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Abstract

roots) at four time points.

the cold tolerance mechanisms in chickpea anthers.

Background: Cold stress at reproductive phase in susceptible chickpea (Cicer arietinum L.) leads to pollen sterility
induced flower abortion. The tolerant genotypes, on the other hand, produce viable pollen and set seed under cold
stress. Genomic information on pollen development in cold-tolerant chickpea under cold stress is currently unavailable.

Results: DDRT-PCR analysis was carried out to identify anther genes involved in cold tolerance in chickpea genotype
ICC16349 (cold-tolerant). A total of 9205 EST bands were analyzed. Cold stress altered expression of 127 ESTs

(90 up-regulated, 37 down-regulated) in anthers, more than two third (92) of which were novel with unknown
protein identity and function. Remaining about one third (35) belonged to several functional categories such as
pollen development, signal transduction, ion transport, transcription, carbohydrate metabolism, translation, energy
and cell division. The categories with more number of transcripts were carbohydrate/triacylglycerol metabolism,
signal transduction, pollen development and transport. All but two transcripts in these categories were up-regulated
under cold stress. To identify time of regulation after stress and organ specificity, expression levels of 25 differentially
regulated transcripts were also studied in anthers at six time points and in four organs (anthers, gynoecium, leaves and

Conclusions: Limited number of genes were involved in regulating cold tolerance in chickpea anthers. Moreover,
the cold tolerance was manifested by up-regulation of majority of the differentially expressed transcripts. The anthers
appeared to employ dual cold tolerance mechanism based on their protection from cold by enhancing triacylglycerol
and carbohydrate metabolism; and maintenance of normal pollen development by regulating pollen development
genes. Functional characterization of about two third of the novel genes is needed to have precise understanding of
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Background

Male gametophyte in flowering plants is a highly dynamic
structure with active growth and high metabolic activity.
It is an organ with highest sink strength in the flower
and large amounts of sugars are transported to anthers
to support its development and formation of pollen
grains [1]. Anther is also the organ with high sensitivity
to cold stress [2]. Within anther, the pollen development
and pollen function under stress is the weakest link in
plant sexual reproduction [3]. Pollen development
proceeds through meiosis and sensitivity of the male
gametophyte to stresses increases considerably after
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the onset of meiosis [4]. Pollen maturation is also one
of the most sensitive stages [5]. Nutrition to young
microspores and developing pollen grains is provided
by the tapetum, which functions at maximum capacity
to synthesize locular fluid [6]. At the same time, the
pollen wall is also deposited on the developing pollen
[6,7]. Abiotic stress at the time of tapetum development
aborts male gamete formation and results in sterile pollen
[3,8]. Cold stress perturb carbohydrate metabolism and
alters anther morphology [8,9]. As a whole, the temperature
stress reduces pollen development, pollen fertility, anthesis,
pollination and pollen tube growth [4,10].

Chickpea (Cicer arietinum L.), a leguminous annual
flowering herb, is grown for its protein rich grains in
several parts of the world. The crop is a native of trop-
ical Mediterranean region and is sensitive to chilling
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temperatures [11]. Temperatures below 15°C abort chick-
pea flowers and decrease the number of pods per plant
and seeds per pod [9,12-16]. Chilling stress prevailing
during flowering and grain filling leads to nutritional
deficiencies in the tapetum [13]. The susceptible geno-
types show reduction in anther dehiscence, pollen load
on the stigma, pollen germination and pollen tube
growth [9,17]. Growing tips of the pollen tubes also show
distortions [9,17] and fertilization is poor. Cold sensitivity
in susceptible genotypes is manifested by increase in
oxidative stress, increase in membrane damage, decrease
in chlorophyll and relative leaf water content [15]. Flower
abortion due to cold stress in chickpea is associated with
lower levels of sucrose, glucose and fructose in anthers
and pollen [13]. Of late, chickpea genotypes, ICC16348
and ICC16349, were found to be tolerant to cold [15].
These genotypes developed flowers and set pods at low
temperatures. Cold tolerance in ICC16349 was manifested
in the form of low electrolyte leakage and high chlorophyll
and water content [15]. Total sugars and starch were
found to be higher in cold tolerant genotypes compared to
the susceptible ones whereas oxidative stress was low [15].

There is however, no study on identification or isolation
of male or female gametophyte genes involved in repro-
duction or those involved in stress tolerance/susceptibility.
Some transcriptomics studies on stress biology in chick-
pea organs other than anthers and gynoecium have been
conducted [18-23]. The present study identified anther
genes regulated differentially in response to cold stress in
a cold-tolerant genotype. In addition, spatial and temporal
expressions of selected genes in anthers, gynoecium,
leaves and roots were also studied with the aim to identify
organ specificity in gene expression under cold and to
get an insight of gene regulation in different organs. To
our knowledge, this is the first study on transcriptome
of anthers in chickpea and other field legumes under
cold stress conditions.

Results

Genome-wide expression analysis

To identify chickpea male gametophyte genes regulated
differentially under cold stress, anther transcriptome of a
cold-tolerant genotype (ICC16349) at 72 h post cold
stress was compared with the transcriptome of anthers
of plants growing under normal conditions (see Figure 1
for outline of the experimental procedure). Our previous
studies have already established that ICC16349 possessed
high degree of tolerance to cold and could flower and set
seed under low temperature conditions [15]. DDRT-PCR
generated a total of 10,567 bands. Bands smaller than 75
bases (1362 nos.) were rejected and remaining 9205 EST
bands were analyzed. Of these 9205 EST bands, 206 were
differentially regulated with more than two fold change in
anthers of cold stressed plants. Among the differentially
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Figure 1 Flow-chart showing the procedure to generate gene
expression profiles. DDRT-PCR was used to study differential
transcript expression in cold-stressed chickpea anthers. The genotype
used was ICC16349 (cold-tolerant) and the cold treatment was at
5+ 1°C. Semi-quantitative RT-PCR was used to study temporal and
spatial expression of selected genes. The cold stress treatment for
DDRT-PCR included two time points (0 and 72 h). Temporal expression
in anthers was studied at six time-points (0, 1.5, 12, 24, 72 and 120 h)
and spatio-temporal expression at four time points (1.5, 12, 24, and

72 h). The organs used for spatio-temporal expression were anthers,

gynoecium, leaves and roots.

regulated bands, 133 were up-regulated (UP) and 73
down-regulated (DR). Sequence editing, clustering and
contig analysis revealed that expression of only 127
ESTs [90 (70.9%) UP; 37 (29.1%) DR was altered due to
cold stress. The proportion of UP genes compared to
DR ones was 2.4 indicating that cold-tolerance in anthers
of ICC16349 was manifested primarily by the enhanced
expression of genes.

Functional analysis of differentially expressed genes

Information on identity, cellular component, biological
and molecular functions of all the genes was obtained
form NCBI-BLAST, Gene Ontology (GO) analysis and
KEGG pathway (Additional file 1). Based on GO analysis,
the genes were classified into three main GO categories,
the biological process (BP), cellular component (CC) and
molecular function (MF). Of the 127 genes, only 35
(27.5%, 28 UP, 7 DR) could be functionally characterized
according to GO descriptions (Table 1). The remaining 92
ESTs (more than two third) were of unknown MF and BP
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Table 1 Gene ontology score-based categorization of
differentially regulated transcripts in anthers of ICC16349

Up-regulated Down-regulated Total
Total 90 37 127
BP 25 6 31
CcC 16 5 21
MF 26 5 31

BP, biological process; CC, cellular component; MF, molecular function.

(Additional file 1). The ESTs with altered expression were
further assigned into 10 GO subcategories (Figure 2,
Table 2). Among these 10 subcategories, those related to
ion transport, pollen development, signal transduction
and carbohydrate metabolism appeared to be more im-
portant for cold tolerance because the number of altered
transcripts in these subcategories were more. Twenty five
of the functionally characterized transcripts (71.4% of
transcripts with GO description) belonged to these four
subcategories. Besides more number of genes, other
unique feature was up-regulation of majority of the
transcripts (23 out of 25, 92%) in these subcategories.
Only two genes in these subcategories were repressed,
one each for ion transport and pollen development.
The GO subcategories with relatively less number of
genes were translation, transcription, energy, cell division
and metabolic processes. The genes in these subcategories
did not show a definite trend as some of those were UP
whereas others were DR.

The subcategory pollen development had maximum
number (ten) of altered transcripts. Seven of these are
listed under subcategory pollen, one (beta-galactosidase)
under carbohydrate metabolism and two (cysteine-rich
receptor-like protein kinase and CDC2C) under signal
transduction (Table 2). As per GO and available literature,
the BP of these genes were tetrad separation and pollen
release [pectin methylesterase (PME), pectin esterase (PE)],
pollen development [SNAP receptor, protein WAX2, early
nodulin-like protein (ENODLS6), beta-galactosidase] and
pollen tube growth (peroxisomal ABC transporter, PME
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and PE). The MF of pollen specific transcripts were signal
transduction, transcription, cell wall modification, protein
transport, fatty acid transport and ion binding (Table 2).
Except one gene (ENODLS), all genes in this subcategory
were UP. Carbohydrates are considered vital for normal
pollen development and four carbohydrate metabolism
genes i.e. beta-galactosidase, glycerol kinase, aconitate hydra-
tase and sucrose phosphorylase were up-regulated (Table 2).
The function of these genes is to release free sugars from
complex carbohydrates or triacyglycerol (glycerol kinase).

Additional information on differentially-regulated genes
was also obtained from NCBI-BLAST (Additional file 1).
Of the 127 differentially regulated chickpea ESTs identified
in the present study, only 40 had similarity to chickpea
ESTs listed in the databases (EST database, http://www.
ncbinlm.nih.gov/nucest?term=chickpea). The remaining 87
ESTs were new records for chickpea. Large proportion of
new ESTs identified in the present study might be attrib-
uted to the source organ used i.e. anther. This is the first
study on chickpea anther transcriptome. In earlier studies,
the leaf, stem and bud transcriptomes were analyzed
[18-23]. The analysis revealed that 18 of the 40 ESTs were
common between cold and drought, 6 between cold and
salinity, 3 between cold and biotic stresses, and 5 among
cold, drought and salinity (Figure 3). Four of the ESTs were
common to all the four stresses i.e. cold, drought, salinity
and biotic.

Transcript expression at different time points in

chickpea anthers

To confirm the DDRT-PCR expression profile and to
study gene regulation at the beginning of cold stress and
at various time points thereafter, reverse transcription
quantitative polymerase chain reaction (RT-qPCR) analysis
of anthers of the cold-tolerant genotype was carried out
at six time points (0 h, 1.5 h, 12 h, 24 h, 72 h and 120 h)
after cold stress. A representative set of 25 ESTs belonging
to 9 GO categories (signal transduction, transcription,
carbohydrate metabolism, pollen development, transport,
defense, translation, cell division and unknown function)
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Figure 2 Functional categorization of cold responsive anther genes in ICC16349. The number of genes were finalized using the filtering
criteria of fold change >2.0 and P-value correction <0.05 by FDR (Benjamini-Hochberg). Genes were classified into 11 different functional categories
based on gene ontology. Number of genes in each category are presented at the termini of bars.
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Table 2 Functional characterization of 35 differentially expressed transcripts from the DDRT-PCR
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Transcript no Homology and e-value Biological function Molecular function Cellular
component

Transporter activity genes

A3* Cation/H™ antiporter 14, Arabidopsis lon transport Antiporter activity Membrane
thaliana, AT1G06970, 4.1e-05

A20* Cation efflux system protein, Agrobacterium lon transport, transmembrane Copper ion binding Membrane
radiobactor K84, YP_002543585.1, 0.33 transport

A82-1* Heavy metal efflux pump CzcA, Gamma Unknown Cation transmembrane Unknown
proteobacterium, ZP_05061697.1, 4e-03 transporter activity

A116-3* L-ascorbate oxidase like protein, M. lon transport Copper ion binding Unknown
truncatula, XP_003611827.1, 4e-05

A121-1* AT5G57110 (Ca2+ transporting ATPase), Calcium transport, ATP Calcium ion transport Membrane
A. thaliana, BAH20100.1, 6e-05 biosynthetic process

A123-1* Potassium channel tetramerization lon transport Voltage-gated potassium Membrane
domain-containing protein, R. channel activity
communis, XP_002509821.1, 3e-29

A125-1* F16A14.19, A. thaliana, AAF79412.1, 8e-20 Transport Anion channel activity Unknown

A118** ABC transporter family, M. Unknown Ttransporter activity Plasmodesmata
truncatula, XP_003590459.1, 8e-27

Translation

A22* 40S ribosomal protein SA, M. Translation Ribonucleoprotein Cytoplasm
truncatula, XP_003638087.1, 4e-3

A73%* 60S ribosomal protein L27a-3, M. Translation Structural constituent Ribosome
Truncatula, XP_003613127.1, 2e-16 of ribosome

AC39GA2* Translation initiation factor EIF-2B epsilon, Translation Translation initiation factor Unknown
M. truncatula, XP_003618849.1, 3e-06 activity

ACA1GF1** 60S ribosomal protein L34, M. Translation Ribnucleoprotein Large subunit

truncatula, XP_003621181.1, 6e-09,

Transcription regulator

AC 47G ET*

SRCl, Glycine max, BAA19768.1, 0.096

Carbohydrate metabolism

A36-2%

A59-2%

A102-2*

AC44GA 2%

Beta-galactosidase, Arabidopsis
thaliana, CAB64750.1, 4e-3

Glycerol kinase, Glycine max,
NP_001237303.1, Te-21

Aconitate hydratase, M. truncatula,
XP_003612247.1, 4e-24

Sucrose phosphorylase, Vibrio
harveyi HYO1, ZP 01985256.1, 0.64

Pollen development

A10%*

A60*

A99-1*

A101*

A104-2*

Peroxisomal ABC transporter, M.
truncatula, XP_003601968.1, 1e-10

Pectin methylesterase, M. truncatula,
XP_003595372.1, 7e-17,

Microspore-specific promoter2,
Arabidopsis thaliana, NP_5686669.1, 0.02

Pectin esterase, M. truncatula,
XP_003591164.1, 1e-06

SYP124 (SYNTAXIN OF PLANTS);
SNAP receptor, M. truncatula,
XP_003593444.1, 1e-3

Cold stress regulation

Carbohydrate metabolism,
pollen development

Glycerolipid metabolism

Carbohydrate metabolism

(converts citrate to isocitrate)

Starch and sucrose metabolism

Transport (fatty acids), Pollen tube
elongation, ovule fertilization, and
seeds germination after imbibition

Cell wall modification, tetrad
separation, pollen tube growth

Pollen development

Cell wall modification,
pollen tube growth

Vesicular mediate transport,

intracellular protein transport,

pollen development

Transcription

Beta-galactosidase
activity

Glycerol kinase activity

Iron sulfur
cluster binding

Cation binding, sucrose
phosphorylase activity

ATP binding

Pectin methylesterase
activity

Transcription

Pectin methylestera
activity

SNAP receptor activity

of ribosome

Unknown

Apoplast

Unknown

Cytoplasm

Unknown

Glyoxisomal

membrane

Membrane

Chloroplast

Cell wall

Membrane
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Table 2 Functional characterization of 35 differentially expressed transcripts from the DDRT-PCR (Continued)

AC52GD1* Protein WAX2, M. truncatula, XP_003606194.1,  Pollen sperm cell differentiation Iron ion binding, fatty Integral to
5e-28 acid biosynthetic process membrane

A64-1** Early nodulin-like protein, M. Pollen development Copper ion binding Membrane
truncatula, XP_003609073.1, 8e-04

Signal transducer activity

A67* Cysteine-rich receptor-like protein Calcium-mediated Signal Protein serine/threonine Membrane
kinase, M. truncatula, XP_003589476.1, 2e-3 transduction, pollen development, kinase activity

recognition of pollen

A81* Protein kinase serine/threonine, Signal transduction Protein serine/threonine Nucleus
A. thaliana, CAA16700.1, 1e-37 kinase activity

AQ7-2% Ralf-like 19 protein, , A. Signal transduction Unknown Unknown
thaliana, NP_850219.1, 5e-25

A120-2% Serine/threonine protein kinase, M. Signal transduction Protein serine/threonine Unknown
truncatula, XP_003618563.1, 2e-3 kinase Activity

A140-2* (pollen  Cyclin-dependent kinase CDC2C, M. Signal transduction, Serine/threonine Unknown

development)  truncatula, XP_003621316.1, 2e-36 pollen tube growth protein kinase

AN59CA2* Casein kinase, Ricinus communis, Signaling transduction ATP binding Unknown
XP_002516524.1, 5e-17

Defense

A126-1* Wound responsive protein, Defense Unknown Unknown
Phaseolus vulgaris, Q09020.1, 7e-07

AT14%* RRP1, Medicago truncatula, Defense, resistance to Unknown Unknown
AB1511616.1, 0.1e-4 Peronospora parasitica

Energy

AC45GA3** ATPase subunit 8, Lotus japonicus, Energy Hydrogen ion Mitochondria
YP_005090498.1, 2e-71 transmembrane

transporter activity

Metabolic processes

A98-2% Hydrolase, Zea mays, NP_001150070.1, 1e-6 Unknown Hydrolase activity Unknown

Cell division

A71-1%% Cell division cycle and apoptosis Cell division Unknown Unknown

regulator protein, M. truncatula,
XP_003613873.1, 5e-07

Homologies are as per BLASTX.
*Up-regulated, **Down-regulated.

and having both the UP (16 nos.) and DR (9 nos.) tran-
scripts was selected for RT-qPCR analysis (Additional
file 2). These ESTs, in RT-qPCR, had differential expression
similar to DDRT-PCR. In the category of UP genes, three
transcripts i.e. AC44GA2 (sucrose phosphorylase, 122.2
fold at 72 h), AC39GA2 (translation initiation factor EIF-2B
epsilon, 88.3 fold at 24 h) and A10 (peroxisomal ABC
transporter, 42.7 fold at 120 h) showed maximum increase
over the untreated control (Figure 4A, Additional file 3).
Other highly UP transcripts were A-126 (wound-responsive
gene; 12.6 fold at 72 h), A59-2 (glycerol kinase; 9.2 fold at
12 h), A36-2 (beta-galactosidase; 6.2 fold at 72 h), A58
(unknown; 5.4 fold at 12 h) and A60 (PME; 4.9 fold at 12 h,
Figure 4B). Among DR transcripts, the expression of seven
transcripts out of nine declined to zero at different time
points after cold stress (Figure 4C). Only one transcript i.e.
AC41GF1 (translation) showed quick decline in expression
to zero following 1.5 h of cold stress.

Time point expression also allowed us to identify the
time at which the genes showed more than two- fold
increase/decrease (Figure 5). The UP genes with more
than two fold increase within 1.5 h were termed as
‘early-on’ whereas those with such increase at 72 h or
120 h were termed as ‘late-on’. The genes with more than
two fold increase at 12 h or 24 h were called ‘intermediate’.
Eight genes were ‘early-on’, four ‘intermediate’ and four
‘late-on’ (Figure 5A, Additional file 3A, C). The role of
some of the transcripts (A20, A108-2, A166-1, A36-2 and
A59-2) appeared to be restricted only to early stages of cold
tolerance (Additional file 3A) as their expression declined
to the levels of non-stressed anthers by 72 or 120 h. Among
the DR genes, A71-1 (cell division), A155-1 (energy) and
AC41GF1 (translation) were early in down-regulation;
A62 (unknown), A95-1 (unknown), A170-1 (unknown)
and A118 (transport) were ‘intermediate’; and Al14
(defense) and A77-2 (unknown) were late in down
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Figure 3 Number of cold-responsive transcripts which are
common to other stresses. The stresses were C, cold; D, drought;
S, salinity; B, biotic stress. The drought, salinity and biotic stress
responsive chickpea ESTs in databases that had homology to cold
tolerance responsive transcripts (present study) were identified using
NCBI-BLASTN. The number of transcripts which were common to at
least one stress other than cold was 39.

regulation (Figure 5B, Additional file 3B). Thus, the
regulation of expression whether that of UP or DR genes
was in a time-limited manner.

Spatial and temporal expression of genes in anthers,
gynoecium, leaves and roots

The expression of the 25 genes, which were used for time
point expression studies in anthers, was also elucidated in
anthers, gynoecium, leaves and roots (Additional file 4,
Figure 6). The aim was to understand gene regulation
under cold stress in different chickpea organs and to
identify organ specificity in gene expression. The differen-
tial gene regulation in different organs at different time
points was evident. The expression of five transcripts,
A166 (unknown), glycerol kinase (A59-2), PME (A60),
translation (A22), and A108-2 (unknown) was significantly
higher in anthers compared to other organs indicating
their anther-specificity and their important role in anther
development under cold. The transcript A166 expressed
only in anthers but not in other organs except at 72 h
when it expressed in roots too. Three transcripts i.e.
cation efflux protein (A20), A71-2 (unknown) and A58
(unknown) had very high expression in leaves compared
to other organs (Additional file 4) whereas peroxisomal
ABC transporter (A10) it did not express in roots at any
time point. The transcript A126 was root-specific as it had
higher expression in roots compared to other organs.

All anther genes except one ie. A166 expressed in
gynoecium. This pointed towards high degree of com-
monality in genes involved in cold tolerance in the two
reproductive organs ie. anther and gynoecium. Two of
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the genes (A36-2, A114) expressed only in anther and
gynoecium and not in other organs. The commonality
of cold-responsive genes in anthers and gynoecium did
not mean similar patterns of gene regulation. Only 9
out of 25 genes have similar patterns of gene regulation
between the two organs (Additional file 4). The remaining
16 genes have contrasting patterns of regulation. While
the expression of these genes in one of the organs was
high, in other, it was low. Among these 16 genes, a group
of 6 genes had unique patterns of regulation between the
two organs (Figure 6). These genes, in one of the organs,
showed increase in expression over time, while in other
there was gradual decrease over time. For example, the
expression of A36-2 in gynoecium was 3.8 times to that in
anthers at 1.5 h, it decreased to 0.6 times at 24 h and the
gene was switched off in gynoecium by 72 h. In contrast
to this, the expression in anthers was low at 1.5 h but it
increased steadily over time and reached a peak at 72 h,
the time by which it was switched off in gynoecium. The
other genes in this group were A140-2, AC47GEl,
AC41GF1, A62 and A71-2. All these genes except A62
showed up-regulation over time in anthers and down-
regulation in gynoecium (Figure 6).

Discussion

DDRT-PCR identified novel genes for cold tolerance

in anthers

Male gametophyte is the most sensitive chickpea organ
to cold stress. Microsporogenesis and subsequent pollen
development are affected adversely when chickpea plants
are exposed to temperatures below 10°C [2]. Cold-hardy
chickpea genotypes on the other hand maintain normal
anther and pollen development leading to pod formation
and seed set [15]. The present study revealed 127 differ-
entially expressed transcripts in tolerant genotype of
chickpea under cold stress including 92 (72.4%) novel
ones for which GO descriptions are not available. It
appears that induction of cold tolerance in chickpea is
regulated by a relatively small number of genes (present
study, [22]). Similar to our study, the number of transcripts
(1%; 96 out of 7300) with altered expression was also
less in meiotic anthers of heat stressed but heat-
tolerant tomatoes [24]. The comparison between heat
tolerant and heat susceptible tomato genotypes vis-a-vis
number of differentially expressed genes under heat stress
was also made [24]. The number of altered transcripts was
almost same in both types of the genotypes but the
patterns of gene regulation were different. While majority
of the genes were UP in the tolerant genotype of tomato,
majority were DR in the susceptible one [24]. Similar
pattern of gene regulation was also observed in chickpea
anthers (present study) where more than two third
(70.9%) of the altered transcripts were UP as a result of
cold stress in the tolerant chickpea genotype. Gene
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Figure 4 Time after onset of cold stress at which the up-regulated genes showed maximum expression and down-regulated genes the
maximum repression. The expression in up-regulated genes decreased after this time point whereas in down-regulated genes it either remained
the same or increased. The expression in anthers of ICC16349 was studied using RT-gPCR at six time points (0 h, 1.5 h, 12 h, 24 h, 72 h and 120 h)
after cold stress and is presented as fold change absolute compared to expression at 0 h. Chickpea actin gene acted as control and was used for
normalization of expression data. The functions of the ESTs as per gene ontology are A140-2: signal transduction; AC47GE1: transcription; A36-2, A59-2,
AC44GA2: carbohydrate metabolism; A10, A60: pollen development; A20, A118: transport; A114, A126-1: defense; A22, AC39GA2, AC41GF1: translation;
A71-1: Cell division; A58, A62, A71-2, A77-2, AB4-1, A95-1, A108-2, A155-1, A166, A170-1: unknown function. Panel (A), (B) show up-regulated and panel
(C) down-regulated genes, respectively.

regulation under cold stress in tolerant Arabidopsis and
susceptible sunflower was also similar to that observed
in tomato and chickpea [25,26].

Temporal and spatial gene regulation during cold stress
tolerance

Spatial and temporal control of gene expression is crucial
for the development of different plant organs including
anthers [27]. The regulation of chickpea anther genes

under cold stress was also in a time limited manner.
For example, the expression pattern of genes for cell
wall, carbohydrate metabolism and fatty acid metabolism
matched to the physiological development of pollen during
early stages. At the time of onset of cold treatment, the
chickpea anthers had microspores in the tetrad stage
[present study]. Rapid and highly orchestrated develop-
ments leading to mature pollen development take place
in anthers after tetrad formation [28]. Some important
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morphological/physiological features during this phase
are separation and expansion of microspores, pollen
mitosis I, pollen mitosis II and pollen maturation. During
these stages, the tapetum cells feed nutrients to devel-
oping microspores [29]. The genes with BP as tetrad
separation (PME), pollen expansion by cell wall loosening
(beta-galactosidase) and triacylglycerol metabolism leading
to sucrose synthesis (glycerol kinase) were up-regulated
within 1.5 h of cold stress. Early expression of these
genes matched with the morphological features of pollen
development i.e. tetrad separation and microspore expan-
sion. Since, tapetum stores lipids which are utilized by
rapidly developing microspores in anthers [30,31], glycerol
kinase might be the possible enzyme to convert tapetum
lipids to sucrose. The genes, sucrose phosphorylase (BP:
production of free sugars from sucrose, KEGG Pathway)
and peroxisomal ABC transporter (BP: pollen maturation,
pollen exine formation and male fertility, MF: transporta-
tion of fatty acids for 3-oxidation, [32,33]) over-expressed

later than early UP genes. It might be possible that sucrose
produced by the glycerol kinase is the target molecule for
sucrose phosphorylase and peroxisomal ABC transporter
supplies necessary triacylglycerols for action by glycerol
kinase. The up-regulation of peroxisomal ABC transporter
up to 120 h indicated its possible role till later stages of
pollen development.

Carbohydrate metabolism: an important part of cold
tolerance mechanism in chickpea anthers

The DDRT-PCR, time point and spatial expression data
pointed towards the prominent role of carbohydrate
metabolism in cold tolerance by anthers of the tolerant
chickpea genotype ICC16349. In the present study, all
four genes related to carbohydrate metabolism showed
over-expression in cold-stressed anthers. Among these
genes, the sucrose phosphorylase catabolizes sucrose to
yield fructose and glucose (KEGG pathway), the beta-
galactosidase acts on beta-galactosides and the aconitate
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dehydratase catalyzes conversion of citrate to isocitrate in
the tricarboxylic cycle through which energy is generated
and precursors for important biomolecules are syn-
thesized (KEGG pathway). The glycerol kinase converts
triacylglycerols to sucrose, a substrate for sucrose phos-
phorylase. A transporter of triacylglycerols (peroxisomal
ABC transporter) was also UP. Outcome of overexpression
of these genes would be the production of higher amounts
of free sugars (sucrose, glucose and fructose) that in plants
provide necessary energy and carbon skeleton for growth.
Rapid microspore/pollen developments after meiosis also
need higher amounts of energy and carbon [1-3]. It appears
that the tolerant ICC16349 ensures adequate free sugar
accumulation by enhancing the expression of carbohydrate
and fatty acid metabolism genes. The free sugars might also
serve another purpose as osmolytes and cryoprotectants.
Physiological studies in cold-susceptible plants of chickpea
have revealed that the disruption of sugar metabolism is
the cause of cold induced pollen sterility [3,13]. Decreased
carbohydrate supply is one of the major factors for cold-
induced pollen sterility in susceptible genotypes of several
crops including chickpea [3,13,15,34]. Cold-treated suscep-
tible plants accumulate low levels of free sugars and flowers
of such plants abort [13]. On the other hand, soluble sugars
enhance cold stress tolerance in cold-hardy plants [34].
Comparison between cold-susceptible and tolerant plants
showed that the leaves of cold-treated tolerant chickpea
genotypes had higher amounts of sugars than the treated
susceptible ones [15].

Pollen development genes: additional mechanism of
viable pollen formation under cold stress?

Accumulation of free sugars in anthers was considered
to be the major mechanism for formation of viable
anthers/pollen in chickpea as well as other crops [3,13,15].
Our study, however, pointed towards the possibility of
occurrence of additional mechanisms involving pollen-
development specific genes. Of the genes with known
function, 28.6% are involved in pollen development and
pollen tube growth in other crops (Table 2). It is well
established that separation of tetrad during microsporo-
genesis requires loosening of cell wall. At least three genes
with possible role in cell wall loosening and release of
pollen grains from tetrad were UP in the present study.
These were PME, PE and beta-galactosidase. The PME
has been shown to loosen cell walls leading to pollen
release [35,36] and in Arabidopsis mutated for this gene,
pollen grains were released as tetrad [35]. Similarly, beta-
galactosidase was associated with pollen expansion after
microspore meiosis [37,38]. Microsporogenesis followed
by pollen development is a metabolically very active phase
in plant reproduction [2,3] and requires continuous supply
of wall and other materials. It might be possible that the
genes for intracellular protein transport (SYP124, vesicular
mediated transport) and fatty acid transport (peroxisomal
ABC transporter) UP in the cold-treated anthers, fulfill
this requirement. It is already established that the peroxi-
somal ABC transporter plays role in pollen maturation,
pollen exine formation and pollen tube growth [32,33]
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whereas SYP124 in pollen tube growth [39]. Another
gene, WAX2 is required for fertility and seed formation
in Arabidopsis [40]. The wax2 mutants suffered from
severe pollen sterility and seedlessness, at least under
low humidity conditions [40]. ENODLSG6 is also involved
in pollen development [41]. In addition to this, two signal
transducers (cysteine rich receptor-like protein kinase and
CDC2C) with BP as pollen development (GO description)
were also UP. It appears that anther development in cold-
hardy ICC16349 under cold stress is due to accumulation
of free sugars and osmolytes (present study, [15]). On the
other hand, the viable pollen development under cold
stress might involve both the pollen development and
carbohydrate metabolism genes. Further studies are,
however, needed to support this hypothesis.

Conclusions

In this study, a global view of gene expression in anthers
of a cold-tolerant genotype during cold stress was obtained.
This is the first study on transcriptome of chickpea anthers
and it revealed that relatively less number of anther
transcripts were altered in cold- tolerant chickpea as a
result of cold stress. More than two third of the differ-
entially regulated transcripts were novel with unknown
BP and MF. Another unique feature was up-regulation
of majority of the altered transcripts. Pollen development,
transport, signal transduction and carbohydrate metabol-
ism were the four important GO subcategories comprising
25 of the 35 functionally characterized transcripts. The
expression of altered genes over time in cold stressed
anthers revealed that some genes over-expressed imme-
diately after onset of stress while others took several hours
or days to do so. Spatio-temporal transcript expression
involving four organs and four time points revealed
differences in gene regulation in anthers, gynoecium,
leaves and roots as a result of cold stress. The patterns of
gene regulation in anthers and gynoecium were interest-
ing. Though, all genes except one were common in these
two organs, the expression patterns of majority of the
genes were contrasting. While the expression in one organ
increased with time after cold stress, the expression in
other organ decreased. The study pointed towards the
existence of dual cold tolerance mechanism operating
in tolerant chickpea anthers. While the anthers were
protected by enhancing triacylglycerol and carbohydrate
metabolism, normal pollen development appeared to be
ensured by regulating pollen development and carbohydrate
metabolism genes. Chickpea is also affected by abiotic
stresses other than cold [42]. In chickpea, there exists a
cross talk among genic responses to abiotic (drought, cold,
high salinity) and biotic (fungal pathogen Ascochyta
rabiei) stresses [43,44]. To breed multi-stress tolerant
chickpea, there is a need to identify shared as well as
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unique genes/responses leading to viable pollen devel-
opment under different abiotic stresses.

Methods

Plant material, growth conditions and stress treatment
Chickpea genotype ICC16349 (cold-tolerant) was grown
in the greenhouse at 25+1°C/22+1°C (12 h day/12 h
night cycles) with approximately 50-70% relative humidity
until flowering. The plants were illuminated (16 h/8 h
light/dark cycle) using overhead white fluorescent tubes
(300 pumol m ™ s™%). In each 10” diameter plastic pot filled
with soil, sand and vermicompost (1:1:1), two plants were
grown. At a fixed time in the day, the flowers at three days
pre-pollen dehiscence stage were tagged and the plants
were shifted to a cold chamber (Blue Star, 5 + 1°C, humid-
ity 50-60%) illuminated with overhead white fluorescent
tubes (16 h light/8 h dark cycle). To identify cold tolerance
genes, three separate experiments were conducted, i)
differential display reverse transcriptase polymerase chain
reaction (DDRT-PCR) to identify differentially regulated
genes in ICC16349 under cold stress, ii) gene expression
in anthers of ICC16349 at different time points using
RT-qPCR and iii) temporal and spatial expression of
genes in anthers, gynoecium, leaves and roots using
RT-qPCR (see Figure 1 for flowchart of experimental
procedure). The duration of cold stress for DDRT-PCR
experiment was 0 h and 72 h. For time point expression
of genes in anthers, cold stress was provided for 0 h,
1.5 h, 12 h, 24 h, 72 h, 96 h and 120 whereas for the
spatio-temporal gene expression studies, the duration
of stress was 1.5 h, 12 h, 24 h and 72 h. The organs
from cold-treated plants were harvested within the cold
chambers and stored immediately in liquid nitrogen
(-196°C) until RNA isolation. The plants growing at
25+ 1°C/22 + 1°C and not subjected to cold stress acted as
untreated control.

RNA isolation and first strand cDNA synthesis

Chickpea organs (50 mg) were crushed to powder in
liquid nitrogen using pestles and mortars and total RNA
was isolated using RNAeasy Plant Mini kit (QIAGEN).
Traces of DNA from RNA were removed by on-column
DNAse treatment and the RNA was stored at —80°C.
RNA concentration was estimated spectrophotometrically
and RNA gel was also run from each batch of RNA to
check the quality and verify the concentration. Reverse
transcription was carried out (reaction volume 20 pl)
using Omniscript RT kit (QIAGEN) as per the manu-
facturer’s instructions except for the quantity of RNA
used. While the manufacturer’s recommended the use
of 50 — 200 ng RNA per reverse transcription reaction
(RT), the use of 50 ng RNA per RT yielded only about
20 bands per lane in the DDRT-PCR. The ideal number of
bands per lane in DDRT-PCR should be about 50-60.
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Lowering the RNA concentration to 20 ng per RT yielded
50-60 bands per lane (data not shown). In all our experi-
ments, 20 ng RNA per RT was used. The mRNA was re-
verse transcribed to first strand of ¢cDNA using three
independent reactions with three anchored poly T primers
(AAGCTTTTTTTTTTTTTC, AAGCTTTTTTTTTTT
TTG, AAGCTTTTTTTTTTTTTA).

DDRT-PCR, electrophoresis and intensity analysis
Synthesis of the second strand and PCR was carried out
in a volume of 25.0 ul using cDNA from 2 ng RNA [2 pl
RT solution, 2.5 mM MgSO,, 0.1 mM of each dNTP’s
mix, 0.8 uM of anchored and arbitrary primers (Sigma
Aldrich, USA) and 1 U of Taq DNA polymerase (Life
Tech)]. DDRT-PCR of treated and control anthers was
carried out using 240 primer combinations (three anchored
vs. 80 arbitrary primers, see Additional file 5 for list of
primers) [45]. Amplifications were carried out in a Perkin
Elmer Thermal Cycler (Gene Amp PCR System 9700)
using 1 cycle of 4 min at 94°C followed by 39 cycles of
15 sec at 94°C (denaturation), 2 min at 40°C (primer
annealing) and a 30 sec extension at 72°C followed by a
cycle of 72°C for 8 min using the procedure as outlined
by Liang et al. [46] with slight modifications. While
Liang et al. [46] used fluorescence or radioactive label-
ing, we used silver staining.

The DDRT-PCR products were resolved on polyacryl-
amide gels (6%) and stained with silver nitrate as per
Sambrook and Russell [47]. The gels were dried overnight
at room temperature and scanned using hp scanjet 8200
scanner (HP) attached to a computer (Sony Vaio). The gel
pictures were converted to TIFF files and differentially
expressed bands were subjected to intensity analysis using
Quantity one software (BioRad).

Recovery, cloning and sequencing of differentially
expressed cDNAs

For isolation of differentially expressed cDNAs, each
band was eluted and re-amplified using the primers that
were used to amplify the band in DDRT-PCR. The PCR
conditions were the same as DDRT-PCR. Re-amplified
products were separated on agarose gels (1.4%), extracted
using QAlquick gel elution kit (QIAGEN) and cloned in
pGEMT-Easy vector (Promega). The transformed vector
was inserted into Escherichia coli strain DH5a. Ampicillin
resistant clones were checked for insert and positive
clones were sequenced.

Sequence processing, gene annotation and functional
categories

The EST sequences were checked for quality and analyzed
by Seqman™ II 5.08 (DNASTAR, Inc. Lasergene Gene Cor-
poration, Ann Arbor, MI) and VecScreen (http://www.ncbi.
nlm.nih.gov/VecScreen/VecScreenhtml) to detect and
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remove pGEMT-Easy vector sequences. Manual sequence
processing was also performed to confirm results. EST
sequences, which were less than 75 bp long were removed.
Duplicate entries were identified using DNASTAR,
NCBI-BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and
manually. ESTs were assembled into contigs using default
parameters of CAP3 [48]. Gene annotation for identi-
fication and putative function was performed using
NCBI-BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The
CC, BP and MF of genes was determined by performing
functional classification according to gene ontology (http://
www.geneontology.org/), UniProt Knowledge base (http://
www.uniprot.org/) and KEGG: Kyoto Encyclopedia of
Genes and Genomes (http://www.kegg.jp) after filtering the
genes for more than two fold change and <0.05 P-value.

RT-gPCR confirmation of candidate genes related to cold
tolerance in anthers

Twenty five genes with different functions were selected
to confirm their expression levels in anthers and spatio-
temporal expression in anthers, gynoecium, leaves and
roots using RT-qPCR. For RT-qPCR, gene-specific primers
(Additional file 2) were designed from cDNA sequences
using primer3Plus software (http://www.bioinformatics.nl/
cgi-bin/primer3plus/primer3plus.cgi). RNA for different
experiments was isolated from untreated and cold treated
organs at different time points as mentioned in the
preceding section. First ¢cDNA strand synthesis was
carried out as outlined above. The ¢cDNA synthesized
using three anchored poly A primers (Additional file
5) was pooled in equal amounts and one ul of first
strand ¢cDNA mixture (1 ng RNA) was used for 12.5 pl
RT-qPCR mixture. PCR was conducted in a thermal
cycler (BioRad) at the following conditions: 5 min at
94°C followed by 30 cycles at 30 sec at 94°C, 30 sec at
52°C and 60 sec at 72°C and a final extension step of
72°C for 2 min. For normalization of RT-qPCR, Actin f§
gene from chickpea (ACT1, EMBL-ACD37723.1) was
used as reference. The PCR products were resolved in
1.4% agarose gel in tris acetate buffer at 120 v for 1 h and
were visualized using GelRed™ Nucleic acid gel stain
(Biotium, USA, 1 pl of 3x was added directly to the 12.5 pl
PCR amplified mix) or ethidium bromide (Amresco, added
to the gel @ 1 pl per 100 ml gel) in a UV transilluminator
(Biorad).

Data normalization and statistical analysis

After RT, initial concentration of the total cDNA in all
the samples used for DDRT-PCR and RT-qPCR was
normalized using the chickpea Actin f§ gene. The CT
value used was 30. The expression data (DDRT-PCR as
well as RT-qPCR) were normalized to that of reference
gene and normalized values were used to calculate fold
change. All experiments were performed in two biological
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replicates and three technical replicates. Data were analyzed
and graphs drafted using Microsoft Excel 3 (Microsoft,
Redmond, USA). The means were expressed as arithmetic
mean + S.D.

Accession numbers
The sequences of the transcripts are available under the
accession numbers GenBank: JK998687 to JK998825.
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