 10,000-fold from 0.001% to
10.7% between individual animals (Figure 2B). Significant
negative correlations were found between Bacteroidetes
and Firmicutes (P < 0.0001, R = −0.82) and Firmicutes and
Actinobacteria (P = 0.019, R = −0.48) and also a negative
correlation between Bacteroidetes and Actinobacteria (P =
0.023, R = 0.46). No significant differences in relative abun-
dances before and after intervention were found between
any of the detected bacterial families in faecal samples
from the two intervention groups as compared to the
CON group after correction for multiple testing (Figure 3).
Neither did principal component analysis of sequencing
data at the family-level show any clustering of samples ac-
cording to intervention group (data not shown). Addition-
ally, no differences in the fold-change (after/before) of any
of the detected bacterial families were found between the
groups after correction for multiple testing (data not
shown). We did however observe differences in the mean
relative abundances of several bacterial families between
faecal samples and caecal content samples (Table 2).
Analyses of relative abundance and fold-change during

the intervention for bacteria belonging to the Bifidobac-
teriaceae and Lactobacilliaceae were conducted separ-
ately as we hypothesized these groups to be affected and
also included qPCR-based assessment of the relative abun-
dance of Bifidobacterium spp., Lactobacillus spp., and
Akkermansia muciniphila (Figure 4). Taken together, re-
sults obtained by qPCR (Figure 4B, D, and F) appeared
very similar to the sequencing data (Figure 4A, C, and E).
Fold-change data show that Lactobacillus spp. increased
in the CON group (P = 0.014) and the BIF group (P =
0.0018) compared to baseline (qPCR data). In addition, A.
muciniphila significantly increased compared to baseline
in the XOS intervention group (P = 0.014). There were no
significant differences in fold-change for either of the bac-
terial taxa between the control and the two treatment
groups. Sequencing data revealed a trend for a larger fold-
change of Bifidobacterium spp. in the XOS group than in
the CON group (P = 0.10), however this was not con-
firmed by qPCR (P = 0.19). Nevertheless, qPCR showed
that the relative abundance of Bifidobacterium spp. in fae-
ces (Figure 4D) was higher in the XOS group than in the
CON group (P = 0.044), while this was not confirmed by
sequencing data (Figure 4C, P = 0.23).
In caecal content (Figure 4E and F) both the XOS and

BIF groups had higher relative abundance of Lactobacillus
spp. than the CON group (XOS; P = 0.04, BIF; P = 0.03)
according to qPCR, while a tendency for this was con-
firmed by sequencing analysis (XOS; P = 0.08, BIF; P =
0.08). Additionally, XOS tended to increase Bifidobacteria-
cae in caecum content (P = 0.10) detected by sequencing.

Intestinal permeability
No differences in FITC-dextran concentration in the
plasma were observed between the three groups (Figure 5A).
The results from two animals, one from the CON group,
and one from the BIF group, were excluded due to tech-
nical errors.
The average caecal water pH was 7.53 ± 0.15 (SD),

7.48 ± 0.23, and 7.58 ± 0.20 for the XOS group, BIF group,
and CON group, respectively with no significant differ-
ences between the groups. Caecal water from all three
groups on average significantly increased TER as com-
pared to the controls exposed to water or pure cell media
(Figure 5B), but no significant differences were found be-
tween the three experimental groups after 24 hours of ex-
posure (Figure 5C), although the TER was consistently
lower in all time points between 12 and 24 hours after ex-
posure to caecal water from either of the treatment groups
as compared to CON (Figure 5B).

Gene expression
Differences in gene expression between tissue types were
determined for the CON group (Figure 6). Expression of
Muc2 was higher in the colonic tissue than in ileal (P <
0.01) and caecal tissue (P < 0.001), and also expression of
ZO-1 was higher in colon than ileum (P < 0.001). The
expression of claudin-1 and occludin did not differ be-
tween the intestinal sections. The relative expression of
occludin in colon was higher (P = 0.04) in the XOS group
than in the CON group (Figure 6C). No other significant
differences between the groups were found.

Correlations between gene expression of epithelial cells,
measures of intestinal integrity and relative abundance of
selected bacterial groups
No significant correlations were found between the rela-
tive abundance of Bifidobacterium spp., Lactobacillus
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spp. or Akkermansia muciniphilla in caecal content and
faecal samples (qPCR), and relative gene expression of
claudin-1, ZO-1, Muc2, and occludin in ileal, caecal and
colonic tissue, as well as plasma FITC-dextran concen-
trations and TER, irrespective of experimental group
(data not shown).

Discussion
Changes in the gut microbial composition have been pro-
posed to affect intestinal integrity [9]. The present study
was designed to address this issue further by focusing on
the effects of bifidobacterial abundance on microbial
community composition and intestinal integrity in male
Wistar rats. Two different approaches were used to in-
crease levels of bifidobacteria, namely (i) oral dosage with
live cultures of an endogenously isolated strain (probiotic
approach) and (ii) oral dosage with XOS, which has previ-
ously been shown to stimulate bifidobacterial growth in a
mouse model [17] (prebiotic approach).
Experimental animals bred and treated under stan-

dardized conditions are generally expected to exhibit
less inter-individual variation than a free-living human
population and consequently it should require fewer in-
dividuals to find effects in dietary intervention studies.
Comparison of the animals at base-line (Figure 2A)
revealed less variation within the two most abundant
phyla, Firmicutes and Bacteroidetes, than reported in
human studies [38], but interestingly, for bacteria be-
longing to the Actinobacteria, a more than 100-fold dif-
ference in relative abundance was observed between
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animals. For the Bifidobacteriaceae family, belonging to
the Actinobacteria, we observed approximately 10,000-
fold difference in relative abundance before the inter-
vention commenced (Figure 2B). The high initial level
of variation within the Bifidobacteriaceae in this study
may impede detection of the expected XOS or BIF
driven increase in relative abundance of this bacterial
group during the intervention, as such an increase was
only detectable by qPCR, and not by sequencing of
community-derived 16S genes. The increased relative
abundance of bifidobacteria following intake of XOS is
consistent with a previous study in male Sprague–Dawley
rats, which showed increase in both faecal and caecal
levels of bifidobacteria following a 14-day intervention
with XOS added to feed at 6% [39] and also an increase is
reported in XOS-fed mice [17]. Animals in the BIF group
received approximately 2.2-6.2*108 B. pseudolungum cells
every second day during the intervention. This did how-
ever not result in higher levels of bifidobacteria in either
caecum content or faecal samples at termination. In spite



Table 2 Differences detected between caecal and faecal samples

Phylum Family Sample

CON XOS BIF

Mean ± SEM Mean ± SEM Mean ± SEM

Firmicutes Lachnospiraceae Faecal 3.6E-01 ± 3.6E-02 2.9E-01 ± 3.7E-02 3.2E-01 ± 4.5E-02

Caecal 4.3E-01 ± 4.4E-02 4.5E-01 ± 3.0E-02 4.4E-01 ± 2.8E-02

Peptostreptococcaceae Faecal 7.7E-03 ± 2.2E-03 8.2E-03 ± 3.0E-03 7.0E-03 ± 2.0E-03

Caecal 2.4E-02 ± 8.7E-03 2.4E-02 ± 4.9E-03 2.6E-02 ± 5.0E-03

Erysipelotrichaceae Faecal 1.2E-02 ± 3.6E-03 1.1E-02 ± 2.9E-03 1.1E-02 ± 2.5E-03

Caecal 3.9E-03 ± 8.9E-04 6.1E-03 ± 2.7E-03 3.8E-03 ± 6.3E-04

Lactobacillaceae Faecal 3.4E-02 ± 8.0E-03 8.5E-02 ± 2.7E-02 9.7E-02 ± 3.4E-02

Caecal 5.9E-03 ± 3.4E-03 6.0E-03 ± 8.0E-04 1.5E-02 ± 6.6E-03

Streptococcaceae Faecal 3.6E-04 ± 6.9E-05 3.8E-04 ± 1.1E-04 2.2E-04 ± 5.2E-05

Caecal 1.3E-04 ± 3.6E-05 2.1E-04 ± 8.3E-05 1.9E-04 ± 7.1E-05

Staphylococcaceae Faecal 1.2E-04 ± 3.3E-05 8.0E-05 ± 1.2E-05 1.2E-04 ± 1.4E-05

Caecal 3.6E-05 ± 9.0E-06 4.0E-05 ± 1.1E-05 6.2E-05 ± 2.2E-05

Veillonellaceae Faecal N.D. N.D. N.D.

Caecal 2.6E-04 ± 1.6E-04 9.5E-04 ± 7.5E-04 4.8E-04 ± 3.2E-04

Bacteroidetes Rikenellaceae Faecal 3.0E-02 ± 5.6E-03 2.4E-02 ± 5.7E-03 1.9E-02 ± 4.6E-03

Caecal 8.6E-02 ± 2.1E-02 5.3E-02 ± 1.2E-02 4.0E-02 ± 9.4E-03

Actinobacteria Micrococcaceae Faecal 2.6E-04 ± 5.4E-05 1.4E-04 ± 3.1E-05 1.7E-04 ± 2.3E-05

Caecal 3.1E-05 ± 1.1E-05 2.8E-05 ± 1.0E-05 6.5E-05 ± 1.7E-05

Corynebacteriaceae Faecal 6.6E-05 ± 1.5E-05 5.9E-05 ± 2.0E-05 5.4E-05 ± 1.1E-05

Caecal 1.9E-05 ± 6.3E-06 1.0E-05 ± 4.6E-06 5.8E-05 ± 3.9E-05

Coriobacteriaceae Faecal 1.5E-03 ± 3.2E-04 1.7E-03 ± 1.9E-04 1.9E-03 ± 4.6E-04

Caecal 2.4E-04 ± 6.1E-05 2.5E-04 ± 4.8E-05 5.5E-04 ± 1.4E-04

Proteobacteria Desulfovibrionaceae Faecal 1.3E-03 ± 4.9E-04 9.9E-04 ± 5.6E-04 1.1E-03 ± 5.6E-04

Caecal 5.9E-03 ± 1.1E-03 5.7E-03 ± 3.1E-03 6.5E-03 ± 2.2E-03

*Hyphomicrobiaceae Faecal N.D. N.D. 1.9E-06 ± 1.9E-06

Caecal 3.2E-05 ± 9.8E-06 4.2E-05 ± 1.9E-05 3.9E-05 ± 2.1E-05

Deferribacteres Deferribacteraceae Faecal 1.0E-04 ± 2.4E-05 1.3E-04 ± 6.0E-05 1.1E-04 ± 2.0E-05

Caecal 4.1E-04 ± 9.2E-05 4.1E-04 ± 1.3E-04 3.5E-04 ± 8.3E-05

Mean ± SEM are shown and highlighted in boldface for those families with significant differences after correction for False Discovery Rate (q < 0.05).
*Note that the family Hyphomicrobiaceae contains the genera Gemmiger, which shows high 16S rRNA gene sequence homology to members of the
Ruminococcaceae family (Firmicutes), and may thus be taxonomically misplaced.
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of the fact that the bifidobacterial strain applied was iso-
lated from similar rats, we speculate that the strain did
not colonize and/or proliferate in the rat gut, resulting in
washout before faecal samples were obtained approxi-
mately 24 hours after the last dosage. A study addressing
intestinal transit of B. bifidum following gavage in mice
showed a peak in the abundance of this strain in faeces at
around 6 hours after dosage and subsequently a significant
reduction after 18 hours [40]. Alternatively, the dosing
level was too low to have an effect or bifidobacterial cells
may not have survived passage through the acidic envir-
onment of the rat stomach.
Quantitative PCR as well as 16S rRNA amplicon se-

quencing revealed higher caecal levels of Lactobacillus
spp. in both the XOS and BIF groups compared to the
CON groups after intervention (Figure 4E-F). This is
consistent with a prebiotic effect of XOS [6] and con-
firms that increasing the abundance of one bacterial
group may influence the abundance of another through
e.g. metabolic cross-feeding processes [41] or by chan-
ging environmental conditions such as pH. Detection of
significant differences in the relative abundance of
Lactobacillus spp. between the groups was facilitated by
a relatively low initial variation of Lactobacilliaceae (ap-
proximately 70-fold) compared to Bifidobacteriaceae
(Figure 2B). Quantatative PCR is anticipated to result in
better quantification than amplicon sequencing, espe-
cially for low-abundant bacterial groups, due to the low
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absolute number of sequence reads in the latter. In the
present study we observe only slightly more significant
differences by the qPCR approach compared to the se-
quencing approach (Figure 4) indicating only marginally
higher power.
The mucin degrading species A. muciniphila was in-

cluded in the qPCR analysis, due to its status as poten-
tial marker for intestinal health (reviewed by [42]). An
increase in levels of A. muciniphila after the intervention
compared to baseline was found only in the XOS group
(Figure 4B). This may be explained by a XOS-induced
increased production of mucin, as A. muciniphila is cap-
able of degrading mucin as sole carbon source [43]. Also
A. muciniphila is reported to be reduced in patients
suffering from disruption of the gut mucus layer due to
mucosal inflammation [44] as well as in ob/ob mice [45].
Prebiotics have previously been shown to normalize,
hence increase, A. muciniphila abundance in obese and
type 2 diabetic mice and also administration of viable A.
muciniphila was connected to improvement of metabolic
disorders in mice fed a high-fat diet, potentially due to re-
establishment of the mucus layer [45]. Nevertheless, we
observed no differences in expression of the mucin gene
(Muc2) between the three experimental groups in any of
the intestinal segments (Figure 6B). However, as the actual
amount of mucus was not determined, this does not
exclude the possibility of increased mucin levels in the
XOS group due to post-transcriptional alterations and/or
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increased expression of other mucin encoding genes. Pre-
viously increased levels of mucin secretion were reported
in animals fed FOS [14,18,46]. Mucins secretion was also
increased in humans, but this was not connected to al-
tered permeability for CrEDTA [47].
The overall mean gut microbiota composition in faecal

samples was very similar in all three groups before the
intervention and remained so during the intervention
(Figure 3). No differences in microbiota composition after
the interventions were observed between treatment groups
after correction for multiple comparisons (Figure 3). We
observed several bacterial families which differed in mean
relative abundance in caecum content compared to faecal
samples, including higher levels of Actinobacteria and
lower levels of Peptostreptococcaceae and Veillonellaceae
associated with faecal samples in all three intervention
groups (Table 2). We observed fewer families that differed
in relative abundance between faeces and caecum content
in the XOS and BIF groups than in the control group but
this was not significant (Χ2-test).
Measures of rat gut integrity were obtained by three

independent measures namely (i) permeability of FITC-
dextran molecules across the epithelial barrier (Figure 5A),
(ii) trans-epithelial resistance of Caco-2 cells after expos-
ure to caecal water (Figure 5B-C), and (iii) relative expres-
sion of genes encoding tight junctions proteins or mucin
(Figure 6). These measures were selected to collectively
cover different aspects of gut permeability. Intestinal per-
meability is mainly determined by paracellular transport
between epithelial cells, which has been suggested to be
divided into two pathways: The high-capacity “pore path-
way” where small molecules (below 4 Å) can pass, and the
low-capacity “leak pathway” where larger molecules may
pass (reviewed by [48]). Changes in FITC-dextran per-
meability indicate a change in the leak-pathway, while
changes in TER may indicate changes in both pathways
[48]. We found no statistically significant effect on ei-
ther FITC-dextran permeability or TER after 24 hours
between treatment groups and the CON group of
animals (Figure 5A and C). Nevertheless, TER was ob-
served to be consistently higher in the CON than both
the XOS and BIF groups from around 12 hours until
termination at 24 hours, indicating an increase in per-
meability in the Caco-2 monolayer during exposure to
caecal water from XOS and BIF (Figure 5B). This is con-
sistent with a previously observed trend for a negative
correlation between TER and relative abundance of bifi-
dobacteria [11]. Caecal-water collected from CON, XOS
of BIF animals increased TER during 24-hours signifi-
cantly more than water, which was used as control. This
suggests that caecal water positively affects tight-junction
interaction, which is consistent with similar observations
on faecal-water [11]. Expression levels of occludin genes
in colonic tissue were significantly higher in the XOS
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group than in the CON group. Changes in expression of
ZO-1 and occludin in ob/ob mice after consumption of
prebiotics have previously been studied showing that pre-
biotic treatment increased levels of Bifidobacterium spp.
as well as occludin and ZO-1 expression in jejunum, and
also decrease FITC-dextran (4 kDa) permeability [49].
Additionally, high-fat feeding was reported to decrease
Bifidobacterium spp., increase intestinal permeability and
decrease the expression of ZO-1 and occludin [9]. It
should be noted that specific strains of bifidobacteria may
have varying effects on markers of intestinal integrity
[19,50,51], which could explain the relatively minor effect
of the B. pseudolongum isolate in the current study.

Conclusion
The present study was designed to address the hypoth-
esis that increased levels of bifidobacteria are linked to
decreased intestinal integrity caused by modulation of
the microbiota, as indicated by previous studies showing
increased Salmonella translocation following intake of
prebiotics in rodents [14-17]. However, this hypothesis
was not confirmed, perhaps because the limited effects
of XOS and dosage of bifidobacteria on intestinal
bifidobacterial loads were insufficient to induce measur-
able changes in intestinal integrity. Our observations of
increased occludin expression after XOS consumption
seem to contradict the hypothesis, while the consistent
decrease in TER caused by caecal water from BIF and
XOS rats, although not significant, points in a confirma-
tory direction.

Competing interests
All authors declare that they have no competing interests.

Authors’ contribution
EGC, MIB and TRL planned the study. EGC performed experimental work,
data analysis, and first drafting of the manuscript. TDL coordinated TER
analysis. All authors contributed to interpretation of data and final revision of
the manuscript. All authors read and approved the final manuscript.

Acknowledgements
This work was carried out within the Gut, Grain & Greens (3G) Center,
funded by a grant from The Danish Council for Strategic Research (grant no.
11–116163 to T.R.L.). We thank Anne Ørngreen and her department for
handling of animals, Rasmus Larsen for help during animal dissection, and
Bodil Madsen and Kate Vina Vibefeldt for excellent technical assistance.

Author details
1Division of Food Microbiology, National Food Institute, Technical University
of Denmark, Mørkhøj Bygade 19, Søborg DK-2860, Denmark. 2Chr. Hansen
A/S, Bøge Allé 10-12, DK-2970 Hørsholm, Denmark.



Christensen et al. BMC Research Notes 2014, 7:660 Page 13 of 14
http://www.biomedcentral.com/1756-0500/7/660
Received: 26 February 2014 Accepted: 16 September 2014
Published: 19 September 2014

References
1. Fukuda S, Ohno H: Gut microbiome and metabolic diseases. Semin

Immunopathol 2014, 36:103–114.
2. Vigsnaes LK, Holck J, Meyer AS, Licht TR: In vitro fermentation of sugar

beet arabino-oligosaccharides by fecal microbiota obtained from
patients with ulcerative colitis to selectively stimulate the growth of
Bifidobacterium spp. and Lactobacillus spp. Appl Environ Microbiol 2011,
77:8336–8344.

3. Holck J, Lorentzen A, Vigsnaes LK, Licht TR, Mikkelsen JD, Meyer AS:
Feruloylated and nonferuloylated arabino-oligosaccharides from sugar beet
pectin selectively stimulate the growth of Bifidobacterium spp. in human
fecal in vitro fermentations. J Agric Food Chem 2011, 59:6511–6519.

4. Thomassen LV, Vigsnaes LK, Licht TR, Mikkelsen JD, Meyer AS: Maximal
release of highly bifidogenic soluble dietary fibers from industrial potato
pulp by minimal enzymatic treatment. Appl Microbiol Biotechnol 2011,
90:873–884.

5. Gibson GR: From Probiotics to Prebiotics and a Healthy Digestive System.
J Food Sci 2004, 69:141–143.

6. Rastall B: Prebiotics. In Chemical and functional properties of food
components. 3rd edition. Edited by Sikorski ZE. Boca Raton, FL, USA: CRC
Press; 2007:391–411.

7. Camilleri M, Madsen K, Spiller R, Greenwood-Van MB, Verne GN: Intestinal
barrier function in health and gastrointestinal disease. Neurogastroenterol
Motil 2012, 24:503–512.

8. John LJ, Fromm M, Schulzke JD: Epithelial barriers in intestinal
inflammation. Antioxid Redox Signal 2011, 15:1255–1270.

9. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM,
Burcelin R: Changes in gut microbiota control metabolic
endotoxemia-induced inflammation in high-fat diet-induced obesity and
diabetes in mice. Diabetes 2008, 57:1470–1481.

10. Arrieta MC, Bistritz L, Meddings JB: Alterations in intestinal permeability.
Gut 2006, 55:1512–1520.

11. Christensen EG, Licht TR, Kristensen M, Bahl MI: Bifidogenic effect of whole-
grain wheat during a 12-week energy-restricted dietary intervention in
postmenopausal women. Eur J Clin Nutr 2013, 67:1316–1321.

12. Gill CI, Heavey P, McConville E, Bradbury I, Fassler C, Mueller S, Cresci A,
Dore J, Norin E, Rowland I: Effect of fecal water on an in vitro model of
colonic mucosal barrier function. Nutr Cancer 2007, 57:59–65.

13. Aachary AA, Prapulla SG: Xylooligosaccharides (XOS) as an Emerging
Prebiotic: Microbial Synthesis, Utilization, Structural Characterization,
Bioactive Properties, and Applications. Compr Rev Food Sci F 2011, 10:2–16.

14. Bovee-Oudenhoven IM, Ten Bruggencate SJ, Lettink-Wissink ML, van der
Meer R: Dietary fructo-oligosaccharides and lactulose inhibit intestinal
colonisation but stimulate translocation of salmonella in rats. Gut 2003,
52:1572–1578.

15. Ten Bruggencate SJ, Bovee-Oudenhoven IM, Lettink-Wissink ML, Katan MB,
van der Meer R: Dietary fructo-oligosaccharides and inulin decrease
resistance of rats to salmonella: protective role of calcium. Gut 2004,
53:530–535.

16. Petersen A, Heegaard PM, Pedersen AL, Andersen JB, Sørensen RB,
Frokiaer H, Lahtinen SJ, Ouwehand AC, Poulsen M, Licht TR: Some putative
prebiotics increase the severity of Salmonella enterica serovar
Typhimurium infection in mice. BMC Microbiol 2009, 9:245.

17. Petersen A, Bergström A, Andersen JB, Hansen M, Lahtinen SJ, Wilcks A,
Licht TR: Analysis of the intestinal microbiota of oligosaccharide fed mice
exhibiting reduced resistance to Salmonella infection. Benef Microbes
2010, 1:271–281.

18. Ten Bruggencate SJ, Bovee-Oudenhoven IM, Lettink-Wissink ML, van der
Meer R: Dietary fructooligosaccharides increase intestinal permeability in
rats. J Nutr 2005, 135:837–842.

19. Ewaschuk JB, Diaz H, Meddings L, Diederichs B, Dmytrash A, Backer J,
Looijer-van LM, Madsen KL: Secreted bioactive factors from Bifidobacterium
infantis enhance epithelial cell barrier function. Am J Physiol Gastrointest Liver
Physiol 2008, 295:G1025–G1034.

20. Lopez P, Gonzalez-Rodriguez I, Sanchez B, Ruas-Madiedo P, Suarez A,
Margolles A, Gueimonde M: Interaction of Bifidobacterium bifidum
LMG13195 with HT29 cells influences regulatory-T-cell-associated chemokine
receptor expression. Appl Environ Microbiol 2012, 78:2850–2857.
21. Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermudez-Humaran LG,
Smirnova N, Berge M, Sulpice T, Lahtinen S, Ouwehand A, Langella P,
Rautonen N, Sansonetti PJ, Burcelin R: Intestinal mucosal adherence and
translocation of commensal bacteria at the early onset of type 2
diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med
2011, 3:559–572.

22. Bergmann KR, Liu SX, Tian R, Kushnir A, Turner JR, Li HL, Chou PM,
Weber CR, De P,I: Bifidobacteria stabilize claudins at tight junctions and
prevent intestinal barrier dysfunction in mouse necrotizing enterocolitis.
Am J Pathol 2013, 182:1595–1606.

23. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment
search tool. J Mol Biol 1990, 215:403–410.

24. Penders J, Vink C, Driessen C, London N, Thijs C, Stobberingh EE:
Quantification of Bifidobacterium spp., Escherichia coli and Clostridium
difficile in faecal samples of breast-fed and formula-fed infants by
real-time PCR. FEMS Microbiol Lett 2005, 243:141–147.

25. Walter J, Hertel C, Tannock GW, Lis CM, Munro K, Hammes WP: Detection
of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in
human feces by using group-specific PCR primers and denaturing
gradient gel electrophoresis. Appl Environ Microbiol 2001, 67:2578–2585.

26. Heilig HG, Zoetendal EG, Vaughan EE, Marteau P, Akkermans AD, de Vos WM:
Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the
human intestine as determined by specific amplification of 16S ribosomal
DNA. Appl Environ Microbiol 2002, 68:114–123.

27. Collado MC, Derrien M, Isolauri E, de Vos WM, Salminen S: Intestinal
integrity and Akkermansia muciniphila, a mucin-degrading member of
the intestinal microbiota present in infants, adults, and the elderly.
Appl Environ Microbiol 2007, 73:7767–7770.

28. Walter J, Tannock GW, Tilsala-Timisjarvi A, Rodtong S, Loach DM, Munro K,
Alatossava T: Detection and identification of gastrointestinal Lactobacillus
species by using denaturing gradient gel electrophoresis and
species-specific PCR primers. Appl Environ Microbiol 2000, 66:297–303.

29. Zhang YM, Zhou Y, Qiu LB, Ding GR, Pang XF: Altered expression of
matrix metalloproteinases and tight junction proteins in rats following
PEMF-induced BBB permeability change. Biomed Environ Sci 2012,
25:197–202.

30. Wang HB, Wang PY, Wang X, Wan YL, Liu YC: Butyrate enhances intestinal
epithelial barrier function via up-regulation of tight junction protein
Claudin-1 transcription. Dig Dis Sci 2012, 57:3126–3135.

31. Shigeshiro M, Tanabe S, Suzuki T: Repeated exposure to water immersion
stress reduces the Muc2 gene level in the rat colon via two distinct
mechanisms. Brain Behav Immun 2012, 26:1061–1065.

32. Takizawa Y, Kishimoto H, Kitazato T, Tomita M, Hayashi M: Changes in
protein and mRNA expression levels of claudin family after mucosal
lesion by intestinal ischemia/reperfusion. Int J Pharm 2012, 426:82–89.

33. Milani C, Hevia A, Foroni E, Duranti S, Turroni F, Lugli GA, Sanchez B,
Martin R, Gueimonde M, van SD, Margolles A, Ventura M: Assessing the
fecal microbiota: an optimized ion torrent 16S rRNA gene-based analysis
protocol. PLoS One 2013, 8:e68739.

34. Wang Q, Garrity GM, Tiedje JM, Cole JR: Naive Bayesian classifier for rapid
assignment of rRNA sequences into the new bacterial taxonomy.
Appl Environ Microbiol 2007, 73:5261–5267.

35. Claesson MJ, O'Sullivan O, Wang Q, Nikkila J, Marchesi JR, Smidt H, de Vos WM,
Ross RP, O'Toole PW: Comparative analysis of pyrosequencing and a
phylogenetic microarray for exploring microbial community structures in
the human distal intestine. PLoS One 2009, 4:e6669.

36. Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ,
Moorman AF: Amplification efficiency: linking baseline and bias in the
analysis of quantitative PCR data. Nucleic Acids Res 2009, 37:e45.

37. White JR, Nagarajan N, Pop M: Statistical methods for detecting
differentially abundant features in clinical metagenomic samples. PLoS
Comput Biol 2009, 5:e1000352.

38. Arumugam M, Raes J, Pelletier E, Le PD, Yamada T, Mende DR, Fernandes
GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L,
Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K,
Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J,
Qin J, Sicheritz-Ponten T, Tims S, et al: Enterotypes of the human gut
microbiome. Nature 2011, 473:174–180.

39. Campbell JM, Fahey GC Jr, Wolf BW: Selected indigestible
oligosaccharides affect large bowel mass, cecal and fecal short-chain
fatty acids, pH and microflora in rats. J Nutr 1997, 127:130–136.



Christensen et al. BMC Research Notes 2014, 7:660 Page 14 of 14
http://www.biomedcentral.com/1756-0500/7/660
40. Singh N, Arioli S, Wang A, Villa CR, Jahani R, Song YS, Mora D, Guglielmetti S,
Comelli EM: Impact of Bifidobacterium bifidum MIMBb75 on mouse
intestinal microorganisms. FEMS Microbiol Ecol 2013, 85:369–375.

41. Flint HJ, Duncan SH, Scott KP, Louis P: Interactions and competition within
the microbial community of the human colon: links between diet and
health. Environ Microbiol 2007, 9:1101–1111.

42. Ouwerkerk JP, de Vos WM, Belzer C: Glycobiome: bacteria and mucus at
the epithelial interface. Best Pract Res Clin Gastroenterol 2013, 27:25–38.

43. Derrien M, Vaughan EE, Plugge CM, de Vos WM: Akkermansia muciniphila
gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J
Syst Evol Microbiol 2004, 54:1469–1476.

44. Vigsnaes LK, Brynskov J, Steenholdt C, Wilcks A, Licht TR: Gram-negative
bacteria account for main differences between faecal microbiota from
patients with ulcerative colitis and healthy controls. Benef Microbes 2012,
3:287–297.

45. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y,
Derrien M, Muccioli GG, Delzenne NM, de Vos WM, Cani PD: Cross-talk
between Akkermansia muciniphila and intestinal epithelium controls
diet-induced obesity. Proc Natl Acad Sci U S A 2013, 110:9066–9071.

46. Ten Bruggencate SJ, Bovee-Oudenhoven IM, Lettink-Wissink ML,
van der Meer R: Dietary fructo-oligosaccharides dose-dependently
increase translocation of salmonella in rats. J Nutr 2003, 133:2313–2318.

47. Ten Bruggencate SJ, Bovee-Oudenhoven IM, Lettink-Wissink ML, Katan MB,
van der Meer R: Dietary fructooligosaccharides affect intestinal barrier
function in healthy men. J Nutr 2006, 136:70–74.

48. Shen L, Weber CR, Raleigh DR, Yu D, Turner JR: Tight junction pore and
leak pathways: a dynamic duo. Annu Rev Physiol 2011, 73:283–309.

49. Cani PD, Possemiers S, Van de WT, Guiot Y, Everard A, Rottier O, Geurts L,
Naslain D, Neyrinck A, Lambert DM, Muccioli GG, Delzenne NM: Changes in
gut microbiota control inflammation in obese mice through a
mechanism involving GLP-2-driven improvement of gut permeability.
Gut 2009, 58:1091–1103.

50. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T,
Clarke JM, Topping DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H,
Hattori M, Ohno H: Bifidobacteria can protect from enteropathogenic
infection through production of acetate. Nature 2011, 469:543–547.

51. Commane DM, Shortt CT, Silvi S, Cresci A, Hughes RM, Rowland IR: Effects
of fermentation products of pro- and prebiotics on trans-epithelial
electrical resistance in an in vitro model of the colon. Nutr Cancer 2005,
51:102–109.

doi:10.1186/1756-0500-7-660
Cite this article as: Christensen et al.: Dietary Xylo-oligosaccharide
stimulates intestinal bifidobacteria and lactobacilli but has limited effect
on intestinal integrity in rats. BMC Research Notes 2014 7:660.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Isolation of a commensal Bifidobacterium spp. from rats
	Animals and housing
	In vivo intestinal permeability assay
	Dissection of animals
	Collection of caecal content and caecal water
	Extraction of bacterial DNA
	Ion Torrent sequencing
	Quantitative PCR
	RNA extraction and cDNA preparation
	Gene expression analysis
	Trans-epithelial resistance
	Statistics

	Results
	Animal growth, feed, and water intake
	Bacterial composition
	Intestinal permeability
	Gene expression
	Correlations between gene expression of epithelial cells, measures of intestinal integrity and relative abundance of selected bacterial groups

	Discussion
	Conclusion
	Competing interests
	Authors’ contribution
	Acknowledgements
	Author details
	References

